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Abstract. We present an analysis of how the structure of a social network in-
fluences the diffusion of information in a viral marketing context. We per-
formed diffusion simulations on a large number of real world and artificially 
generated network datasets. We analyze how the characteristics of a network 
and parameter settings like the selection of initial start nodes influences the dif-
fusion. The results indicate that the network structure has a significant effect on 
the diffusion. Extreme cases show a difference in the diffusion of over 65%. 
Our investigation also proves that a viral marketing diffusion may be predicted 
without the knowledge of the whole network. We further provide useful rec-
ommendations for marketers which could be taken into consideration when 
marketing campaigns are conducted. 

Keywords: viral marketing, information diffusion, social networks 

1 Introduction 

The success of virtual social communities on the web and the increasing resistance 
and avoidance of customers towards traditional forms of advertising [1] led marketers 
to turn to new forms of marketing such as social media marketing and viral marketing 
as a special type of electronic word-of-mouth marketing (WOM). Customers nowa-
days can easily share information including product information with their friends 
online, leading to a change in the information diffusion process within social peer 
groups. Solomon [2] states that WOM effects play an important role in the formation 
of judgments and attitudes towards innovations. Traditional marketing forms, on the 
other hand, are increasingly considered irrelevant by consumers [3]. Another im-
portant aspect of WOM and, in particular, viral marketing is the fact that the diffusion 
process may operate at very low costs, using an underlying social network and the 
participation of the network nodes themselves to actively spread an information arti-
fact. With the increasing success of online communities, we can observe numerous 
examples of “viral” products, websites or user generated content. One of the most 
famous examples is the viral marketing campaign for the movie The Blair Witch Pro-
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ject. The monetary success of nearly 250 million US dollars exceeded the production 
costs of 60,000$ US by the factor of 41661.  

Since viral marketing promises great effects at low costs, marketers and research-
ers showed interest in the understanding of the underlying processes. A main goal was 
to examine whether an information or innovation spreading dies out quickly or diffus-
es significantly into the population. Unfortunately these effects are difficult to observe 
in real world settings, as they usually appear spontaneous [4]. Following Bampo et al. 
[5], three main components determine the viral process: (1) the behavioral character-
istics of the members of the network, (2) the seeding strategy and (3) the structure of 
the social network. Hinz et al. [6] added a fourth critical factor, (4) the attractiveness 
of the content supposed to be transported. Since factor (2), the seeding strategy, is the 
only parameter that is largely under the control of the campaign initiator, this issue 
has received much attention in different research fields. Seeding strategies usually 
aim to identify influential nodes as the initial set of nodes in a diffusion process. 

Kempe and colleagues theoretically formalized this NP-Complete problem as the 
diffusion maximization problem [7]. Numerous strategies have been introduced and 
examined, mainly in the computer science and marketing community [6-10], still 
leaving some controversy and contradictory findings about the impact of seeding and 
viral marketing [6], [11]. According to a study among marketers in 2007, the major 
perceived problem of viral marketing is still the missing experience and a lack of 
measurability of the advertising effect [12]. Many factors of viral marketing diffusion 
still remain imprecise and vague. Leskovec et al. showed in their analysis that viral 
marketing is not as epidemic as hoped. They further stated that the topology of the 
addressed networks (factor (3)) should be analyzed in more detail [13]. Beside the 
conventional wisdom that the network structure influences the diffusion of infor-
mation, its role has not been deeply investigated. Watts and Strogatz [14] showed that 
networks comprising high clustering and small path lengths, what they called “Small 
World Networks”, facilitate an epidemic spread. Bampo et al. found with a simulation 
of a real viral marketing campaign in generated networks, that the structure of a social 
network has a significant impact on a viral marketing campaign performance [5]. 
Interestingly they found that scale-free networks, first introduced by Barabási and 
Albert [15], are very efficient for viral campaigns and small world networks generally 
temper the spread of information. Shakarian and Paulo investigated on viral market-
ing diffusion simulations in numerous networks and observed three different types of 
networks, each type showing a very distinct diffusion pattern [10]. To date, no re-
search offers extensive investigations on what network characteristics exactly influ-
ence the information diffusion in social networks, and if, to what extent. Moreover, 
the majority of the research on seeding is based on investigations on very few net-
work datasets only [6-8], [16]. The findings are therefore based on a specific network 
structure and may not be transferable to any other viral marketing application in net-
works with a different structure. 

Another problem is that for all the diffusion maximization approaches the whole 
network structure must be known ex ante, including every connection between any 

                                                           
1 http://boxofficemojo.com/movies/?id=blairwitchproject.htm 
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two nodes. Obviously, this is not the case in many real world marketing applications. 
Usually only few companies, mainly the service providers themselves like Facebook 
or Google, have access to all information about the underlying network. Nevertheless, 
some information is available and assumptions about the network structure can be 
made. We know for instance that in 2011 an average Facebook user has 130 friends 
and posted 90 pieces of content every month2. We further know that a network like 
Facebook comprises more than 150 million users in the US3 in 2012 and that the net-
work in 2011 showed a degree of separation of only 3.744. 

To address the open questions we will undertake a simulation analysis on a set of 
real-world and artificially generated networks using different types of seeding meth-
ods and two state-of-the-art diffusion models. We will introduce a set of metrics that 
have been calculated to characterize every network. These metrics will be combined 
with the diffusion simulation results to answer the question what network characteris-
tics influence the message diffusion. This also includes the interaction between the 
seeding method and the network characteristics. We will further conduct a decision 
tree analysis to answer the question whether the diffusion can be predicted based on 
the characteristics about the network structure or not. We conclude our work with a 
discussion of the results, managerial implications and future work perspectives. 

2 Theoretical Framework 

The research of diffusion of information in large online communities mainly derived 
from the studies of epidemics [17]. In other contexts, early efforts have been made in 
the understanding of the adoption of innovations in the medical and agricultural sector 
[18-19] or the success of product innovations [20-22]. To describe the diffusion, sev-
eral models have been introduced in the past. Our investigation will rely on two 
standard models in this research field, the independent cascade model and the linear 
threshold model which reflect a different transmission behavior of the network nodes. 
These models are well understood and have been used in various works studying the 
diffusion of information in social networks [7], [13], [23-24]. 

The linear threshold model, as first proposed by Granovetter [25], is based on the 
assumption of node specific thresholds. We speak of active nodes if a network node 
has adopted an innovation or received information, e.g. a marketing message. Accord-
ing to the model, a node is activated if the number of active nodes in the neighbor-
hood reaches a threshold. A real world example would be the adoption of fashion or 
technology trends. In the context of virtual communities like Facebook, we can ob-
serve similar aspects. In Facebook, for instance, little messages like “Your friend XYZ 
is now using …” are presented on the starting screen after a user logs in, highlighting 
friends using apps or games. One could make the assumption that some users might 

                                                           
2 http://www.kenburbary.com/2011/03/facebook-demographics-revisited-2011-statistics-2/ 
3 http://www.socialbakers.com/facebook-statistics/ 
4 http://www.bbc.co.uk/news/technology-15844230. The degree of separation refers to the ave-

rage number of friends in chain from one user to any other user in the network, excluding 
the end nodes. 
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also start using a certain app (usually a game) after a critical amount of friends did it 
before5. According to Kempe [7] the process works as follows: an inactive node v is 
activated if the total weight bw of any of its active neighbors w reaches the threshold 
しv ( in the interval [0,1]): 

 w
w
b                         (1) 

The diffusion process unfolds as a deterministic process in discrete steps t, with all 
nodes active in t-1 still active in t, given an initial set of active nodes A0 at the begin-
ning of the diffusion process. Each node uniformly chooses a threshold しv or the 
threshold is hard-wired for every node. The process will stop, if no further activations 
have been made. 

Based on the idea of interacting particle systems but later used in the context of 
marketing [26], the independent cascade model can also be used to model diffusion 
processes in networks. It starts with a set of initial nodes A0 and unfolds in discrete 
time steps t. Unlike the linear threshold model, an active node v is given a single 
chance to activate any inactive neighbor node w in the time step succeeding its activa-
tion. Whether or not an activation attempt is successful, node v cannot make any fur-
ther attempts to activate w in future steps. The activation is based on an activation 
probability pv,w defined for every node prior to the diffusion start. The process runs 
until no further activations are possible. In the context of virtual online communities 
the independent cascade model could be compared with posting, commenting or shar-
ing content on a friends pin wall in online social networks like Facebook or sending 
information artifacts to friends per email. If a friend is “activated”, the message might 
be forwarded to further people, etc. Moreover, platforms like Facebook reinforce this 
process by automatically6 sharing every status update a user makes with every friend 
(neighbor) of the user. These status updates include pin wall posts, using the like or 
recommend function or using games and apps. 

3 Method 

To evaluate the influence of the network structure on the information diffusion we ran 
simulations on networks using the independent cascade and the linear threshold model 
with different parameter settings. The simulation process was conducted as follows. 
For every network dataset 200 runs of simulations with randomly chosen start param-
eters were conducted. For every run the number of start nodes was set at random in 
the interval [1,50]. For the independent cascade model the activation probability for 
all nodes was set randomly in the interval [0,1]. For the linear threshold model the 
node threshold has been set equivalently. Furthermore, the criterion for choosing the 
start nodes (described in the next subsection) was selected randomly and the nodes 
have been selected accordingly by calculating the metrics for all network nodes. For 

                                                           
5 There are plenty of examples like the very popular farmville game on facebook, having mil-

lions of active users: http://mashable.com/2010/02/20/farmville-80-million-users/ 
6 A user on Facebook may change this functionality by using individual privacy settings. 



 

1513 
 
 
 

every run, 50 single simulations were accomplished. The resulting diffusion was av-
eraged and the resulting diffusion mean and the diffusion variance were stored includ-
ing all used parameters and the network metrics as one case. All in all 720,000 simu-
lations were conducted. For each diffusion model a dataset with 7200 cases each 
comprising the network characteristics, the simulation parameters and the results was 
created as a base for the analysis. 

3.1 Seeding Criteria for the Selection of Initial Start Nodes 

Several criteria for selecting the initial active nodes A0 exists. The most simple would 
be by randomly activating a set of nodes. A common method is to evaluate the cen-
trality of every node in the network based on different centrality measures and to 
choose the most central nodes as those are supposed to by influential [23]. We will 
evaluate the following centrality measures as a criterion for choosing initial nodes 
based on a given graph G = (V,E) comprising network nodes (vertices) V and edges E. 
All centrality metrics have been calculated according to Wasserman and Faust [27] as 
well as Newman [28]. We refer to those publications for further details on the calcula-
tions. 

 Degree Centrality, one of the most common centrality measures. Degree centrality 
reflects the number of ties (aka neighbors or friends in the context of online social 
networks) of a node. 

 Betweenness Centrality, this centrality reflects the probability of a node to lie on a 
shortest path between two randomly chosen nodes. 

 Closeness Centrality, this reflects to the inverse farness of a node v to any other 
node in the network. 

 Eigenvector Centrality, a natural extension of the degree centrality. The difference 
is that nodes also award “points” for the degree centrality of their neighbors. A 
node is central if it is connected to other important nodes. 

 Node Clustering Coefficient, sometimes also referred to as transitivity. The cluster-
ing coefficient of a node is the relation of the number of pairs of neighbors that are 
connected to the number of pairs of neighbors. In online social networks this re-
flects to the connection among a users’ friends.  

 PageRank Coefficient, extension of the eigenvector centrality used by Google to 
rank the centrality of web pages [29]. The difference is that the centrality of a node 
is further divided by the out-degree of a node. 

 Random, the initial start nodes are chosen randomly. 

3.2 Network Metrics 

To describe a network’s structure and characteristics and to later evaluate diffusion 
predictors, we calculated several metrics to describe a network. 

 Number of network nodes, usually the number of users. 
 Number of network edges, the number of connection between the nodes. 
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 Network density, the density of a network is the relation between existing and pos-
sible edges. 

 Connected graph (yes | no), a graph is connected if all nodes belong to one (giant) 
component and no individual clusters exist. 

 Average path length, the average of all shortest paths between any two nodes of the 
network. 

 Number of components/clusters, number of isolated components comprising at 
least two nodes. 

 Network/Graph diameter, the diameter of a network is the length of the longest 
shortest path between two arbitrary nodes in the network. 

 Average node degree, a normalized ([0,1]) metric of the degree centrality of all 
nodes. 

 Average node betweenness, a normalized ([0,1]) metric of the betweenness central-
ity of all nodes. 

 Average node closeness, a normalized ([0,1]) metric of the closeness centrality of 
all nodes. 

 Average node eigenvector, a normalized ([0,1]) metric of the eigenvector centrality 
of all nodes. 

 Average clustering coefficient, a normalized ([0,1]) coefficient of the clustering 
coefficient of all nodes. 

 Number of network communities, communities are sub graphs or dense groups of 
nodes within a network which are sparsely connected to other groups. In opposite 
to components, these groups are not isolated from each other. We used the leading 
eigenvector community detection algorithm according to Newman [30]. 

 Degree distribution power law fit, since the degree distributions of network nodes 
often show a power law distribution, we fitted a power-law distribution with max-
imum likelihood methods as recommended by Newman against the degree distri-
bution of each network [31]. 

3.3 Network Datasets 

We used both real world and artificially generated networks as a source for the simu-
lations. Table 1 shows the used networks for the simulation. The real world networks 
include some of the most common datasets used in social network analysis. One ex-
ception is the dataset Student Network. This network has been extracted in a former 
analysis. It comprises a Facebook friendship network of university freshmen after 
their first semester of study. It should be noted that prior to the analysis, all isolated 
nodes have been deleted from the graphs. To generate the artificial networks, three 
state-of-the-art algorithms have been used: Erdös-Renyi game [41], Watts-Strogatz 
game [14] and Barabási-Albert game [15]. The artificial networks have been generat-
ed in order to represent the characteristics of the real world datasets in terms of node 
and edge count. All calculations have been done using the igraph [42] package in the 
R software [43]. 
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Table 1. Networks used in the analysis 

Name Nodes Edges 
Social network of Dolphin interactions [32] 62 159 

Coappearance of Les Miserables (novel) characters [33] 77 254 

Topology of US Western States power grid [14] 4,941 6,594 
Facebook university freshmen (Student Network) 471 926 
Snapshot of Gnutella peer-to-peer network 2008 [34] 6,301 20,777 
Social network of the University of California (OCLinks) [35] 1,899 20,297 
Coauthorship network of network scientists (NetScience) [36] 1,461 2,742 
A snapshot of the structure of the Internet7 22,963 48,436 
High-Energy Theory coauthorship network (Hep-th) [37] 7,610 15,751 
Condensed matter E-Print coauthorship network 2003 [37] 30,460 120,029 
Condensed matter E-Print coauthorship network 2005 [37] 39,577 175,639 
Erdös collaboration graph8 6,927 11,850 
Astrophysics E-Print coauthorship network [37] 16,046 121,251 
Network of Email interchanges [38] 1,133 5,451 
Network of Jazz musicians [39] 198 2,742 
Network of users of the Pretty-Good-Privacy algorithm [40] 10,680 24,316 
Network created according to Barabási-Albert 1 [15] 60 177 
Network created according to Barabási Albert 2 [15] 80 237 
Network created according to Barabási Albert 3 [15] 1,400 2,798 
Network created according to Barabási Albert 4 [15] 20,000 39,998 
Network created according to Barabási Albert 5 [15] 30,000 119,996 
Network created according to Erdös-Rényi 1 [41] 868 1,040 
Network created according to Erdös-Rényi 2 [41] 914 12,683 
Network created according to Erdös-Rényi 3 [41] 1,000 14,902 
Network created according to Erdös-Rényi 4 [41] 1,000 25,362 
Network created according to Erdös-Rényi 5 [41] 6,290 19,996 
Network created according to Erdös-Rényi 6 [41] 6,917 23,767 
Network created according to Watts-Strogatz 1 [14] 60 177 
Network created according to Watts-Strogatz 2 [14] 80 240 
Network created according to Watts-Strogatz 3 [14] 60 177 
Network created according to Watts-Strogatz 4 [14] 1,400 2,800 
Network created according to Watts-Strogatz 5 [14] 20,000 40,000 
Network created according to Watts-Strogatz 6 [14] 30,000 120,000 
Network created according to Watts-Strogatz 7 [14] 6,927 14,994 

                                                           
7 http://www-personal.umich.edu/~mejn/netdata/ 
8 http://vlado.fmf.uni-lj.si/pub/networks/data/ 
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4 Analysis 

4.1 Descriptive Analysis.  

Figure 1 shows the resulting diffusion means of all networks in relation to the activa-
tion probability and threshold. The plot highlights a high variance in the diffusion 
curve depending on the underlying network. As some diffusion curves seem to follow 
the typical S-shape using the independent cascade model, some networks show an 
almost linear relation to the activation probability. The linear threshold model shows 
similar picture. Here the general S-shape is very steep showing some kind of critical 
threshold or tipping point. Under a certain value the diffusion stays very low. Once 
this critical value is reached, the diffusion quickly reaches high values and a high 
network saturation. 
 

 

Fig. 1. Simulated diffusion of all networks depending on the activation probability of the net-
work nodes. The figure includes a regression line (solid line). 

To draw a more detailed picture, Figure 2 shows the diffusion curves of three exem-
plary networks, the cond-mat 2005 network, the power grid network and the Erdös 
collaboration graph network. The plot of the independent cascade model illustrates 
very clearly the effect of the underlying network. The Erdös graph shows an almost 
linear relationship whereas the cond-mat 2005 and the power grid network show dra-
matic differences. At a node activation probability value of 0.45 we can observe a 
very low mean diffusion of around 15% of the network nodes for the power grid net-
work. On the other hand, the mean diffusion reaches values of 80% for the cond-mat 
2005 network at the same value. Interestingly this does not account for the linear 
threshold model. Here the curve shapes are more similar. An interesting behavior 
shows the Erdös collaboration graph. As the only network, it reaches diffusion rates 
above 20% even at very high thresholds. 

To evaluate the influence of the network parameters on the diffusions we calculat-
ed the correlation between those parameters and the mean diffusion. The results re-
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vealed several significant correlations. Obviously the activation probability plays an 
important role (r = 0.69) as well as the node activation threshold (r = -0.60). The in-
dependent cascade model showed several significant correlations with the mean diffu-
sion: Average path length (r = -0.34), Network diameter (r = -0.38), Average node 
closeness (r = -0.39), Average node eigenvector (r = -0.38), Network density (r = -
0.31). Using the linear threshold model, the following significant correlations with the 
mean diffusion could be found: Average node betweenness (r = -0.37), Network den-
sity (r = -0.34). For both models we can state that a dense, highly connected network 
leads to higher diffusion rates. It is further important, that the network shows a small 
spatial extension. As mentioned in the introduction, we know that contemporary 
online social networks like Fakebook show very small average path lengths and a 
small diameter, although those networks contain hundreds of millions of nodes. This 
directly relates to the dynamics of small world networks of Watts and Strogatz, show-
ing that diseases (in our context information) spread more easily in networks charac-
terized as highly clustered yet having small path lengths [14]. 

 

 

Fig. 2. Diffusion curves of three real world networks given the node activation probability 
(Independent Cascade Model) and the node activation threshold (Linear Threshold Model). The 

figure includes regression lines. 

In many real world scenarios, marketers will not have a matching dataset to run simu-
lations and create scenarios. Therefore artificially generated networks might be used, 
as we did in this paper. Since this is a convenient alternative, we were interested if 
generated networks show a significant effect on the diffusion. An ANOVA on the 
effect of the mean diffusion regarding an underlying real world or generated network 
was conducted. The ANOVA revealed a significant mean difference for both diffu-
sion models: F(1, 7198) = 84.56, p < .001, の = .01) for independent cascade model, 
F(1, 7198) = 14.48, p < .001, の = .002) for linear threshold model. Although a signif-
icant difference exists, the effects are very low. Effect sizes like Kirk’s の or Cohens’ 
d should always be calculated in order to determine the substantial effect. The gener-
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ated networks tend to a slight overestimation of the diffusion. Marketers should bear 
this in mind when using generated networks. 

4.2 Influence of Startnode Criterion - Independent Cascade Model 

Figure 3 shows the estimated density from a kernel density estimator. The figure 
highlights a rather minor effect of this parameter on the diffusion. A conducted 
ANOVA showed a significant effect of the startnode criterion on the diffusion, F(6, 
7192) = 2.62, p < .01, Ȧ = .001). Pagerank showed the highest overall diffusion mean 
of 0.7 (j = .34) and betweenness (j = .36) and eigenvector (j = .36) the lowest mean 
with 0.65. However, the means hardly differ and the effects are very small. Moreover, 
as Figure 1, already showed, the standard deviation is very high. Only the difference 
between pagerank and betweenness as well as pagerank and eigenvector centrality 
showed small effects according to Cohen’s d. Interestingly, the use of random 
startnodes vs. any other criterion showed very low effects to almost no effects. We 
can state that for the independent cascade model, the startnode criterion seems to have 
a minor importance having the pagerank criterion with the highest values. 

4.3 Influence of Startnode Criterion - Linear Threshold Model 

As seen in Figure 3, the selection of a startnode criterion has a greater effect on the 
linear threshold model diffusion. An ANOVA also proves the visual impression with 
a significant effect and higher effect values, F(6, 7193) = 27.26, p < .001, Ȧ = .021). 
Still the overall effect is small to medium according to Kirk’s Ȧ. Betweenness showed 
the highest diffusion mean with 0.42 (j = .44) followed by closeness, degree and 
PageRank with 0.39 (j = .44, .43, 43). Clustering and random showed the lowest 
diffusion means with 0.25 and 0.26 (j = .39, .40). Looking at pairs of groups we can 
observe differences between clustering and betweenness (Cohen’s d = -.41), random 
and betweenness (Cohen’s d = -.38), clustering and closeness (Cohen’s d = -.33), 
random and closeness (Cohen’s d = -.30), degree and clustering (Cohen’s d = -.33), 
eigenvector and clustering (Cohen’s d = -.26), pagerank and clustering (Cohen’s d = -
.35), random and degree (Cohen’s d = -.30) and random and pagarank (Cohen’s d = -
.32). We can thus state that start startnode criterion has a larger effect using the linear 
threshold model. Here the betweenness centrality showed the highest overall diffusion 
mean and random performed significantly lower. The overall effect is, however, ra-
ther small. Furthermore, the standard deviation in every group was very high showing 
a high degree of dispersion. 

To get some deeper insights on the effect of the startnode criterion, we calculated 
an ANOVA and the effect sizes for every network dataset separately. The results 
show a very diverse picture. For some datasets the startnode criterion using the inde-
pendent cascade model had no effect at all (dolphins network, Ȧ = 0.003), whereas 
other networks showed a high sensitivity to this parameter (hep-th, Ȧ = 0.10). Even 
more evident is the picture using the linear threshold model. Again some networks 
showed no effect at all and others showed a very high effect (Watts-Strogatz Network 
7, Ȧ = 0.46). We can conclude that the effect of the startnodes strongly differs from 
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network to network. To answer the question what characteristics may be related to 
this behavior, we calculated correlations of all network characteristics with the omega 
squared Ȧ effect size a network showed on the selection of the startnodes. The results 
revealed that the Number of components and the Average clustering coefficient are 
positively correlated with the effect (r = 0.29 and r = 0.37) and Degree distribution 
power law fit is negatively correlated with the effect (r = -0.38) for the independent 
cascade model. This leads to the conclusion that highly clustered and fragmented 
networks show a high sensitivity to the selection of the initial start nodes. Concerning 
the linear threshold model, the results differ. Here we can observe a significant corre-
lation with the Number of network communities (r = 0.50). Again, the conclusion is 
similar. If a network is highly fragmented, the selection of initial start nodes is more 
important. 

 

 

Fig. 3. Estimated densities of the mean diffusion grouped by the startnode criterion. 

4.4 Influence of the Number of Initial Seeding Nodes 

To prove whether the number of initial nodes has a significant influence on the result-
ing diffusion we calculated the overall correlation between the mean diffusion of a 
simulation run and the number of initial nodes used. We further calculated the same 
correlations for every network separately. Over all networks we can observe small but 
significant correlations between the mean diffusion and the number of initial start 
nodes, r = 0.05 for independent cascade model, r = 0.15 for the linear threshold mod-
el. Looking at the correlations for every network dataset separately, we can again state 
a very diverse picture. Using the independent cascade model, the correlations reach 
from no correlation at all to high significant correlations of r = 0.40 (Barabási-Albert 
1). Similarly the linear threshold model shows even higher significant correlations up 
to r = 0.59 (Dolphins Network). To draw further conclusions we correlated the effect 
(r values) of the initial number of start nodes with the network characteristics of all 
networks. The results show that for the independent cascade model the Average clus-
tering coefficient (r = 0.48), Average node betweenness (r = 0.74) and Network densi-
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ty (r = 0.68) show significant correlations. The findings indicate that especially dense 
networks show a high effect regarding the number of initial start nodes. Marketers 
should therefore pay attention to the underlying density. Most real world networks, 
however, show a very low density. For those applications this parameter is of less 
importance. 

5 Network Diffusion Prediction 

To exploit the findings for a marketer’s decision making we conducted a classifica-
tion analysis. Goal of the analysis is to investigate if the diffusion may be predicted if 
network characteristics (Diameter, Number of Nodes, Density, etc.) and diffusion 
parameters (Number of start nodes, startnode criterion, Assumed activation probabil-
ity, etc.) are given. This gives a marketer the possibility to predict a diffusion (the 
success of a campaign) based on assumptions about the general network characteris-
tics. A marketer can therefore easily create worst-case, best-case and intermediate 
scenarios to manage possible campaigns. On this account a C4.5 decision tree was 
created and evaluated using a 10 fold cross-validation. Since the decision tree only 
classifies categorical variables, we created a 10 bin class variable from the Mean Dif-
fusion variable in the original dataset. This leads to ten diffusion classes, 1 for very 
low and 10 for very high diffusion. The decision tree is supposed to predict the cor-
rect diffusion class based on network characteristics given. As seen in Table 1, the 
first decision tree achieved notable results with an overall accuracy of 86.012% for 
the independent cascade model. False predictions are scattered close to the real class, 
especially for low and high diffusions. 

Table 2. Confusion matrix of decision tree classification (independent cascade model). 

Confusion Matrix N=7200  
Classified as  

1 2  3 4 5 6 7 8 9 10 Real class 

832 67 14 2 3 1 2 4 0 0 1 n=925 

68 200 42 7 2 0 0 0 0 0 2 n=319 

10 44 176 37 12 2 0 2 0 0 3 n=283 

3 7 34 163 47 6 2 2 1 0 4 n=265 

3 1 3 39 206 25 13 4 2 1 5 n=297 

0 0 1 2 39 264 41 6 5 1 6 n=359 

0 0 1 2 10 38 341 57 9 0 7 n=458 

0 0 1 1 1 2 46 478 57 0 8 n=586 

0 0 0 1 0 2 8 45 755 62 9 n=873 

0 0 0 0 0 0 0 5 52 2778 10 n=2835 

 

The results of the linear threshold model show similar values and an overall predic-
tion accuracy of 85.847%.  
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6 Conclusions 

6.1 Practical Implications 

The results of our analysis highlight the impact of the network structure on the diffu-
sion process. This should be evaluated carefully when viral marketing is considered as 
a marketing tool. Dense networks and networks showing small average path lengths 
are very efficient for information diffusion whereas highly clustered networks are 
rather disadvantageous. If the network structure and the diffusion process are un-
known, assumptions about the diffusion model need to be drawn since the diffusion 
varied considerably from the independent cascade to the linear threshold model. 
Bampo et al. showed that the network structure and the transmission behavior can be 
estimated during the first generations of a running campaign [5]. A campaign manag-
er could use the estimated artificial network to forecast the campaign, considering the 
slight diffusion overestimation of such networks, as we have shown. We can further 
state that seeding matters, but strongly differs depending on the underlying diffusion 
model and the network structure. If the underlying network is fragmented and clus-
tered, the seeding method is more important. This has already been indicated by 
Shakarian and Paulo who found that simulated diffusions in highly clustered networks 
required more initial seed nodes to reach a certain diffusion level [10]. The results 
also highlight that a campaign manager should rather concentrate on a strong growth 
than on massive seeding, since the number of initial seeds showed a minor effect. 

6.2 Future Work 

Our results also highlight that viral marketing is not a panacea to today’s marketing. 
This directly confirms the findings of Leskovec et al. [44]. If the network structure is 
very disadvantageous, a campaign needs very high activation probability (or very low 
thresholds) to spread into the whole population. This might be unrealistic. Neverthe-
less, we can expect that virtual online networks will show even smaller average path 
lengths and a higher density in the future. Moreover, if currently still independent 
networks like Twitter and Facebook become more and more connected through ag-
gregator services and mobile devices, the clustering is reduced, yet leading to a great-
er potential of electronic WOM, and therefore, viral marketing. Furthermore, the dif-
fusion models used in this work might not be fully suited to describe spreading behav-
ior. The behavioral characteristics of single nodes have not been taken into account. 
This should be addressed in the future to make the models more realistic. We further 
propose to conduct similar analyses on complex networks comprising different types 
of relations and multiple layers, as these networks might provide a more holistic re-
flection of the online communication. 
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