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Addressing the Schema Representation Problem in
Process Models Using Petri Nets – First Results
Illustrated by the Dining Philosophers Problem

Research in Progress

Sebastian Stephan, Josip Lovrekovic, and Peter Fettke

German Research Center for Artificial Intelligence (DFKI) and Saarland University,
Saarbrücken, Germany

{sebastian.stephan,josip.jelicic-lovrekovic,peter.fettke}@dfki.de

Abstract. In this paper, we introduce the schema representation problem using
the example of dining philosophers: The difference between a system model of
five eating philosophers and a schema model for a set of eating philosophers
is of major importance. In a Petri net model, each philosopher and each fork
would be considered as separate entities with their relating states and transitions.
However, this approach lacks due to scalability and dynamic behavior, as adding
more philosophers and forks significantly increases the model’s size. To model
any set of dining philosophers, a Petri net schema is useful. However, there is
no modeling technique to model an infinite set of philosophers and forks, and to
access its single elements. To address this problem, we provide the elm-notation,
which allows us to dynamically unfold and aggregate any sets whereby behavior
can be described for each philosopher and fork on schema level.

Keywords: Petri nets, system model, schema, behavioral modeling, elm-notation

1 Introduction

In modeling, it is of major interest to distinguish between a system model and a schema
for system models (Fettke & Reisig 2022a). Typically, a modeler begins shaping system
behavior based on concrete runs. Once detailed, the modeler adopts a universal inter-
pretation, transforming runs into a complete system model, ensuring the system only
behaves as described by its structure (Desel 2008, Fahland 2009).

A system model is intended to represent just one concrete system with its finite
sets of real or imagined world items and data objects. Using a so-called term language
as presented in Genrich & Lautenbach (1981) or Reisig (1991), the structure can be
abstracted from the system model. This makes it possible to describe a set of similar
system models represented by a schema. Analogous to an algebra and its interpretation,
by changing the interpretation, the net behavior can be changed without becoming
externally visible (Starke 1990). Usually, a structure comes with a signature, providing
a symbol for each of the structure’s components like domains, functions, predicates,
constants, and propositions (Fettke & Reisig 2022a,b). Based on system models that
describe a concrete domain, the question now arises how the behavior of each element
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can be taken into account in a schema model. A symbolic representation of the set
itself would be inaccurate and also incorrect, as this would represent the set itself as a
token and system behavior is not described by its single elements. This does not allow a
dynamic handling of sets where elements are produced, event-driven transformed, and
then synchronized in a structured manner (Fettke & Reisig 2024).

Thus, the problem we are focusing on is concerned with finding a suitable technique
dealing with set symbols in a Petri net schema (schema representation) that accurately
and efficiently depicts both structures and behavior of similar system models, but at the
same time remains flexible, understandable and manageable for design and analysis.
Before we present the solution more in detail, we motivate the schema representation
problem using the example of the dining philosophers (Dijkstra 1971) in section 2.
In section 3, we introduce the elm-notation provided by the modeling infrastructure
HERAKLIT (Fettke & Reisig 2024) and describe how it contributes to solve the motivated
problem. Section 4 gives an overview of related work. Finally, section 5 summarizes the
key findings and provides an outlook on our further research work.

2 Motivating Example

The dining philosophers problem illustrates common pitfalls and challenges associated
with designing concurrent systems (Dijkstra 1971). It describes a situation in which five
philosophers are thinking and eating. Sitting around a table with five forks, each philoso-
pher needs his left and right fork to eat. This illustrates the challenges of synchronization
and deadlocks in distributed systems. A run of the system would involve setting specific
numbers of places and transitions for each philosopher and fork (Reisig 2007). While
the state and behavior of each element is modeled explicitly, a system model makes
the problem more descriptive, but also complex and large for extensive systems, which
may include hundreds of philosophers and forks. Another possibility how to describe
the dining philosophers is to use a structure, which assembles real world items, data,
constants, functions, predicates and propositions that can be updated, generated, deleted,
computed and transformed by a system (Fettke & Reisig 2022a).

As depicted in Figure 1, a structure with five philosophers and forks is given. As
shown, the system model is limited with regard to its expressiveness. First, only five
philosophers and forks are considered. While this type of modeling works for domains
with a finite set of elements, this approach fails for domains that are often not entirely
known during modeling. Second, the concrete amount of elements has to be modeled
in the places thinking phils and available forks. However, this makes Petri nets less
readable and complex, especially when dealing with similar structures which might
contain hundreds of different philosophers. Due to the close coupling of the structure
to the system model, as many system models as there are structures would be needed.
Third, given the two functions l(x) and r(x), the case that only one philosopher (x) can
eat with two forks, namely with his left and right fork, is reflected. This means that the
dependency of which philosopher is allowed to eat with which fork is explicitly described
in the model. Changes to the system behavior, for example to allow a philosopher to
eat with any subset of forks (e.g. eating with only one or even three forks), need to be
changed directly in each system model and structure respectively.



domains

phils = {p1, p2, p3, p4, p5}

forks = {f1, f2, f3, f4, f5}

functions

l,r: phils→ forks 

l(pi) = fi

r(pi) = fi+1

f6 =def f1

predicates

thinking phils, eating phils: phils

available forks: forks

constants

p1, p2, p3, p4, p5: phils

f1, f2, f3, f4, f5: forks
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x: phils

a structure:
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Figure 1. System model of the dining philosophers (based on Reisig (2023b))

In order to represent similar structures by a model, the question now arises how any
(in)finite set of philosophers and forks can be modeled in a Petri net model, for which
any subset of philosophers can pick up any subset of forks. One possibility could be to
further abstract the system behavior using a schema. Usually, a structure comes with
a signature, which provides a symbol for each of the structure’s components (Fettke
& Reisig 2022a,b). For the dining philosophers, each domain gets its symbol (phils
and forks) denoted as its type, analogous to the types of components of structures. As
depicted in Figure 2, the schema model consists of two domain symbols, one function
symbol, three predicate symbols, and two constant symbols. By the two domain symbols,
an arbitrary set of philosophers and forks can be modeled and represented symbolically
in the places. This kind of modeling means that the symbols P and F hold the complete
set of philosophers and forks, respectively. However, representing a set of philosophers
and forks in one token each does not correspond to the system behavior we want to
describe. Behavior resulting from the single elements of a set is not reflected properly.
This is also reflected in the functions l(x) and r(x), which assign a left and right fork
for a given philosopher. In the case that every philosopher can only eat with a left and
right fork, this type of modeling might be sufficient and more descriptive. However, a
more general representation that makes it possible to return the corresponding number of
forks depending on the philosopher is not possible. For example, there might be a system
model where philosophers can eat with only one fork, or even more. In other words,
behavior like picking up or returning any subset of forks for any subset of philosophers
is not described in such a schema model.

To the best of our knowledge, there is no suitable technique to address this modeling
issue, which we refer to as the schema representation problem. In general, the universal
quantifier of predicate logic is missing on modeling level not only to describe rules
or conditions that apply to all elements of a given set symbol, but also to access them
individually and describe their behavior, and thus consider additional concurrency.
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The schema representation problem …

… any set P of phils

… any set F of forks

… any functions l,r: phils → forks 

… pick up a subset forks for any subset of phils

In view of predicate logic …

… thinking phils is a predicate

… available forks is a predicate

But how to write down:

− “for a set P, the predicate thinking phils applies to all 
elements of P”

− “for a set F, the predicate available forks applies to all 
elements of F”

domain symbols

phils

forks

function symbols

l,r: phils→ forks 

predicate symbols

thinking phils, eating phils:  phils

available forks: forks

constant symbols 

P: set of phils

F: set of forks

variable

x: phils

a signature:

Figure 2. Schema representation problem (based on Reisig (2023b))

3 The elm-notation

Now, we want to sketch a solution for the schema representation problem. Given a
signature as shown in Figure 3, we define different symbols, which describe aspects of
our system. For example, there are phils and forks representing any set of philosophers
and forks, respectively. The function g describes abstractly that a philosopher can have
any sets of forks. Instead of having one token representing each set P and F, we now
need a logical expression which allows us to generate five tokens in each place thinking
phils and available forks. By this, we are able to describe each philosopher and fork by a
local place for which the predicates thinking phils and available forks applies. At run
level this means that each philosopher and fork is represented separately in one place.
However, to consider this behavior not only in one run, but also for an arbitrary set of
runs, which together describe a system model, a technique on schema level is required
to deal with set symbols and to access its single elements.

Therefore, we introduce a predicate logic expression, called elm-notation, that allows
us to generate a set of tokens from a fitting term. The elm-notation allows us to unfold
any set symbol in a schema model and system model. In terms of the universal quantifier
as provided in predicate logic, we can create as many tokens in one place as there are
elements in the set for which the predicates apply. By this, we avoid an instantiation with
just one token containing all philosophers (P) and forks (F). As shown in Figure 3, two
domain symbols phils and forks are defined, which represent any set of philosophers
and forks. For example, given a structure with five philosophers and forks (see Figure 1),
the expressions elm(P ) and elm(F ) state that for each element of set P and set F the
predicates thinking phils and available forks apply. Thus, for all philosophers (or forks),
the elm-notation stands for the logical expression:

∀p ∈ P : thinking phils(p) (1)

Using the elm-notation with the function g(x) as arc description, we are able to
model pick up and return for any subset of forks for any subset of philosophers, allowing
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Figure 3. Solution (based on Reisig (2023a))

a synchronization detached from a specific structure and its system model. Using g(x),
we use a function which maps a philosopher to a set of forks. Which forks are returned is
not specified on schema level. This decoupling allows similar structures and any number
of system models to be represented by one schema model. Furthermore, we can not
only describe behavior as a sequence of occurrences of states for which typically a
global timestamp is assumed. Rather a causal relationship can be described between
philosophers and forks. Considering a strict partial-order instead of a strict total order,
causal independence and dependency can be considered. Described by a run, for example
two philosophers p1 and p2 could eat in parallel whereas p1 eat with one fork and p2 with
two forks. In order to restrict the schema to the original dining philosophers problem,
where philosophers can only eat with their left and right fork, constraints can be easily
added for each structure.

4 Related Work

There is a plethora of other modeling techniques discussed in the literature to describe
complex system behavior and dynamics. Techniques like state charts (Harel 1987), pro-
cess algebras (Milner 1996, 1999) or finite automaton (Hopcroft et al. 2001) assume
abstract events, abstracting away from concrete data to keep formalism better man-
ageable. However, as the complexity of a system increases, the number of places and
transitions using these techniques can grow exponentially, making the models difficult to
manage, analyze, or simulate. In addition, they lack in direct support for detailed data
manipulation and representation, but also representing partial-ordered runs. Petri nets
are also a well-known formal approach. Various Petri net extensions like Colored Petri
nets (CPN) (Jensen 1996), Predicate/ transition-nets (PrT-nets) (Genrich & Lautenbach
1981, Lindqvist 1991), algebraic-specified nets (Reisig 1991) or other high-level Petri
nets (Chiola & Dutheillet 1993, Lakos 2002, Girault & Valk 2003) are discussed in
literature. For example, CPNs introduce the concept of "colors", which allows distin-
guishing between tokens based on their data attributes (Jensen 1996). While the CPN



language is based on Standard ML, it combines the strength of Petri nets and high-level
programming languages to describe compactly system models in which communication,
synchronization, and resource sharing play an important role (van der Aalst & Stahl
2011). Other approaches discussed are Oclets (Fahland 2009) and Proclets (van der Aalst
et al. 2001, Fahland 2019). While Oclets focus on a formal process model for describing
scenarios with operational semantics using Petri nets, Proclets deal with the description
of system behavior based on many-to-many interactions of its data objects. However,
one limitation of these approaches is that they do not know the concept of a Petri net
schema. For complex systems, this can lead to very large and incomprehensible process
models. In contrast, PrT-nets use predicates to describe conditions under which transi-
tions can fire and tokens are seen as bindings of variables that satisfy these predicates. A
PrT-net describes a Petri net schema with an algebra as a free variable. This allows not to
represent just one system, but many similar ones. However, PrT-nets lack in generating a
set of tokens from set symbols for which the corresponding term fits. A similar approach
is described by Glausch & Reisig (2006). They present the concept of a Petri net schema
to deal with set symbols. However, similar to a PrT-net, their approach lacks in accessing
elements from set symbols itself to describe concurrent behavior, not only at run or
system model level, but also on schema level.

5 Conclusion and Outlook

In this paper, we introduce the elm-notation to solve the schema representation problem.
On the example of the dining philosophers, the idea of a universal quantifier was shown
to model any set of philosophers and forks and to unfold it. By this, similar system
models with their structures can be described by one schema model. We showed that the
usage of the elm-notation is not only limited to places. Set unfolding and set aggregation
can also be used as an arc label, which allows different behaviors to be taken into account
depending on the underlying structure and properties. For the modeling of information
systems, which deal with complex data structures, the elm-notation describes a promising
approach. Especially, the nested hierarchical structure of business documents consisting
of head and position data, like it is the case in enterprise resource planing systems (e.g.
SAP), adds a layer of complexity for the description of system behavior resulting from
position data. Formal approaches like HERAKLIT, which uses Petri nets, overcome
the limitations of semi-formal modeling languages by representing system behavior
more precisely and accurately. Semi-formal languages like BPMN or EPC often lead to
ambiguities, scalability issues, and challenges in managing large systems due to lack
of rigorous formalism (Lana et al. 2019). In this context, we are convinced that using
the elm-notation, we can not only consider an arbitrary set of data objects, but also
describe their behavior resulting from its single elements. For example, the processing
of a purchase order can depend on the properties of its order positions like availability.
Moving forward, future research endeavors will encompass additional case studies to
further demonstrate the advantages of the elm-notation along with the provision of best
practices for its effective application in modeling computer-integrated systems.
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