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ABSTRACT  

Structural equation modeling (SEM) is an important tool to estimate a network of causal relationships linking two or more 

complex concepts. The PLS approach to SEM, also known as component based SEM, is becoming more prominent for 

estimating large complex models due to its soft modeling assumptions. This ‘soft modeling’ refers to the greater flexibility of 

PLS technique in developing and validating the complex models. However, to establish rigor in such complex modeling, this 

study highlights the critical roles of power analysis, predictive relevance and GoF index. The findings of the study show that 

power analysis is essential to establish conjectures based on IT artifacts, predictive relevance is vital to measure how well 

observed values are reproduced by the model and finally, GoF index is crucial for assessing the global validity of a complex 

model. 
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INTRODUCTION 

Partial Least Squares (PLS) is the dominant approach to establish rigor in complex models as it can avert the limitations of 

covariance based Structural Equation Modeling (CBSEM) with regard to distributional properties, measurement level, 

sample size, model identification and factor indeterminacy (Chin 1998a, 2010; Wetzels et al. 2009;  Akter et al. 2010, 2011). 

We define complex models as the larger model with many latent variables and indicators, such as, a model with 10 or more 

constructs and 50 or more items (Chin 2010). In this particular case, using CBSEM causes difficulties to handle such larger 

models “due to the algorithmic nature requiring inverting of matrices” (Chin 2010, P. 661).  As such, PLS path modeling is 

widely adopted to estimate large complex models with small sample size because it can remove the uncertainty of improper 

solutions. Although it is suitable for complex models; however, to establish rigor in such modeling this study investigates the 

implications of power analysis, predictive relevance and GoF index. 

The PLS approach to Structural Equation Models, also known as PLS Path Modeling (PLS-PM)  is regarded as a component 

based SEM (Chin et al. 2003; Tenenhaus 2008) to model multiple causes and multiple indicators of a single latent variable, 

and to latent path models (Wold 1975, 1982, 1985). In contrast to ML (maximum likelihood) approaches, PLS path modeling 

is able to estimate large number of latent variables and indicators with a small sample size (Jöreskog and Yang 1996; Kelava 

et al. 2008; Klein and Moosbrugger 2000; Moosbrugger et al. 2009).  Indeed, PLS path modeling is a favorable technique for 

estimating complex models because it can ensure more theoretical parsimony and less model complexity (Chin 2010; 

Edwards 2001; Law et al. 1998; MacKenzie et al. 2005; Wetzels et al. 2009). As such, it is used to develop large, complex, 

hierarchical models through the repeated use of manifest variables (Guinot et al. 2001; Lohmöller 1989; Noonan and Wold 

1982; Tenenhaus et al. 2005; Wold 1982). For instance, if a second-order construct consists of five underlying first order 
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constructs, each with four manifest variables, the second-order construct can be estimated using all 20 (5*4) manifest 

variables of the underlying first-order constructs. According to Wetzels et al. (2009), “This approach also allows us to derive 

the (indirect) effects of lower-order constructs, or dimensions, on outcomes of the higher-order construct.” Furthermore, PLS 

path modeling provides more accurate estimates of mediating and moderating effects by accounting for the measurement 

error that attenuates the estimated relationships and improves the validation of theories (Chin et al. 2003; Helm et al. 2010; 

Henseler & Fassott 2010). Overall, PLS path modeling provides robust solutions, especially when the objective is prediction, 

the model is relatively complex, the sample size is small, and the phenomenon under study is new or changing (Chin & 

Newsted 1999). 

Though PLS path modeling gains its prominence for estimating complex models, however, such models require rigorous 

assessment using power analysis, predictive relevance and GoF index to provide evidence supporting the research model. 

First, power analysis (1-β) is necessary because "the stability of the estimates can be affected contingent on the sample size" 

(Chin 1998, p. 305).  In this regard, Dijkstra (1983) and Schneeweiss (1993) discuss the magnitude of standard errors for PLS 

based complex models resulting from not using enough observations (consistency) and indicators for each latent variable 

(consistency at large). Second, predictive relevance (Q
2
) is critical to assess the predictive validity of a complex model (Stone 

1974; Geisser 1975; Fornell and Cha 1994; Chin 1998a). It refers to “a synthesis of cross validation and function fitting with 

the perspective that the prediction of observables is of much greater relevance than the estimation of what are often artificial 

construct – parameters” (cf. Chin 2010, p. 679; Geisser 1975, p. 320). Finally, GoF (Goodness of Fit) index is crucial to 

assess the global validity of a PLS based complex model (Tenenhaus et al. 2005). It is defined as the geometric mean of the 

average communality and average R
2 

for all endogenous constructs. Overall, the importance of these techniques have been 

evidenced in numerous studies, however, there is a paucity of research in the IS domain which have synthesized their 

applications under one umbrella. Thus, the objective of this study is to establish rigor in PLS path modeling by investigating 

the implications of power analysis, predictive relevance and GoF index in large complex models. 

The remainder of the paper is organized as follows: The next section explores the roles of power analysis, predictive 

relevance and GoF index in large complex models, then we discuss the overall findings of the study and finally, we conclude 

the paper with limitations and future research directions. 

 

POWER ANALYSIS 

Power (1-β) can be defined as “the probability of rejecting H0, when H1 is true” (Larsen and Marx 1981). In other words, 

power is the probability of obtaining a statistically significant result (H1), that is, successfully rejecting the H0 (Cohen 1988). 

In positivist IS research, the importance of power analysis lies in establishing facts under study by successfully rejecting H0, 
accepting H1 and making decisions on IT artifacts. However, power is less understood and less explored in IS domain 

(Goodhue et al. 2007; Baroudi and Orlikowski 1989; Sawyer and Ball 1981; Mazen et al.1987). 

In developing and testing complex models using PLS path modeling, power analysis is important to validate the implications 

of sample sizes. Though it is generally assumed that “sample size is less important in the overall model” (Falk & Miller 1992, 

p. 93), however, adequate sample size is important to improve overall estimates and reduce standard errors (Hui & Wold 

1982; Marcoulides and Saunders 2006). Specifically, if small sample sizes (N= 20) were used in large complex models, it 

would not detect low valued structural path coefficients (β = 0.20) until large sample sizes (N>150) are used (Chin & 

Newsted 1999, p. 333). Besides, in case of moderately non-normal data, “a markedly larger sample size is needed despite the 

inclusion of highly reliable indicators in the model” (Marcoulides and Saunders 2006, p. vi). These findings are consistent 

with Joreskog and Wold’s observations (1982. P. 266) which highlight that, “PLS estimates are asymptotically correct in the 

joint sense of consistency (large number of cases) and consistency at large (large number of indicators for each latent 

variable)." Thus, adequate sample size is necessary to achieve power in PLS based estimates in order to ensure rigor in 

complex modeling. 

The power dynamics depend on three parameters: the significance level (α) of the test, the sample size (N) of the study and 

the effect size (ES) of the population (Cohen 1988).  In order to assess the adequacy of sample size of large complex models, 

the power analysis should be conducted on the portion of the model with the largest number of predictors (Chin & Newsted 

1999). Though early researchers used to rely on power charts (see, e.g., Scheffé, 1959) and power tables (e.g., Cohen, 1988), 

now these are supplemented by PC based efficient, precise, and easy-to-use power analysis programs (Goldstein 1989) such 

as, G*Power 3.1.2 (Faul et al. 2009). The general convention is that the power of a statistical test should be at least 0.80 

(Cohen 1988, p. 56). Thus, high power (> 0.80) indicates that there is high degree of probability of producing significant 

results when the relationship is truly significant. It also proves that the study has adequate confidence on the hypothesized 
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relationships in the research model. Using G*Power 3.1.2 (Faul et al. 2009), Table 1 & Figure 1  estimate the power of  a 

large complex model with 15 constructs, 0.05 significance level (α) and the effect size (ES) of 0.15.  It shows that the power 

of the overall model increases with the increased number of sample sizes. Thus, it is evident that an adequate sample size 

leads to an adequate power, which is ultimately necessary for establishing IT artifacts in a large complex model. 

 

 

 
 
Table 1: sample size and power                                    Figure 1: Statistical power in a complex model 

 

PREDICTIVE RELEVANCE 

In addition to the size of R
2
, the predictive sample reuse technique (Q

2
) can effectively be used as a criterion for predictive 

relevance (Stone 1974; Geisser 1975; Fornell and Cha 1994; Chin 2010). Based on blindfolding procedure,  Q
2 

evaluates the 

predictive validity of a large complex model using PLS. While estimating parameters for a model under blindfolding 

procedure, this technique omits data for a given block of indicators and then predicts the omitted part based on the calculated 

parameters. Thus, Q
2
 shows how well the data collected empirically can be reconstructed with the help of model and the PLS 

parameters (Fornell & Cha 1994).The predictive measure for the block is based on the following parameters: 

DD

D D

O

E
Q

∑
∑

−= 12
 

Where, 

                                                                               E = The sum of squares of prediction error 

                                                                               O = The sum of squares error using the mean for prediction 

                                                                               D = Omission distance 

 

Q
2
 can be obtained using two different types of prediction techniques, that is, cross validated communality and cross 

validated redundancy. The first one is obtained by predicting data points using latent variable score, whereas the latter one is 

obtained by predicting the questionable blocks using the latent variables used for prediction. Chin (2010) suggests using the 

latter to estimate the predictive relevance of a large complex model.  

Q
2
 is generally estimated using an omission distance of 5-10 under existing PLS software packages. The rule of thumb 

indicates that a cross validated redundancy Q
2
 > 0.5 is regarded as a predictive model (Chin 2010). For illustrative purpose, 

this study estimates cross validated redundancy Q
2
 of a large complex model depicted in Fig. 2. In this model, IT continuance 

is predicted by 10 latent variables, in which 9 are reflective constructs and the other one is formative (control variables). 

Among all the latent variables, perceived usefulness, perceived quality, perceived trust and social influence were found 

significant. Using an omission distance of 7, the study obtains a Q
2
 of 0.636 which is an indicative of a highly predictive 

Sample size Power 

20 0.19 

40 0.48 

60 0.66 

80 0.79 

100 0.87 

120 0.92 

140 0.96 

160 0.97 
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model (see Fig. 2). This finding indicates that prediction of observables or potential observables is of much greater relevance 

than the estimation of what are often artificial construct parameters (Geisser 1975). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Q2 in a complex model 

 

GOF INDEX 

Goodness of Fit (GoF) index is defined as the geometric mean of the average communality and average R
2 

for all endogenous 

constructs (Tenenhaus et al. 2005). It can be used to determine the overall prediction power of the large complex model by 

accounting for the performance of both measurement and structural parameters.  According to Chin et al. (2010, p. 680), 

“The intent is to account for the PLS model performance at both the measurement and the structural model with a focus on 

overall prediction performance of the model”. Though the index is suitable for evaluating reflective indicators, however it 

can be applied for formative indicators knowing the fact that it would increase the predictiveness of the inner model at the 

cost of the outer model (Chin 2010). As such, GoF index is applied for both reflective and formative latent variables in a 

complex case as it provides a measure of overall fit (Vinzi et al. 2010). This index is suggested by Tenenhaus et al. (2005) for 

assessing the global validity of PLS based complex models. As Tenenhaus et al. note (p. 173),  “As a matter of fact, 

differently from SEM-ML, PLS path modeling does not optimize any global scalar function so that it naturally lacks of an 

index that can provide the user with a global validation of the model (as it is instead the case with 2χ  and related measures 

in SEM-ML). The GoF represents an operational solution to this problem as it may be meant as an index for validating the 

PLS model globally”. 

The GoF index is bounded between 0 and 1. Because of the descriptive nature of GoF index, there is no inference based 

criteria to assess its statistical significance (Vinzi et al. 2010). However, Wetzels et al. (2009) suggest using 0.50 as the cut 

off value for communality (Fornel and Larcker 1981) and different effect sizes of R2 (Cohen 1988) to determine GoFsmall 

(0.10), GoFmedium (0.25) and GoFlarge (0.36) (see Table 2). These may serve as baselines for validating the PLS based complex 

models globally. 

For the model depicted in Fig. 2, this study obtains a GoF value of 0.750, which exceeds the cut-off value of 0.36 for large 

effect sizes of R
2
 (Cohen 1988). It indicates that the model has a better prediction power in comparison with the baseline 

values (GoF criteria). This finding adequately validates the complex PLS model globally. It may be noted that GoF index can 

be estimated for both PLS path modeling and CBSEM. 

 

** Significant at P < 0.01 

  *Significant at P < 0.05. 

Perceived 

Ease of use 

Perceived 

Usefulness 

Perceived 

Enjoyment 

Perceived 

Quality 

Perceived 

Trust 

Social 

Influence 

Media 

Influence 

Perceived 

Reputation 

Control Variables 

(Age, Gender, Income) 

IT Continuance 
R2 = 0.714 

Q2 = 0.636 

 

0.025 
- 0.013 

0.194**

* 

0.069 

0.406** 

0.136* 

0.119* 

0.076 

Perceived 

Size 

0.008 

0.052 
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GoF GoF criteria  

 

GoF = 

2

Rycommunalit ×  

 

 

 

Range of GoF value: 

 

GoF = (0 < GoF < 1) 

 

Communality = 0.50 (Fornel and Larcker 1981) 

R
2
 effect: Small = 0.02, Medium = 0.13, Large = 0.26 (Cohen 1988) 

 

Thus, 

GoFsmall   = 02.0*5.0   = 0.10 

GoFmedium = 13.0*5.0  = 0.25 

GoFlarge     = 26.0*5.0  = 0.36 

 

Table 2: GoF Index and its criteria  

 

DISCUSSION AND FUTURE RESEARCH DIRECTIONS 

 

In validating complex models, PLS path modeling clearly surpasses CBSEM in any settings (exploratory or confirmatory) 

because of its flexible or soft modeling assumptions. According to Lohmoller (1989, p. 64), “It is not the concepts nor the 

models nor the estimation techniques which are ‘soft’, only the distributional assumptions.” Thus, scholars (e.g., Fornell & 

Bookstein,1982; Hulland, 1999) believe that PLS path modeling is more suitable for real world applications and  more 

advantageous to employ when models are complex. As Chin (2010, p. 661) notes, “It is under this backdrop of high 

complexity that PLS, regardless of whether applied under a strong substantive and theoretical context or limited/exploratory 

conditions, comes to the fore relative to CBSEM.” As such, to establish rigor in evaluating PLS based complex models, this 

study synthesizes the important roles of statistical power analysis, predictive relevance and GoF index.  

The study focuses on power analysis as it evaluates the robustness of a large complex model by assessing its ability to reject a 

false null hypothesis (H0). Specifically, the power of a statistical test is defined as rejecting the false null hypothesis (H0) 

when the alternative hypothesis (H1) is true (Cohen 1988). It also assesses the probability of finding significant associations 

among the latent variables in the structural model when the relationships are there ((Baroudi and Orlikowski 1989; Sawyer 

and Ball 1981; Mazen et al. 1987).  

The study discusses predictive sample reuse technique (or, Q
2
) as it is able to assess the predictive validity of a large complex 

model using blindfolding procedure (Stone 1974; Geisser 1975; Fornell and Cha 1994; Chin 1998a). It shows how well the 

data collected empirically can be reconstructed with the help of model and the PLS parameters (Fornell & Cha 1994).  

Finally, the study presents GoF index as it assesses the global validity of PLS based complex model. Specifically, GoF index 

provides a measure of overall model fit by using the geometric mean of average communality and average R square. The 

study provides a set of guidelines for estimating GoF criteria to validate complex models. 

 

Overall, PLS path modeling enjoys specific advantages over CBSEM in complex modeling; however, it needs to address 

some critical challenges to reap its full benefits as the ultimate technique for complex modeling. For example, first, PLS path 

modeling should have the flexibility of  imposing constraints on model coefficients (weights, loadings, path coefficients) in 

order to specify any information or conjectures available a priori in estimating model parameters (Vinzi et al. 2010).  Second, 

it should allow specific treatment of categorical variables, outliers, non linearity and mutual causality both in measurement 

and structural models. We believe these challenges represent fascinating areas for future research to establish PLS path 

modeling as a principal paradigm for complex modeling. 
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CONCLUSION 

 

PLS path modeling gains its prominence for estimating complex multivariable relationships among observed and latent 

variables. It is a component based approach to structural equation modeling that estimates both measurement models and 

structural model. It is well known as a soft modeling approach which is more oriented to optimizing predictions. It is suitable 

for complex modeling because “PLS models do not break down as do MLE models especially when sample sizes are 100 or 

less, there are 2 indicators per construct and independent variable correlations are low” (Hulland 2010, p. 322). As such, 

PLS path modeling is more robust for real world applications and more advantageous to employ when models are complex. 

However, to establish rigor in such modeling, this study necessitates taking into account the critical roles of power analysis, 

predictive relevance and GoF index. 
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