Association for Information Systems

AIS Electronic Library (AISeL)

WHICEB 2013 Proceedings Wuhan International Conference on e-Business

Summer 5-25-2013

Design of a Multi-Host Shared Memory Services
System

Chung-Yang Chen
Department of Information Management, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan Country
32001, Taiwan, 974403007 @cc.ncu.edu.tw

Wen-Lung Tsai

Department of Information Management, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan Country
32001, Taiwan, tswelu@gmai.com

Follow this and additional works at: http://aisel.aisnet.org/whiceb2013

Recommended Citation
Chen, Chung-Yang and Tsai, Wen-Lung, "Design of a Multi-Host Shared Memory Services System" (2013). WHICEB 2013

Proceedings. 15.
http://aisel.aisnet.org/whiceb2013/15

This material is brought to you by the Wuhan International Conference on e-Business at AIS Electronic Library (AISeL). It has been accepted for
inclusion in WHICEB 2013 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwhiceb2013%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/whiceb2013?utm_source=aisel.aisnet.org%2Fwhiceb2013%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/whiceb?utm_source=aisel.aisnet.org%2Fwhiceb2013%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/whiceb2013?utm_source=aisel.aisnet.org%2Fwhiceb2013%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/whiceb2013/15?utm_source=aisel.aisnet.org%2Fwhiceb2013%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

14 The Twelfth Wuhan International Conference on E-Business——E-Business Management in Organization Track

Design of a Multi-Host Shared Memory Services System

!Chung-Yang, Chen, °Wen-Lung, Tsai
I, First AuhorDepartment of Information Management, National Central University,
No. 300, Jhongda Rd., Jhongli City, Taoyuan Country 32001, Taiwan
974403007 @cc.ncu.edu.tw
*2,Corresponding Author yenartment of Information Management, National Central University,
No. 300, Jhongda Rd., Jhongli City, Taoyuan Country 32001, Taiwan
tswelu@gmai.com

Abstract:Memory cache is one kind of memory, through which data and objects are stored, thereby
reducing the time required to access the database and hard disk I/O, and achieving accelerated
technology effects by a significant application in large-scale web systems. In this paper, we design
Memcahed Helper (MH), based on a set of memcached with the scalability of a distributed memory
cache system, in line with the progress of the cloud environment. The experimental results show that
this system and the more efficient use of memory, provides better performance and speed.

Keywords:Distributed memory cache system, Memcached Helper, Database

1. Introduction
Large websites are usually the object or data stored in parallel databases [1]. However, as the number of

users increases, the performance of the database system cannot meet the demand and service performance
bottlenecks. In order to solve this problem, the site began to increase the effectiveness of services by using
memory cache object stores. Figure 1 is a common use of the memory cache. In addition to the original database
systems, additional settings memory cache servers. AP servers simultaneously write to the cache servers and
database servers, and data is read from the cache servers. Only when the required information is in the cache
servers, do the AP servers obtain information from the database servers, and the results are written to the cache
servers in order to increase the hit rate.

Memcached [12], under the BSD license by Danga Interactive, developed memory cache servers. Many
websites, such as Yahoo and Facebook, use memcached as their memory cache servers [12]. The design concept
in memcached is a client-server architecture that communicates with AP servers by simple text. In memcached,
each object is a key-value composition. A key of the object is an index for searching an object.

AP Servers 2 Object, AP Servers P Servers
3.Req.
1.Request eq.
\Write .Write
4.0bject
Memory cache Memory cache

. . |
. . -
=3 =3 =3
Databases Databases Databases

Figure 1: Memory cache diagram

The Twelfth Wuhan International Conference on E-Business——E-Business Management in Organization Track 15

Memcached is not simple, but it is fast. For the sake of simplicity, to show the performance difference with
the general database systems, we simultaneously stored 16,000 objects in memcached and PostgreSQL, and
compared the time spent. The results are shown in Figure 2, and it is clear that memcached performed better.

20
S
215
B0
S10 -
E.S I I I | B Memcached
= [|
£ PostgreSQL
&= —oggg

Object size (byte)
Figure 2. Comparison between memcached and PostgreSQL

The memcached protocol itself does not specify the way data is distributed. There is no specific program
library or applications, so users can modify the demands when writing AP. In addition, there are many different
languages, so different system programming can be used directly, and the way data distribution is used is not the
same.

This paper will discuss memcached, the clients of memcached, and how it can be improved. We believe the
optimal system architecture of memcached should have three specific items. First, the data should be distributed
evenly, that is, clients should be able to decide in accordance with the server load and memory capability where
to store data. A good hash function can be passive, preventing the uneven distribution of the workload, but it
cannot take the initiative to adjust the loading system imbalance. Furthermore, clients should not spend too
much time in determining how to distribute data, nor the host data store, as data distribution should be as simple
as possible. Finally, server changes should not affect the clients, i.e. when servers join or leave the service group
it should have minimal impact on the clients. This paper proposes a new architecture and protocol in order to
achieve the above characteristics, using simple data distribution in a dynamic way to balance the system, and
leaving a minimum impact on clients and servers that join and leave, with only a slight increase in the use of
resources.

2. Literature review
2.1. Memcached

In this section, we refer to the open source of memcached and Petrovici's research [11], memcached
internal mechanism with real explore.

Simple text protocol is used to communicate between memcached with clients, rather than the complicated
format XML or JSON. This allows for direct connect using telnet programs, such as the previous section
example. In addition, in order to increase performance, memcached also provides the binary mode protocol
conversion from text protocol. Memcached itself has no security mechanism, so ideally it should be set in the
firewall afterwards.

Memcached adopted the slab allocation to improve performance. The so-called slab allocation, refers to a
pre-configured chunk of memory, and is divided into many different small-sized pieces of memory. When the
program needs to use memory, it chooses the size then runs out, only to cancel the memory of the connection
rather than its release. Figure 3 explains the operation of this mechanism. This mechanism can reduce the
number of call system functions, and memory for a large number of operations due to memcached, as
memcached enhances the performance impact of this mechanism, which is particularly significant.

76bytes J

1

st bytec o byres || Jsgies o nes I [lasuvtes Jog e
laabyies Nloaopres || [sones o nues)| [loshtes log yes |

Figure 3. Slab allocation

16

The Twelfth Wuhan International Conference on E-Business——E-Business Management in Organization Track

2.2. Static hashing distributes objects

Static hashing is a hash table to increase or decrease the space mapping relationship with only a slight
change, rather than the general hash table that requires re-mapping all the way. Most memcached practice is as
follows: start with the first known server in the server list, then specify a location in each server code, and
finally write and read using static hashing [2].

Figure 4 is a simple static hashing example, with five servers, and the location code for pl to p5 object 1
saves to s5, because of the position after its hash before s5; saving s1 object 2 follows the same principle.

Figure 4. Static hashing diagram

2.3. Peer-to-peer protocol

Some peer-to-peer protocols, such as Chord [9], can organize and search the functionality of the network.
The Chord itself is designed for large networks, to provide for the centralized functions, and can handle the new
node join, leave, and recovery. Figure 5 shows how to deal with these situations in the Chord.

The Chord in peer-to-peer networks is very effective, but is not suitable for the cache system. All actions,
such as JOIN, LEAVE, and RECOVERY after synchronization. In distributed cache systems, system delay may

cause the redundant cache to fail and affect performance. In addition, the Chord does not provide a mechanism
for the mobile node.

// create a new Chord ring.
n.create()
predecessor = nil;
successor = n;
// join a Chord ring containing node n'.
n.join(n")
predecessor = nil;
successor = n'.find_successor(n);
// called periodically. n asks the successor
// about its predecessor, verifies if n's immediate
// successor is consistent, and tells the successor about n
n.stabilize()
X = successor.predecessor;
if (x E(n, successor))
SUCCessor = X;
successor.notify(n);
// n' thinks it might be our predecessor.
n.notify(n')
if (predecessor is nil or n‘E(predecessor, n))

predecessor =n';

Figure 5. Chord protocol

The Twelfth Wuhan International Conference on E-Business——E-Business Management in Organization Track 17

3. Design method and evaluation
3.1. System request analysis

1. Balance

Object distribution on networks generally complied with Zipf's Law [3]; especially in the cache system [4], it
is more likely to differ from the normal distribution. The traditional static hashing normal distribution may be a
higher than average points system, but this is not always the case. In addition, in the absence of a dynamic
adjustment mechanism, the problem of uneven distribution will grow with time, becomes more serious,
resources are wasted, and performance decreases.

Single server's memory capabilities are limited, and when the memory is fully loaded and then stored in the
new object, one of two conditions will occur. First, as it ignores the increasing requirements of the new object,
another is to delete the old object. The two situations reduce the cache hit rate; clients should take the object
storage to other servers while there is still room to avoid this situation. In addition, as CPU load is high,
memcached can effectivey and rapidly decrease load. Therefore, the client need not often to request the server in
high load in order to maintain overall performance.

2. Scalability

The easiest way to get the server to cluster is to assume that the information of clients is known by all servers.
However, when the system load is high or memory is exhausted, new servers can be added to share the work.
For now, memcached and the clients do not provide this feature.

3. Fault tolerance

Servers are faulty. In order to reduce the impact of a faulty server, in a service cluster, faulty servers are
automatically removed from the network, in order to avoid clients visiting failed servers.

3.2. System design

Figure 6 in this paper shows an overview of the structure mentioned. Memcached helper (MH) is required in

memcached servers to perform their work. The MH protocol was implemented to integrate server networks.

AP Sefvers

AP S rvers

7

TENE . .
MH Memcached

Memcached

Figure 6. MH system overview

18 The Twelfth Wuhan International Conference on E-Business——E-Business Management in Organization Track

Each MH memcached protocol is tailored to a corresponding memcached server’s communication, and the
MH protocol in all memcached servers integrates them into the network. Clients use memcached protocal to
operate memcached server in order to get the synchronous information. In addition, clients are responsible for

data distribution. Figure 7 shows MH and its client architecture; we will first introduce MH, and then introduce

clients.
Memcached protocol
Memcached protocol
MH protocol (for client)
MH protocol (for MH)
Distribution method
Memcached client MH

Figure 7. MH & Clients architecture

MH adopts a Chord-like manner, maintaining its fore-and-aft server information. In addition, it also
contains the client list and recovery information. The client list is for the organization's server network, which is
used for synchronization and error recovery. Both can be updated through events triggered by messages issued
by other MH or clients.

1. MH JOIN

When MH tries to join the server network, it will send out a MH JOIN message, which contains hash out,
the results of which are in accordance with its own IP and node n. If n is empty, it becomes the first node in the
network; otherwise, node n is checked and joins the servers in their own front or rear, and updates its
information. The direction of message transmission is determined by the message recorded in the status, and
there are three directions possible: Forward, Backward, and Native. When the message is created, its status is
Native, and then becomes Forward or Backward, depending on the location of the first node encountered. MH
receives the Forward message, then the message is sent to the next node, and finally the message goes Backward
when sent to the last node. The termination condition is very simple. First, the message to Forward to the new
node becomes the next node, and another message for a new Backward node becomes the last node. On the
other hand, when MH receives a Native MH JOIN status message, the message will be passed on to synchronize
all nodes.

2. CLIENT JOIN

MH must know the clients, and be in sync when it pushes information to the clients. When MH receives a
CLIENT JOIN message, it adds the clients own list of clients, and information is sent to the clients to join. Then
the message continues to pass to the following nodes until it finishes a lap.

3. MH LEAVE

When you want to leave the network, MH sends a MH LEAVE message to the fore-and-aft servers, which
contains the information.

4. CLIENT LEAVE

When MH receives a CLIENT LEAVE message, the corresponding client is removed from the client list.

5. MH MOVE

The initial location of the servers is determined by its IP-hash results, but their fore-and-aft servers may be
quite distant and cause a system imbalance. In order to solve the balance problem, MH will regularly check to
see if the load is too high, detected when the server itself is loading higher than a given value, compared to the

The Twelfth Wuhan International Conference on E-Business——E-Business Management in Organization Track 19

next server in the hash ring. The hash ring moves in a clockwise direction in order to balance the system. Figure
8 depicts a mobile computing formula, where Dn represents the distance and Ln represents loading.

Dpredecessor — x Lsuccessor

Dsuccessor + x Lidentity

Lidentity X Dpredecessar — Lsuccessor X Dsuccessor

x =
Lidentity + Lsuccessor

Figure 8. Formula for equilibrium shifting

Loading, CPU loading, and memcached utilization thresholds are three projects with the right weight and
are defined by the value of each project as 1 to the integer y, where y represents the maximum. In this paper, y is
defined as 5.

In order to define CPU loading, our first experiment was to find out the relationship between CPU loading
and performance, in order to define suitable parameters. Memcached utilization thresholds are defined as
follows: when the utilization threshold is 0%, the value is 1; when the utilization threshold is 100%, the value is
v. The value is in accordance with the proportion of growth.

Loading is defined for memory loading. When upcoming memory loading is increased to a maximum of vy,
its value decreases according to the proportion of growth when the server’s remaining memory space is less than
a certain amount (10% in this paper).

If x is the amount of movement, it will be a positive number; a negative could lead to read errors. When
clients read data, they assume that the data is immediate new information. However, if MH moves forward or
backward in a short while, clients may obtain older data. Figure 9 illustrates this phenomenon.

MH only deals with excessive loading, rather than dealing with loading that is too low. This is because
there will be another higher loading server taking the load of lower servers to exchange equilibrium.

6. MH RECOVERY

Servers will malfunction and cause errors. MH regularly checks that their fore-and-aft servers are normal,
and sends MH RECOVERY messages to other servers, which contains the information of their neighbors. When
another MH receives this message, it checks the status message: if the status is Native, the message will be
passed to the next server; otherwise, it would save this information. When MH detects a faulty neighbor, it will
require this information in order to carry out the repair work.

Clients include three main components: memcached protocol, data distribution, and MH protocol.
Memecached protocol is responsible for communicating with memcached servers and supports data distribution
MH protocol so clients with MH servers are synchronized in order to obtain the status of the network.

OO OO
/RN 4
Step 1 Step 2 Step 3

Figure 9. MH movement

At startup, clients will send a CLIENT JOIN message for MH servers to any network and from the server
end, receive the online servers list. When clients need to write or read from the object, they decide which server
will read the data connection with memcached protocol, in accordance with the definition of data distribution.

The clients MH protocol will receive three servers end messages: MH JOIN, MH LEAVE, and MH MOVE.
When receiving MH JOIN, clients are added to the server list, and then removed from the list when receiving
MH LEAVE. Receiving MH MOVE will update the server position.

20 The Twelfth Wuhan International Conference on E-Business——E-Business Management in Organization Track

Data is distributed by way of the general static hashing method, coupled with the number of replications, r,
or number of retries, t, as parameters. At the time of writing, the clients will write data to consecutive r servers;
read to the last servers and it reads until the cache hits or reaches the number of retries, t. In this system, the case
cannot find the cache data, for two reasons: first, the data does not exist in the cache system, and second, the
servers that store the data changed positions. We chose the last servers as the next target in the failed read
because the server's position is in accordance with the counter-clockwise direction.

5. Conclusion
We designed a distributed architecture between memory cache and client servers. The designed

architecture can be seamless to change members of the servers and client clusters, and the loading effect is
balanced, so that clients can access the data in the most simplistic and fastest way. This architecture is scalable,
with no need to change the existing memcached servers and client code. As described in the previous sections,
the cost of the implementation of MH is not high, and most of the time, during a suspended status, the impact on
the system performance is rather limited.

REFERENCES
[1] Bellatreche Ladjel, Benkrid Soumia, Crolotte Alain, Cuzzocrea Alfredo, Ghazal Ahmad, "The F&A

Methodology and Its Experimental Validation on a Real-Life Parallel Processing Database System ", In
Proceedings of 2012 Sixth International Conference on Complex, Intelligent and Software Intensive
Systems (CISIS), pp.114-121, 2012.

[2] David Kargerl, Alex Sherman, Andy Berkheimer, Bill Bogstad, Rizwan Dhanidina, Ken Iwamoto, Brian
Kim, Luke Matkins, Yoav Yerushalmi, "Web caching with consistent hashing", Computer Networks,
vol.31, no.11-16, pp.1203-1213, 1999.

[3] D.N. Serpanos, G. Karakostas, W.H. Wolf. “Effective caching of Web objects using Zipf’s law”, In
Proceedings of 2000 IEEE International Conference on Multimedia and Expo, pp.727-730, 2000.

[4] George Karakostas, D.N. Serpanos. “Exploitation of different types of locality for Web caches”. In
Proceedings of 2002 Seventh International Symposium on Computers and Communications, pp. 207-212,
2002.

[5] Jeff Bonwick, Sun Microsystems, “The Slab Allocator: An Object-Caching Kernel Memory Allocator”. In
Proceedings of the USENIX Summer 1994 Technical Conference on USENIX, pp. 6-17, 1994.

[6] Kin-Yeung Wong, “Web cache replacement policies: a pragmatic approach”. IEEE Network, vol.20, no.1
pp-28-34, 2006.

[7] Christian Schindelhauer, Gunnar Schomaker, “Weighted distributed hash tables”. In Proceedings of 2005
ACM Conference on Parallelism in algorithms and architectures, pp. 218-227, 2005.

[8] Shan Lei, Ananth Grama, “Extended consistent hashing: an efficient framework for object location”. In
Proceedings of 2004 International Conference on Distributed Computing Systems, pp.254-262, 2004.

[9] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank Dabek, Hari
Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for Internet applications”, IEEE/ACM
Transactions on Networking, vol.11, no.1, pp.17-32, 2003.

[10] Rongling Lang, Zhiqun Deng, “Data Distribution Algorithm using Time based WeightedDistributed Hash
Tables”. In Proceedings of the 2008 Seventh International Conference on Grid and Cooperative Computing,
pp. 210-213, 2008.

[11]Jure Petrovic, “Using Memcached for Data Distribution in Industrial Environment”. In Proceedings of the
2008 Third International Conference on Systems, pp.368-372, 2008.

[12]Memcached, “What is Memcached?” http://memcached.org/, 2012.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	Summer 5-25-2013

	Design of a Multi-Host Shared Memory Services System
	Chung-Yang Chen
	Wen-Lung Tsai
	Recommended Citation

	DesignofaMulti-HostSharedMemoryServicesSyst

