Association for Information Systems

AIS Electronic Library (AISeL)

Pacific Asia Conference on Information Systems

PACIS 1997 Proceedings (PACIS)

December 1997

An X-window-based Distributed Application for
Cooperative Work

D. Hoang
University of Sydney

Follow this and additional works at: http://aisel.aisnet.org/pacis1997

Recommended Citation

Hoang, D., "An X-window-based Distributed Application for Cooperative Work" (1997). PACIS 1997 Proceedings. 20.
http://aisel.aisnet.org/pacis1997/20

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 1997 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis1997%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1997?utm_source=aisel.aisnet.org%2Fpacis1997%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1997%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1997%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1997?utm_source=aisel.aisnet.org%2Fpacis1997%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1997/20?utm_source=aisel.aisnet.org%2Fpacis1997%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

|

An X-window-based Distributed Application for Cooperative Work

D. B. Hoang
Basser Depariment of Computer Science, University of Sydney, NSW 2008
doan@cs.usyd.edu.au

Practitioner-oriented Executive Summary

This paper presenis the design and implementation of OpenBoard Tutorial System. OpenBoard is a
clieni/server distributed application that supports concurrent meetings among users of X-window-
based workstalions. [t manages “boards” which are windows that users at various workstations can
write or draw on simultaneously, with each seeing an up-fo-date image of the board's state on his/her
own screen. The OpenBoard is built on top of the TCP/IP protocol suite, it uses SUN RPC to support
interactions between server and clients; and it allows stored images to be broadcast between users.
The OpenBoard Tutorial System (OTS) is an application structured around the OpenBoard. The
OpenBoard Tutorial System implements additional mechanisms which allow users to conducting reai-
fime tutorial sessions effectively in a distributed environment.

The system has heen evaluated by several groups of students. One such group consists of four
evaluators who evatuated the system by commenting on its usability and interface. They had no prior
knowiedge on how to use the system but knew what it is supposed to do. The evaluators all thought
that OpenBoard had a nice look to it, and they found the interface easy to use. They had no problems
in drawing objects onto the screen. The evaluators were most impressed with. the feature which
allows users to display and send stored images to different clients and they had no problem using it.
However some features are necessary but not intuitive as expecied. For example, the DrawQueue
feature which is required to maintain the order of the session, but was not strongly appreciated by
studenis involved in the evaluation. Other features suggested include a useful pointing device to
draw attenlion to certain object; a help bution; the ability o enter text on the drawing area, and the
ability ic draw freehand.

Overall, the paper presents the design and implementation of a very useful computer—supponed
futoring system: the OpenBoard Tutoring System. The system performs very well in terms of
functionality as well as in terms of fast response time, lis availability suggests a feasible, powerful,
alternative style of tutoring which becomes increasingly important in a distributed learning
environment. Furthermore, the OpenBoard system can easily be adapied for other applications
including conference, design ieamwork, etc. The application can also be extended for real-time

multimedia applications,

- Abstract

The paper presents the design and implementation of a distributed application called OpenBoaid
Tutorial System (OTS) that supports cooperative work among users of window-based workstations.
The application is based on the X window system and the SUN RPC protocol. The paper describes
OTS as a system designed for conducting real-time tutorial in a distributed environment by allowing
students 1o share text, graphics and stored images, and tutor to facilitate the session.

1. Introduction

Cooperation and coordination are essential to accompiished a complex task that requires
paricipation of many individuals. Face-to-face meeting is an efficient way to achieve such
cooperation and coordination. One major drawback of this type of meeting is that # requires
participanis io be present at the meeting physically. This reguirement is sometime impossible to meet
and in many cases not desirable. Participants cannot atiend several meetings simultaneously.
Another drawback is due to the use of traditional media like chalkboards for carrying out activities in
the meeting. It is difficult to rearrange, store, and keep records of the meeting with the chalkboard.
Furthermore, the only information that can be shared ai a face-lo-face meeting is that which was
brought to the meeting or composed during the meeting. Participants cannot access the increasing
multitude of private, corporate, and public databases to satisfy unanticipated information needs.

Computer-supported meelings can overcome many of the problems associaled with conventional

face-to-face meetings. Computer-supported meeting sysiems can be employed in many different
applications, from simple one-way seminar presentation, unstructured multiparty communications,

193

distributed cooperative design work, to more structured conference (Ahuja, Ensor, and Horn 1988;
Stefik et al. 1987; Goscinski 1993),

This paper presents the design and implementation of OpenBoard Tutorial System. OpenBoard is a
distributed application that supports concurrent meetings among users of X-window-based
workstations. It manages “boards” which are windows that users at various workstations can write or
draw on simultaneously, with each seeing an up-to-date image of the board's state on hisfher own
screen. The application supports concurrent meetings by allowing users to concurrently join several
different boards and communicates via them in text and drawings. An earlier version of OpenBoard
was developed by Liu and Hoang (1994). The early version suffered a number of drawbacks: 1) it
was implemented mainly to test the implementation of the OSI Remote Procedure Call Protocol by
Liu and Hoang (1997); 2) the system response time was slow since it is built on top of the 7-layer OSI
pratocol suit; 3} it did not support the exchange of stored images between users; 4) it only supported
unstructured communications, i.e., the board is free for all , no restriction or coordination is imposed
on users.

This paper also describes the OpenBoard Tutorial System which is based on a new version of
OpenBoard. The new OpenBoard is implemented 1) using SUN RPC; 2) built on top of the TCP/IP
protocol suite; 3) allowing stored images to be broadcast befween users. The OpenBoard Tutorial
System implemented additional mechanisms which aliow users to conducting real-time tutorial
sessions in a distributed environment,

The paper is organized as follows. Section 2 gives a brief description of how OpenBoard operates.
Section 3 presents the design and section 4 presents the implementation of the OpenBoard Tutoriai
System. Conclusion is in section 5.

2. OpenBoard Operation

The OpenBoard system consists of a client program and a server program. The server acts as a
manager to manage boards for ciients. The clients send requests to the server to open, join, or close
boards and to draw on the opened boards. The server program is started as a background process. A
user wishing to participate in a meeting executes a copy of the client program. If a user wants to join
several meetings simultaneously, he/she has to run several copies of the client programs as one
instance of the client program only provides a single board (window) for a user to. carry out discussion
in a particular meeting. The client program uses the X-window system to provide a graphical user
interface (GUI) to the users of OpenBoard so that they can write and draw on the windows, they can
also broadcast stored images to all other users. The server program, however, reguires nothing from
the X-window system. The interactions between clients and the server are supported by the SUN
RPC system, which provides OpenBoard with a convenient interface to the underlying
communication system.

When a user wants fo open or join a board, the client program sends the server an RPC request with
the hoard name as a parameter, If the board exists, the server adds the user to the board’s user list
and uses a callback to send a copy of the board’s current state to the client program, which displays
an image of the board on the user's display. Otherwise, the server creates a new board with an initial
state, establishes an initial board's user list and sends a callback to inform the client program to
display an image of a blank board. When a user writes or draws something on a board, the client
program first updates the local image on the user’s display and then sends the changes in an RPC
request to the server. The server will update the state of that board and send the new state to each
client registered with that board using a callback. The clients then update their boards.

The OpenBoard Tutorial System utilizes fully the OpenBoard facilities and adds necessary session
management mechanisms so thai the studenis can request for participation and the tutor can
crganize the discussion in the most effective manner.

3. Design
The OpenBoard Tutorial System is designed to meet the following requirements:

= A real-time tutorial can be conducted in an orderly manner with a tutor having rights to manage

the tutorial,
"« Users can joint or leave the tutorial subject to certain access control,

194

Uisers can create and modify text and graphic documents,

Users can communicate stored images to all participants,

All users see identical shared document on their screen,

Each user can have his/her on private view of the document besidesfaddition to the common
shared information.

There are three major aspects in designing the OpenBoard Tutorial System. The first aspect is the
interaction with the X-windows environment to provide a graphical user interface for texd, drawing and
image communications. The second aspect is the session management which allows a tutor fo
control and organizes the distributed tutorial session. The third aspect deals with a mechanism for
users to communicate with each other.

3.1 Graphical User Interface

A user interface is more than just a graphical display. !t is a medium for dialogue between users and
computers. It is important to center the design around user attitudes, and provide them with an
environment representing the reality of their conceptual model. In the last decade, the state of the art
moved from simple command text interfaces to interactive visual interfaces. Consequently, the user
interaction style has changed from conversaiional 1o direct manipulation of graphical objects.

A number of principles has been observed in designing the OpenBoard Tuiorial System:

e The interface has io be simple. The tendency is 1o provide as many features as possible for the
application. However, expetiences showed that doing so would make the interface complicated

and inevitably has negative effects on the users.

« The interface must be easy to use. This simply means that if the users find it hard to manipulate
or “complicated” and they will not use it.

¢« The inierface should be efficient in the sense that it can be supportied adeguately in terms of
response time and reliability by the underlying distributed communications mechanism.

« The interface must take into account the users' needs for the paricular application. In the context
of a tutorial system, the tutor must be able to manage and control and facilitate the tutorial, and
the siudents must be able to explore their own idea as well as participate in the discussion
without overly constrained.

The main constraint is the limited amount of space available for the OTS window. This constraint
translates directly into the number of graphical features that can be simultaneously visible on the
interface without cluttering the window.

it was determined that the most intuitive graphical WYSIWYG (what you see is what you get)
interface be adopted. The interface uses a iayering technique, similar to CAD applications, to aliow
shared view as distinct from a user's private view of the document.

The overall interface has three main areas: the drawing window with iis buttons, the text window and
the draw queue areas and session management butions (Figure 1). The drawing window foliows the
conventions of many drawing programs. The file menu, edit menu and the other menus are placed at
the top of the window, the drawing tools are represented as icons on the left side of the window, and
the drawing area is in the center of the window. The text window is below the drawing area. The draw
queue and session management buttons are placed to the right of the drawing area. The GIF pictures
are displayed in a separate dynamically sized window to reduce the clutler in the main window.

185

| DropDownMenu |

8

B E

R s

A 5

w 1

DRAWING o

T WINDOW N
0

o c

2 o]

N

T

R

o

TEXT WINDOW 1L

Figure 1 The OpenBoard User Interface Design

To conform with the simplicity and easy to use principles, only common shape elements of almost
every drawing package are made available. These include lines, rectangles, squares, circles and
ellipses.

The interface uses a layering technigue, similar to CAD applications, to allow shared view as distinct
from a user's private view of the document. When a shape is drawn it is set to one of three colours,
depending on the current state of the user. There are three distinguishable states of objects in the
drawing area, identifiable by the colour of the object. Drawing objects can appear in one of the
following colours:

« Black - objects are permanent and visible to all users at all time.

» Blue - objects which belong to the student who currently has the right to draw in the drawing
area, and is presenting his/her contributions to all participants. This is the main colour used to
interact with other users of OpenBoard. This allows users to draw objects and to submit work they
have done previously for all participanis to see.

= Red - objects are only visible to the user who has drawn them. This allows students to explore
altemative solutions and to express their own ideas freely without disturbing the main-discussion.
When a user's tum comes to participate in the main drawing, active red objects are changed to
biue and hence they become visible to all.

An example usage scenario of this system is a tutor drawing an incompiete circuit and transforming it
into a permanent black object. Each student in furn begins drawing solutions on his/her own drawing
space in red. When each student has finished he/she can request to display the result to ali users.
When each user finishes he/she yielded control to another user.

3.2 Session Management

The OpenBoard Tutorial System (OTS) as the name suggested, is designed for conducting a
distributed tutorial. The emphasis is placed on how such a tutorial can be conducted fiexibly and
orderty. This philosophy is reflected in our interface, where the emphasis is placed on controlling and
ordering of the tutorial session. Operations implemented in the OTS can be divided into 2 groups.
Group 1 consists of operations that can be perforrned by all paricipants, and group 2 consists of
operations that are anly available to the tutor,

Operations that can be perforred by all include file management operations (New, Load, Save, Save
As, Quit); drawing commands (Cut, Copy, Paste, Select, Delete, Move, Redraw); network commands
(Connect, Disconnect, Who, Refresh); commands to request for submission, and commands for
" sending image file. _

Operations that are available only to the tutor include Upgrade User, Yield User, and Remove User.
These operations aim to keep the tutorial session in order and to facilitate the discussion in a fair
manner. :

196

3.3 Communication Mechanism

To handle communication beiween students and tutor in a distributed environment, the client/server
model is adopted, using SUN Remote Procedure Call (SUN RPC). This protocol is chosen to
maximize portabilily, and to provide better response time. Our experience in implementing the
OpenBoard using 0S| RPC and with the support of an OSI 7-layer communications protocol suite
indicated that the system response time was unacceptably slow.

Server:

In the earier implementation, each client periodically made a remote procedure call to the server to
get the updated information such as the list of drawn objects, or the list of users on the system. This
resulted in many wasted calls to the server and placed a great deal of strain on the network, even
when no change has been made.

With this project, a different approach is adopted which stresses that a remote procedure call should
be made only when it is necessary. This approach utilizes a mechanism known as Callback RPC. It
allows each client to offer services on which the server can call back. Thus, when someone draws a
shape or joins the tutorial, a remote procedure call is made from this client 1o the server passing it
the new information. However, rather than all other clients calling the server to get this new
information, the server actually calls these clients through their services to pass them the new
information. This ensures that calls are made only after there have been changes and the clients
need to be informed. Callback technique is illustrated in Figure 2,

Update Info
Do_Callbacks Server
Request .
GUIL Callback GUI Callback
Program Service Program Service
4 Update A Updale
Tafo Info Client
User} Input User2 Input

Figure 2. Callback feature of the server

Client:

The client is responsible for three basic functions: calling on the server when it wants to update the
board, handling the callbacks from the server, and handling local X-Window events. Whenever the
client receives a draw request either from its user (students or tutor) or from a callback, it does the
drawing and updates its local drawing record list. Callbacks result from other users’ requests. The
client has to listen for both user input from the keyboard/mouse and input from the network for
callbacks so that it will not miss requests from its users and those from other via the server.

4. Implementation
The complele interface for the OpenBoard Tutoring System is realized as shown in Figure 3,

197

Figure 3. The OpenBoard Tutorial System user interface

In most drawing programs, when the users draw a shape, it appears immediately on the screen to
show them exactly what they have drawn. Also, when drawing a shape, the shape is updated as it is
being drawn (a method known as rubber-banding) so that the shape can be previewed as it is being
drawn, and the shape can be placed precisely. These two concepts are implemented in OpenBoard,

The selection tool in OpenBoard works in a way similar o most modemn drawing programs. Once
selected, the user can move a shape by clicking and dragging the selected objects. When an ohject
is selected, it displays two of its confro/ poinfs which can be dragged by the mouse, allowing the
shape to be re-sized.

With the Callback mechanism employed, the server has to perform many tasks in a short time. It
must process the new information and then calls each of the other clients to inform them of the new
information. In the mean time, the server cannot service any other request fram clients. This delay
can be intolerable if there are many clients, since the time required to make a remote procedure call
is quite significant. Furthermore, if a client has crashed, the server actually waits till the call to that
client has timed out before making a call to the next client.

The solution to this problem is solved by using thread programming technique. Creating a thread is
similar to “forking” a new process with the exception that a thread shares with its peer threads its
code section, data section and operating resources such as open files and signals. The use of
threads allows the server to continue with servicing incoming requests while it is making callbacks to
the clients. Furthermore, each call to the client is made by creating a new thread to handle it, thus
preventing delay if one of the client has crashed.

Figure 4 shows the OpenBoard interface and a pop-up window which holds the image sent by one of
the users (the Figure is wrapped around and has to be fixed). The image can be paositioned in any
place on the workstation screen, however it is placed on top of the interface window for convenience.

198

File

(Edi [Botvorti{Tutor]

Figure 4. OpenBoard and Image capability.

On the tutorial management aspect, OTS implemented the following operations:

Operations that can be perfermed by all paricipants:

All OpenBoard users can enter an OpenBoard session by using the "Connect” command.
The user then must provide the user's name and correct password before he/she is
allowed to join.

All users participate in a discussion by typing their comments and questions in the text
dialogue area.

All pariicipanis can request to draw by placing themselves on the drawing queue.

All participants can make any object “permanent” if they decide it is necessary and it is
their turn to draw.

When a particular padicipant is on the top of the drawing queue, all drawing objects that
were red will change to blue and these objects will become visible to all OpenBoard
users. All ohject drawn thereafter will also be in biue until such time the user is no longer
on lop of the drawing queue.

Any user can save the drawing area or text dialogues 1o a file for later use and they can
load a previously saved drawing for discussion.

199

s The “WHOQO” command displays a list of all participants in the tutarial.
s Any user can “Disconnect” and work locally or quit.

s A user on top of the draw queue is allowed to send a picture in GIF format to other users
for discussion.

Operations that are only available to the tutor:

e The tutor has the ability to remove a student out of the tutorial if that student is
disruptive. -

¢ The tutor can place any student to the top of the drawing queue if he/she decides that a
student has something important to show.

« The tutor can remove any student currently on the top of the drawing queue if the tutor
feels that this student has been there for too iong.

5. Discussion

The system has been evaluated by several groups of students. Ond such group consists of four
evaluators who evaluated the system by commenting on its usability and interface. They had no prior
knowiedge on how to use the sysitem but knew what it is supposed to do. The evaluators all thought
that OpenBoard had a nice look to it. They found the interface easy to use . They had no problems in
drawing objects onto the screen. However some features are necessary but not intuitive as expected.
For example, the DrawQueue feature which is required to maintain the order of the session, but was
not strongly appreciated by students involved in the evaluation

The evaluators were most impressed with the feature which allows users to display and send stored
images to different clients and they had no problem using it.

it was found that arrows as an object would be useful to draw attention to cerfain object, and that
different thickness of objects would alsc be an advantage. The most important thing which was found
lacking was the ability to enter text on the drawing area, and the ability to draw freehand. The
problem was that these features were hard to implement with the same level of support such as
move, select, cut, efc. This is especially true for text and freehand objects, and is a major limitation
of Libsx.

It is found that the response time of the system is more than adequate for the tutoring application.
Some extensions were suggested include a help button feature, an arrow for drawing user's attention
to a certain object.

The paper presents the design and implementation of a very useful computer-supported tutoring
system: the OpenBoard Tutoring System.

Overall, the OpenBoard Tutoring System performed very well. Its availability suggests a feasible,
powerful, altemnative style of tutoring which becomes increasingly important in a distributed learning
environment.

Acknowledgments

The project has evolved from the design and implementation of the OS| RPC through the
development of an unstructured OpenBoard in an OSl communications environment, to the present
Tutoring Systems in the SUN RPC - Intemet environment. The author would like to acknowledge the
-contributions of Y. Liu and S. Mok in the development of an earlier version of OpenBoard, and T.
Shen, D. Young, T. Ballantyne, and C. Nguyen in the development of the OpenBoard Tutorial
System. '

200

References

Ahuja, 8. R, Ensor, J. R., and Horn, D, N, “The Rapport Mulimedia Conferencing System," Proceedings of
Office information Systems, Palo Alto, California, 1988, pp. 1-8.

Goscinski, A., “A Distributed Computer System Supporting Remote and Concurrent Meetings.” Proceedings of
the JEEE Malaysia International Conference on Communications, Kuala Lumpur, Malaysia, 1993, pp. A4.1.1-
A4.1.8.

Liu, ¥ and Hoang, D. B., “A Window, OS5|-Based Distributed Application Supporting Concurrent Meetings.”
Proceedings of the International Conference on Communication Technology (ICCT94), Shanghai, China, 1994,
pp. 1411-1415.

Liu, ¥ and Hoang, D. B., “O8| Remote Procedure Call - Standardization issues, desigh and implementation, to
appear in Computer Communications journal, 1887,

Stefik M, Foster G., Bobrow D. G., Kahn K., Lanning S. and Suchman L., “Beyond the Chalkboard: Computer
Support for Collaboration and Problem Solving in Meetings.” Communications of the ACM, 30, 1, 1887, pp. 32-

201

202

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 1997

	An X-window-based Distributed Application for Cooperative Work
	D. Hoang
	Recommended Citation

	tmp.1219229509.pdf.UC5hy

