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Abstract

We consider logical languages which express
strategies when games are given in Normal form,
Extensive form and with a Symbolic representation.
Many practical applications in Electronic Commerce
can be formulated as games and the relationship
between complexity and strategies is an important
issue.  Descriptive complexity allows to directly
link the Logic used to define a strategy with its
computational complexity. We give examples based
on the the Prisoner’s dilemma in extensive form and
the North-East game in a symbolic representation.
We then study the computational complexity for
computing the Nash equilibria under various re-
strictions and we prove that for games in symbolic
form, it can reach arbitrary levels of the polynomial
hierarchy.

1 Introduction

Many natural problems in decision theory can be for-
mulated as games and the study of effective solutions
of these games has led Game theory and Computer
Science to converge on similar problems [2]. In Elec-
tronic Commerce, agents follow various strategies to
achieve a global goal and the study of effective strate-
gies becomes important. In mechanism design such
as combinatorial auctions, there is direct connection
between the game representation, the complexity of
the strategies and equilibria and the various approx-
imations. We concentrate on two specific aspects
of games in extensive and symbolic forms. What
happens to the Nash equilibria when we restrict our-
selves to strategies computable in polynomial time or
within other complexity bounds? Are the equilibria
easier to compute?

One of the fundamental observation of [8] is that
natural restrictions on strategies based on the size
of automata change the equilibria of the game. We
wish to study how restrictions on definable strategies
change the equilibria and the difficulty to compute
them.
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Our basic tool is descriptive complexity [5] which
allows to directly link the logical language used to
define a strategy with its computational complexity.
For games in extensive forms, we need to define a
class of finite structures for which a strategy appears
as a global function or a query. We take the classi-
cal repeated Prisoner’s dilemma as an example and
show how uniform recursive definition characterize
strategies computable in polynomial time. We then
extend the notion to games in symbolic form, such
as the game North-East.

We then recall the basic techniques for computing
equilibria and prove a standard result : for games in
symbolic form, the complexity of the equilibria can
be as high as any level of the polynomial hierarchy.
In section 2, we describe the definable strategies for
games in Normal, Extensive and Symbolic form. In
section 3, we study the complexity of the Equilibria.

2 Definable strategies

There are two classical representations [7] of two-
person games which also generalize to N-person. The
Normal form where matrices A, B with values in Z
are given such that a(é,j) (resp. b(¢,j)) is the gain
obtained by Player I (resp. Player II) when I takes
the decision 7 and II the decision j. The FExtensive
form where a tree whose nodes are colored (the In-
formation sets of the players) and whose edges are
labeled by the player’s decisions.

Yet in many games (checkers, chess or North-East
used in this paper), the extensive form is too large
and the game is only known with rules, expressed
in some formal language. Such rules define a class
of models but also underline the notion of definable
strategies, which we will study in detail.

2.1 Normal and Extensive forms

For simplicity, suppose A and B are square (n,n)
matrices and let us call E the vector (1,1, ...1) of size
n. In the case of normal forms, a (mixed) strategy
for T (resp. II) is a vector x (resp. y) of size n.
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The strategy we may want to consider for this Nor-
mal form is the one such that :
Maz zT(Ay) subject to Ez =1 and z > 0.

It is definable by a linear program and the language
considered is linear algebra. In the case of a game
in Extensive form, there are several possible defini-
tions of strategies. Let C;; be the node color j (or
information set j ) of player ¢ and let C' = Uz‘,j Ci ;.
Let L; ; be the set of decisions of player ¢ on a node
colored? j.

e A deterministic strategy [1] u for player i is a
function C* — L;; which determines given a
history of node colors C!, ....C* where C* = Cs ;
a decision [ € L; ;.

e A behavior strategy [4] 7 for player i is a func-
tion C; ; = L; ;. It describes the decision the
player i takes on each node colored j.

o A mixed strategy in the normal form of the game
associated with the extensive form.

In the first two cases, randomized strategies assign a
probability distribution on L; ;. Under the hypoth-
esis of perfect recall and perfect history, the first two
definitions coincide. The normal form can be ex-
ponential in the size of the extensive form, so that
mixed strategies are less interesting. It is proved in
[4], that any mixed strategy is equivalent from the
game’s point of view to a behavioral strategy.

Example 1: Prisoner’s dilemma in Normal form
and the two-round repeated version in extensive
form.

c d
c 33| 04 |
d 40 | 11

Figure 1 : in the first round of the extensive form,
I plays first then II plays but does not see his oppo-
nent’s move. In the second round they both see the
moves of the first round. If the players play on the
left branch, they both collaborate and their gain is
6.

L All nodes colored by the same color have the same decision
set.

In this example, L ; = Ly ; = {¢, d} for collaborate
or defect. A classical strategy for player I is: collab-
orate unless player II played d in the last move. Let
us set the basic notations for definability and show
how to effectively define this strategy.

Let U = ({1,..,k} {c,d}, < h1,ha,k,c,d) be a
structure with two domains ({1,..,k} and {¢,d}),
distinguished elements k, ¢, d, the order relation <
on {1,..,k} and two functions hy,hs : {1,. k} —
{¢,d} representing the history of players I and II, i.e.
h1(i) = ¢ if the decision of T at round i is ¢. Let K be
the class of structures Uy and let us define a global
function? p() with values in {c,d} representing the
strategy of I at round %k + 1.

A definable strategy on K is a fixed term or ex-
pression which defines the global function, i.e. the
strategy on each structure Uy € K. For example,
the expression:

p1() < if ha(k) = d then d else c

defines the previous strategy with a term ¢ in the
language® of K. It is a classical observation [3, 9, 5]
of descriptive complexity that a global function is P-
computable, i.e. computable in polynomial time iff
it is defined by a recursive term. It allows to restrict
strategies based on computational bounds and not
only on the number of states of automata [8].

Complexity classes such as NC,L,NL, P NP,PH
have similar logical characterizations so that for each
of these classes, we can find a logic £ such that p is
definable in £ iff it is computable in the class. In
practical E-commerce situations, it allows to restrict
agents to feasible strategies by only considering these
logical languages.

2.2 Symbolic forms

For many games, the extensive form is too large and
we can only have a symbolic representation of the
state of the game. A state gives a complete repre-
sentation of the game at a given time and a transition
is a binary relation between states.

Example 2: North-East. Start with a (n,n) grid
G(n,n) viewed as a square and I and II select al-
ternatively a valid point (4, j) where 1 < i,j < n.
The North-East corner of (7, j) is removed after each
play and the new valid region shrinks. The player
left with the move (1, 1) loses.

2 A global function on a class K is a function wich associates
with any structure i, € K a function on that structure.

3The language of a class K of structures of the same sig-
nature has constant symbols for the distinguished elements
is closed by function composition, equality and definition by
cases (if then else)



Figure 2 : The initial square of North-East, a state
after the first move of I, a state after £ and k& + 1
moves.

j2

i1 i2
G(n,n) G(n,n) after 1 move

G(n,n) after k moves
Isdlects O

G(n,n) after k+1 moves

The state of the game is a sequence i1, J1..., %, Jk
such that: # < %41 and ji > jigq for I = 1, ..k
and let S be the set of states. It determines the
North-East border of the partial grid, i.e. the line
(0,41), (41, J1), (41, Ja), (42, J2) .- (i, Jk), (i, 0).  The
extensive form is a tree of degree n? whose size is
n?* after k moves.

In the case of perfect information, each state is a
color (Information set) for each player. A strat-
egy p is a function S* — {l,...,n} x {1,...,n}
such that u(St,...,S*) = (i,7) such that the point
(,7) is inside the North-East border. This condi-
tion can be written as the disjunction of two linear
constraints. A Markovian strategy is a function :
S —= {1,..,n} x {1,...,n} which does not take the
history into account.

Let Vi, = ({1, .., k}, {1,..,n}, <, h1, ha) be a structure
with two domains ({1, ..,k} and {1, ...,n}), the order
relation < on {1, .., k}and {1, .., n} and two functions
hihe @ {1, k} = {1,..,n} x {1, ..,n} representing
the history of players I and II, i.e. hy({) = (4,j) if
the decision of I at round [ is (¢, j). The state of the
game is captured by the two functions hy, hs. Let
K’ be the class of structures Vi. As before, we can
capture P computable strategies by restricting the
language of definition of a strategy pu.

If we consider global primitive recursive definitions
on the class K’ as a logic for defining global func-
tions, we will obtain L (or LOGSPACE) com-
putable functions. We can also consider global re-
lations, in particular the graph of the strategies. We
obtain the classical first-order hierarchies based on
¥r and Il formulas, all inside the class L.

3 Definable Equilibria

If strategies are restricted, the equilibria change.
What can be said about the computation of the equi-
libria? In the case of games in Normal form, the equi-
libria are found by the Lemke-Howson algorithm [6],
which solves a Complementary Linear program. The
exact complexity of the problem is not known.

In the case of games in Extensive normal form,
the equilibria can be found [10, 4] efficiently with
Lemke’s algorithm (a version of Lemke-Howson) by
considering only behavioral strategies and the so
called sequence forms. The dimension of the LCP
program is linear in the size of the tree but the gen-
eral complexity is not known either. For symbolic
forms, the complexity of finding an equilibrium can
be more precisely measured and we can prove:

Theorem 1. There is a game in symbolic form for
which the complexity of computing an equilibrium s
at any level of the polynomial hierarchy.

The argument reduces any problem of the form
SATSAT®* {6 an equilibrium in a game.

Note: The full paper is available from the CD of
conference proceedings.
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