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Service Composition for Electronic Commerce

David Edmond and Arthur H.M. ter Hofstede

Cooperative Information Systems Research Centre
Queensland University of Technology
GPO Box 2434, Brisbane, Queensland 4001
Australia
e-mail: {davee,arthur}@icis.qut.edu.au

We investigate the possibility of some kind of automated and ad hoc trading based on
the formulation of specific commercial arrangements derived from libraries of commonly-
used trading patterns. Against this background, we discuss the issue of service compo-
sition, and introduce some basic forms. We then discuss the issue of composition as a
process in its own right, and how that process may be extended with new forms.

Keywords: task structures, service composition

1 Introduction

The Internet and the Web have opened new ways of doing business cheaply and more
effectively. The development of loosely-coupled commercial undertakings, in the form
of wvirtual enterprises,! seems a likely outcome from this connectivity. Deals will be
made, and settlement arranged, in a highly-automated fashion. But more than that,
such deals will be triggered by discovery mechanisms that are continuously scanning,
on a global basis, for opportunities to trade. In a recent report to the US Congress
on this emerging digital economy, Margherio, Henry et al. (1998) forecast that, by the
year 2002, $US300 billion worth of Internet transactions being performed annually. The
globalisation triggered by the Internet has naturally spurred the development of tools
and aids to navigate and share information on the Internet. Organisations of all sizes are
keen to sell products to a wider customer base by transacting on the Internet (Lee 1998).

The dynamism, volatility and sheer unpredictability of this environment will require
the ability to adapt to previously unknown situations, possibly while actively trading.
We believe that some form of enhanced features from reflection and process modelling
will provide the right ingredients to enable adaptability.

Reflection (Kiczales, des Rivieres & Bobrow 1991) is the act of revealing a system’s
implementation, and allowing changes to that implementation in a controlled manner.
By inspecting internal aspects of a system, its competence may be improved, either
through better performance or greater adaptability. The concepts of reflection have been
applied in a great many areas of computing and information technology, where it has

LA virtual enterprise is a pragmatic inter-organisational tool used by otherwise competing companies
in an opportunistic way. Its aim is to enable such companies to respond quickly to frequent demands for
complex products (Goldman, Nagel & Preiss 1995).
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been employed as a means of constructing flexible and extensible computer systems —
ones that can evolve and adapt to changing circumstances and expectations (Maes 1988).

A scenario of automated or semi-automated dealing depends greatly upon the avail-
ability of software components that can effect the necessary processes, and on being able
to combine these processes in a way that suits the particular requirements of the deal
being considered. One area for investigation is the possibility of a library of fairly generic
activities, for example:

e Working on a project — where the work is possibly performed as a number of tasks
spread over a period of time.

e Trading stock — where there is a need to negotiate on price and volume over some
limited period of time.

e Settlement — where an amount of money is to be paid off, according to set rules.

After suitable instantiation and extension, these commonly-used patterns may then be
composed in some way — resulting in some specific commercial arrangement that enables
a particular deal to go ahead. This kind of ad hoc composition of task templates may
require one or both of the following:

e Recognisable hooks within a template that allow it to be articulated with other
templates.

e Programming constructs that provide the necessary glue to support any such artic-
ulation.

In this paper, we begin by reviewing a processing modelling language called Task
Structures. This notation will be used to describe not only the activites upon which a
deal is based, but also the deal itself. Then we look at different ways in which tasks may
be composed. Then we discuss the kind of meta-knowledge that composition requires,
and how reflection might be used to extend the compositional process, in general.

2 Task structures

Generally speaking, processes focus on the coordination of tasks. Any process specifi-
cation language should at least be capable of capturing moments of choice, sequential
composition, parallel execution, and various forms of synchronisation. Task Structures
(Hofstede & Nieuwland 1993) is a notation for describing the various tasks within a pro-
cess, and their interdependencies. An individual task structure may be composed from
one or more of five particular building blocks, or process patterns, as is shown in Figure 1.
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AND-split: ~ After process A has been performed, both process B and process
C will be performed. Process A is said to trigger the other two
processes.

AND-join: Process C cannot be performed until both A and B have been
performed. This form of join is known as a synchroniser.

XOR-join: Process C will be performed whenever either A or B, but not both,
have been performed. This is known as a discriminator.

XOR-split:  After process A has been performed, either B or C but not both
will be performed. This is known as a decision point.

OR-join: Process C will be performed whenever A or B or both have been
performed (and so, C may be performed twice).

OR-JOIN

AND-JOIN XOR-JOIN XOR-SPLIT

Figure 1: Building blocks for Task Structures

OddJob:

Start new Perform Send Accept
job work . invoice payment

Decision legend:

Mark as

paid off

Mark as
bad

Figure 2: Finishing the entire job before being paid

d1: more work?

d2: more payments?

d3: fully paid off?

Figure 2 is an example of a task structure. It represents a process in which, first of
all, a new job is initiated, then the work is performed in a series of stages. An invoice is
sent out when the job is completely finished. Next a cycle of payments commences. The
process terminates when a decision is made that no further payments are expected.

3 Composition

Composing atomic tasks:

Suppose we have two task structures S and 7, and we want to perform task & and then
task 7. Their articulation may be effected by forming a new task structure, one that
consists of an initial task & which, on completion, triggers task 7.

255



This would be a very straightforward kind of strictly sequential composition. Task S will
need to be entirely finished before task 7 commences.

Consider the project work situation in its simplest form. Company A is to carry out
some work on behalf of Company B: the work is carried out; a signal is then transmitted,
in the form of an invoice, from company A to company B; finally, company B pays up.

The structure shown above is the simplest possible arrangement: only one job is peformed,
only one invoice is prepared, and only one payment is necessary. These three basic
activities might be composed in a number of different ways.

The structure shown in Figure 2 may also be viewed as the outcome of a composition
process. A project work pattern is followed by a settlement pattern, with a send invoice
task acting as an intermezzo, and the decision on the payment outcome acting as a coda.
There are other ways in which the three tasks might be combined.

Invoice

Figure 3: A simple, but restrictive, composition of the work and invoice tasks

Figure 4: A composition that allows some parallelism of the tasks

Suppose that the work takes some time to perform, and, by its nature, consists of a
number of stages. Then, it may be desirable to send an invoice at every stage. These
two tasks could be combined in the way shown in Figure 3, where there is a cycle of
work- then-invoice which is repeated until no further work remains to be performed. The
problems here are that an invoice is sent every time work is performed, and that no
further work can take place until the invoice for the previous stage has been prepared.

We can improve the situation by coupling them in a different manner, as shown in
Figure 4. There, after some work has been performed, a decision is made as to whether or
not there is more work to be undertaken. If there is not, then the invoice is prepared, and
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the whole task ceases. If there is still more work to do, then a synchroniser is triggered.
This will result in two paths being followed: an invoice will be prepared and another unit
of work will be executed. Thus, some parallelism is enabled.

Organic composition:

Alternatively, the composition may be more organic with the contents of the two struc-
tures being exposed, followed by some kind of attempt to “grow” the two structures
together. For example, the terminal tasks of § may be matched up in some way with the
initial tasks of 7.

Perhaps these two options are really just at the extreme ends of some kind of spectrum
of possibilities. A decision, however, to reveal the internal structure of the component
task structures seems an important distinction. Similarly a terminating decision may

feed, instead, into some initial task of T'.
A °
This task
to be followed by
this task °
° °

Figure 5: Two tasks to be composed

The animation of a task structure will probably give rise to more than one execution
thread. Should all threads in one task structure be complete before commencing the next
structure? Two basic approaches seem possible:

e An eager philosophy will be one in which the second task is started as soon as any
thread in the first task has died.

e A cautious philosophy will require that all threads be complete before the second
task commences.

With an eager approach, the conclusion of each thread will trigger the commencement
of the ensuing structure. For example, as may be seen in Figure 6, there will be three
different ways in which the threads of the first task may conclude, and the second task
fired up. The second task, however, will only be fired up twice, but even twice may be
too often. The problem with this approach is that it will lead to multiple executions of
the second task. However, although being “eager” might have its disadvantages, it allows
the execution of the second task to be expedited.

With a cautious or conservative approach, we will wait until the first task has entirely
finished, that is, all its threads have terminated. A naive way to accomplish this would, as
shown in Figure 7, be simply to interpose a synchroniser between all termination points
of the first task and all initial tasks of the second structure.

Unfortunately, such an approach, in the example shown, is guaranteed to deadlock:
the synchroniser will wait for signals from the termination option of the terminating
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Figure 7: Two tasks composed in a naively cautious fashion

decision point and the conclusion of subtask D. By the very nature of a decision point,
only one of these events can occur.

It is clear that the sequential composition of two or more structures is a kind of
synchronisation, and that the standard synchroniser is inadequate. The difficulty may be
resolved by allowing a different form of synchronisation — known as a discriminator.?
Its use is shown in Figure 8, where it is simply interposed between the two structures.
The discriminator accepts the first signal from ¢2, ¢4 or ¢5. It then triggers the initial
task or tasks of the ensuing structure. Any later signals from the other two task items
are recognised by the discriminator, but no onward triggering occurs. Thus, we have the
kind of synchronisation that we sought in Figure 7.

4 Knowledge about composition

Composing two task structures S and 7 may be viewed as a process of taking structure
S and decorating it in some way with task 7. The process will involve the addition of
new subtasks, decision points, synchronisers and discriminators. We can represent the
manner in which the composition takes place as yet another task structure, as may be
seen in Figure 9.

There are two task structures in this figure. Taskcomposition shows the general
process of task composition, that is, it shows how the process of composing tasks is
controlled. The composition process consists, firstly, of a decision as to which particular

2The concept is similar to that of the discriminator in the Verve Workflow product (Verve 1999).
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t8

.7 T t9
discriminator °

Figure 8: Using a discriminator to compose tasks

Task composition:

Basic Parallel Another Yet another
composition composition composition composition

Basic composition:
Insert Insert
task S task T
Make S
initial

Figure 9: Controlling the composition of tasks

Insert trigger
fromSto T

kind of composition is to be performed. The Basic composition subtask is also a structure,
and it begins by inserting the task that is to be performed first. Then, in whatever order,
that task is made initial, and the other task is inserted. Finally, a trigger is inserted that
connects tasl S to task 7.

Three levels of task structure can be identified. Starting from the application level,
and moving into the kernel of the system:

e At the application-domain level, we have task structures that describe application
processes. Figure 2 shows an example.

o At the composition level, we have task structures that describe how application
structures may be composed. Examples of such tasks are shown in the Task composition
and Basic composition tasks of Figure 9

e A the composition-adaptation level, we have task structures that describe how com-
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position (as a process in its own right) may be controlled and modified.

The task structures that we build at this innermost level will determine what kind of task
composition we will be able to accomplish: one possibility is to use a null task structure,
but this is a very limiting although safe strategy, since no changes would be allowed to
the middle level at all. Thus, we would be allowed to make the kinds of composition
that were envisaged at the time of construction, but no others. Another option is to have
a task structure that allows carefully controlled modifications to the middle level. The
modifications will be limited to ones that introduce new compositional styles.

5 Related work and conclusions

In attempting to formulate a research agenda for the rigorous composition of software
systems, Nierstrasz, Schneider & Lumpe (1997) observe that:

e There are two complementary viewpoints of software engineering — the computa-
tional and the compositional. An important task will be to discover what kind of
abstractions are necessary for software composition.

e If we hope to compose software in the same way hardware is composed, a (software)
component framework must support the specification of component behaviour, pro-
tocols for intercomponent communication, and rules for component substitutability.

Workflow patterns: In the work of (Aalst, Barros, Hofstede & Kiepuszewski 2000),
a systematic overview of process control constructors is provided. The patterns address
business requirements in an imperative workflow style, but are independent of any par-
ticular workflow language. They encapsulate commonly used forms of complex workflow
functionality. An example is the N-out-of-M Join where M parallel paths converge into
one. The subsequent activity is activated once N paths become active. An instance of
such a pattern would be when three reviewers are each sent a copy of a paper, but the
review process ceases when two reports are returned.

Generic process models: In (Aalst 1999), each workflow schema is associated with
a family of variants. A particular task in the schema may be viewed as the root of an
extensible class hierarchy, with the hierarchy expressing allowable instantiations of that
particular task.

Architecture Description Languages: Software architecture specification is intended
to describe the structure of the components of a software system, their interrelationships,
and principles and guidelines governing their design and evolution (C3DS 1997). Archi-
tecture Description Languages (ADLs) are high-level notations for expressing and repre-
senting architectural designs and styles. ADL descriptions are an ideal way of precisely
describing modern software systems that are composed of components; furthermore such
descriptions permit construction of system development environments that can map ADL
specifications onto the base system services. ADL based system development environ-
ments hold the promise of abstracting away the differences between agent and workflow
based systems (Clements 1996).

In a distributed environment, applications must be more than just fault-tolerant,
they must also be capable of dynamic reconfiguration. Ranno, Shrivastava & Wheater
(1999) describe a scripting language that enables tasks to be composed, and inter-task
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dependencies to be specified. Two kinds of dependency are examined: a notification
dependency from task A to B indicates that task B cannot commence until task A has
finished; a dataflow dependency between the two tasks indicates that, in addition, task
B requires some input from task A.

Coordination languages: This is a family of languages that are designed to glue
applications together. Control-driven coordination is the term that is used to refer to
models of coordination that are event- rather than data-driven (Papadopoulos & Arbab
1998). Concepts within the Manifold coordination language are the process which is a
kind of black-box to or from which, information may be passed by means of named ports.
These ports may have streams attached to them, thereby processes may be interconnected.
As well as streams, there is an mechanism by which events are broadcast, to be picked
up by any interested processes.

In this paper, we have introduced the idea of forming commercial arrangements ad hoc.
These arrangements will arise by firstly instantiating and extending commonly-used pat-
terns appropriately chosen from libraries of such activities. The results will then be
composed in some way — resulting in some specific deal. We have also discussed how the
general process of composition may be specified in such a way as to allow the incorpora-
tion of new forms of dealing, as required.
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