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Full Research Paper 

Local Government Debt Risk Assessment And Early Warning 

System Based On Machine Learning 

Shuai Zhang1, Haichao Zheng1 

1School of Economic Information Engineering, Southwestern University of Finance and Economics, China 

 

Abstract: The management and prevention of government debt risk is a global topic. In China, due to problems such as implicit 

debt and uneven regional fiscal performance, it is particularly necessary to explore how to effectively measure and prevent 

local government debt risks. In this article, we comprehensively consider the debt status and fiscal performance to design a 

local government debt risk assessment system. According to the debt risk index (DRI), we define the debt risk levels of local 

governments and find that debt risk has a rapidly increasing pattern and distinct regional characteristics. In addition, we further 

design a machine learning-based early warning system to predict the risk level of local government debt in the future. We 

extensively collect explanatory variables based on the previous literature and illustrate variables with high feature importance. 

Finally, our local government debt risk early warning system achieves an overall accuracy of 92% on the testing set and has a 

better performance by comparing it to the general debt risk indicator. 

 

Keywords: local government debt risk, debt risk assessment, early warning system, machine learning. 

 

1. INTRODUCTION 

From the Latin American sovereign debt crisis caused by the rapid expansion of short-term debt, the Russian 

financial crisis caused by fiscal deterioration, and the sovereign debt crises in Iceland and Greece triggered by the 

2008 financial crisis, it is obvious that effectively managing and preventing government debt risk is the foundation 

of national stability and the guarantee of government credibility. In 2014, with the revision of the Budget Law of 

of China, the State Council began to allow local governments to raise funds by issuing bonds independently. The 

State Council delegated the power of fundraising to local governments, hoping that local governments could raise 

and use funds more flexibly, but this decision may also lead local governments to unfavorably control debt scale. 

As we all know, people have the attribute of "voting with their feet", so people tend to gather in cities with a 

good economy and well-developed infrastructure. Therefore, local governments have to raise funds for urban 

construction and provide better welfare for citizens, which will undoubtedly increase their financial burden. Some 

Chinese government officials lack awareness of debt risks or even blindly pursue political achievements, which 

can easily lead to debt crises[1]. Besides, local governments often issue bonds through local financing institutions. 

These bonds appear to be sold by financing institutions, but in reality, they have credit endorsements from local 

governments. Once there is an economic downturn or capital operation failure, the implicit debt risk will be 

exposed[2]. Furthermore, The land transfer fee is the main source for Chinese local governments to repay debts. 

However, due to the scarcity of land and the depression of the real estate industry in China, selling land to alleviate 

the debt burden is no longer healthy and applicable[3]. 

To sum up, Chinese local government debt risk management has various complicated problems that need to be 

solved urgently, and it is necessary to turn "soft constraints" into "hard constraints". Therefore, we are looking 

forward to designing an effective and comprehensive local government debt risk assessment and early warning 

system, thus providing a reference for local governments to conduct debt risk management. 
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2. LITERATURE REVIEW 

2.1 Controversy over government financing. 

The debate about government financing has been around for a long time. Adam Smith expressed his 

opposition to government financing in The Wealth of Nations since he believed it would occupy private capital 

and hinder the natural development of the national economy. Coincidentally, Ricardo’s "equivalence theory" also 

expressed opposition to government financing. He suggested that government debt was merely a delay in raising 

the tax rate in the future, but it would cause the government to profligate and waste money. Kumar also pointed 

out that excessive government debt will lead to an increase in the country's long-term interest rate and at the same 

time cause inflation[4]. Furthermore, Westphal put forwards that government debt will harm economic growth 

when the government debt ratio is higher than 90%[5]. 

Conversely, a group of economists led by Keynes argued that government financing can not only stimulate 

economic growth when demand is insufficient but also provide more employment opportunities. According to the 

economic recovery plan of the US government during the financial crisis, Robert found that government financing 

can promote economic recovery in the short term since governments can raise funds to help small and mid-sized 

enterprises increase the prices of their financial assets[6]. Cai claimed that government financing can effectively 

balance the capital allocation in the regional economy and alleviate polarization effects[7]. Furthermore, Zhao 

stated that local government financing can promote urban development in three aspects: enhancing residents' 

welfare, improving infrastructure construction, and strengthening the ability to deal with risks[8]. 

Therefore, we find government financing is conducive to promoting economic growth, balancing resource 

allocation, and increasing residents' welfare, as long as it is on an appropriate scale. However, how to reasonably 

assess the government debt scale and how to prevent debt risk in advance are still remained obscure. 

2.2 Previous research on analysis and prevention of local government debt risk. 

In the research on local government debt analysis, Polackova proposed a fiscal risk matrix, which classifies 

government debt into direct debt, indirect debt, explicit debt, and implicit debt. This matrix has deepened our 

understanding of government debt more comprehensively[9]. Ruzzante claimed that government fixed assets 

should not be counted as debt-repayable assets, and officials should pay more attention to government liquid assets. 

Therefore, the GDP growth and fiscal surplus are the keys to effectively alleviating the pressure on the government 

debt burden[10]. Duca suggested that domestic systemic risks are often related to the global economic status, so he 

reconstructed the Financial Stress Index by introducing international macroeconomic variables[11]. 

Similarly, many scholars are concerned about the debt risks of local governments in China. Feng revealed 

that the disorderly development of local financing institutions is the main reason for the excessive expansion of 

local debt[2]. Besides, Zhong found that many local governments strongly rely on the central government’s fiscal 

transfer payments, and the phenomenon of issuing new bonds to repay old debts is becoming more and more 

serious[12]. By considering the competitive relationship, Wu stated that the local government will fully consider 

the financing strategies of neighboring governments when making financing decisions[13]. Furthermore, Zhao 

analyzed debt from the aspect of the debt stock and fiscal revenue, thus suggesting doing adjustments in the fiscal 

balance to prevent local government debt risks[14]. However, we can easily find that these previous researches only 

focused on one factor or aspect that causes debt risk, and different factors were lack of comparison. Also, the 

prediction of local government debt risk seems deficient. By combing through the literature on government debt 

risk analysis and prevention, we find the following three problems in previous studies:  

 Most of the literature only used the simple indicator "debt ratio" as the explained variable. However, due to 

the large differences in debt status and fiscal performance between different governments, the "debt ratio" 

indicator cannot truly reflect the debt resolution capacity of a government itself. It also should not be used 

as a general indicator to delineate the risk threshold for all governments.  
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 Previous studies only explored one factor that causes debt risk, so there was a lack of horizontal comparison 

between different factors. In this case, we do not know which factor is more significant. This deficiency 

creates difficulties for local governments to focus on key issues in debt management. 

 In prior researches, we find that most researchers used econometric methods to analyze the causes of debt 

risk, but there was little literature focused on debt risk prediction. However, forecasting future debt risk levels 

is of great significance to the local government debt management. 

2.3 Machine learning. 

Machine learning is a science (and art) of computer programming because they can learn from data. It is one 

of the fastest-growing technical fields today and is also the core of artificial intelligence. Athey mentioned several 

advantages of machine learning in dealing with economic problems: (1) Machine learning can deal with 

unstructured data and capture non-linear features; (2) Machine learning can completely describe the model 

selection process; (3) Machine learning can better complete prediction and classification tasks, which introduces 

more possibilities for dealing with economic problems[15]. In this research, we will not only use classic machine 

learning algorithms but also implement ensemble models, such as Random Forest and Gradient Boosting Decision 

Tree [16]. These machine learning algorithms and ensemble models already have a wide range of applications in 

economic scenarios, thus providing a solid theoretical foundation and possible solutions for our study. 

 

3. DESIGNING THE LOCAL GOVERNMENT DEBT RISK ASSESSMENT SYSTEM 

3.1 Debt risk index. 

The previous literature only used the simple indicator "debt ratio" as the explained variable, which is the 

ratio of the total balance of government bonds to the fiscal revenue. However, due to issuing new bonds to repay 

old debts and the existence of central transfer payments in fiscal revenue, the "debt ratio" can no longer truly 

evaluate the debt resolution capacity of local governments themselves. Also, because of the existence of implicit 

debts from local financing institutions, the total debt balance of local governments is opaque and underestimated. 

In this case, we need to take local financing institutions into assessment consideration. Furthermore, because of 

the discrepancies in local government fiscal performances, it is unreasonable to delineate a general risk threshold 

by "debt ratio" for all provinces. Thus, it is urgent to construct a better debt risk assessment system. 

In this case, we establish a comprehensive and effective risk assessment system from two aspects: debt status 

and fiscal performance. In debt status, we introduce two secondary indicators of scale risk and repayment risk, 

aiming to characterize debt status from the debt scale and repayment pressure. It is worth noting that the debt scale 

and repayment amount include not only government bonds but also local financing institution bonds; In fiscal 

performance, we introduce two secondary indicators of expenditure risk and revenue risk, thus characterizing 

fiscal performance from two perspectives: fiscal self-sufficiency and local government revenue dependence on 

issuing new bonds. The indicators of the debt risk assessment system are shown in Table 1. 

Table 1.  The indicators of the debt risk assessment system 

Primary 

indicators 

Secondary 

indicators 
Indicator calculation Indicator meaning 

Debt status 

(𝑃𝐼1) 

Scale risk 

(𝑆𝐼1) 
(Annual debt balance / annual GDP)*100% 

Debt burden ratio: measure debt balance and 
debt scale relative to GDP 

Repayment risk 

(𝑆𝐼2) 

(Annual repayment amount / annual fiscal 
revenue) *100% 

Debt service ratio: reflect the debt repayment 
ability of government revenue 

Fiscal 

performance 

(𝑃𝐼2) 

Expenditure risk 

(𝑆𝐼3) 

(Annual fiscal expenditure / annual fiscal 

revenue) *100% 

Fiscal self-sufficiency ratio: measure the 

excess of fiscal expenditure 

Revenue risk 

(𝑆𝐼4) 

(Annual debt revenue / annual fiscal expenditure) 
*100% 

Debt dependence ratio: reflect the dependence 
of fiscal revenue on issuing new bonds 



676             The Twenty one Wuhan International Conference on E-Business－Artificial intelligence & IoT（AIoT）enabled Business Innovation 

According to the methodology of constructing the financial stress index by Duca[11], we similarly assign the 

same weight to the secondary indicators (𝑆𝐼). We use 𝐷𝑅𝐼 to represent the local government debt risk index. 

Besides, we introduce the international generally recognized risk threshold of secondary indicators. The risk 

threshold (𝑅𝑇) of the debt burden ratio is 60%, the debt service ratio is 20%, the fiscal self-sufficiency ratio is 

100%, and the debt dependence ratio is 30%. The 𝐷𝑅𝐼 is computed for province 𝑖 at year 𝑡 as follows: 

                           𝑫𝑹𝑰𝒊,𝒕 =
∑

𝑺𝑰𝒋,𝒊,𝒕

𝑹𝑻𝒋

𝟒
𝒋=𝟏

𝟒
                                      (1) 

Therefore, we can easily find that 𝐷𝑅𝐼 = 1 is the risk threshold. However, the general risk threshold is 

usually based on the governments of developed countries. As a developing country with a unique political system, 

it is acceptable that Chinese local governments’ 𝐷𝑅𝐼 is higher than 1. Therefore, we define that 𝐷𝑅𝐼 ≤ 1 is the 

low-level risk, 1 < 𝐷𝑅𝐼 ≤ 2 is the mid-level risk, and 𝐷𝑅𝐼 > 2 is the high-level risk. In this case, we establish 

a better debt risk assessment system than the general debt risk indicator. 

3.2 Descriptive statistics based on DRI. 

We collect relevant data of all 31 provinces in China from 2001 to 2020 and calculate their 𝐷𝑅𝐼. Among the 

entire 620 samples, 140 cases are high-level debt risk. High-level risk cases account for 23% of the total samples, 

indicating that the debt risk of local government is an urgent problem that needs to be managed immediately. The 

numbers of cases on different debt risk levels in different regions are shown in Table 2. 

Table 2.  The number of cases on different debt risk levels in different regions 

Regions Cases on low-level risk Cases on mid-level risk Cases on high-level risk Total number 

The eastern provinces and 

municipalities 
166 36 38 240 

Other inland provinces 206 72 102 380 

All provinces 372 108 140 620 

Besides, we find that the proportion of debt risk has distinct regional characteristics. The proportions of 

different debt risk levels are shown in Figure 1. Although the amount of debt in the eastern provinces and 

municipalities is large, the proportion of high-level risk cases is significantly lower than other inland provinces 

because of their developed economy, reasonable economic structure, and high fiscal revenue. In contrast, the 

inland provinces have more cases of mid-level risk and high-level risk. 

 

Figure 1. The proportions of debt risk levels in different regions 
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The development of local government debt risk also has an increasing pattern in time. We average the risk 

levels of all provinces yearly from 2001 to 2020 and visualize the debt risk development pattern in Figure 2. We 

find that the average debt risk level of inland provinces is always higher than that of eastern provinces and 

municipalities. Before 2014, the average local government debt risk level was between low-level and mid-level. 

After 2014, the debt risk increases significantly and has risen to between mid-level and high-level. In 2020, the 

average local government debt risk level of all provinces is 2.93, which is very close to 3. 

 

Figure 2. Local government debt risk development pattern 

 

4. DESIGNING THE LOCAL GOVERNMENT DEBT RISK EARLY WARNING SYSTEM 

4.1 Explained variables and explanatory variables. 

In this section, we construct the explained variable and explanatory variable sets for the debt risk early 
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Risk as 1, Mid-level Risk as 2, and High-level Risk as 3, we construct a three-category explained variable. 

In terms of explanatory variables, we refer to the conclusions of the past literature on the causes of debt risk, 

thus constructing the explanatory variable set from four aspects: local government debt profile, local government 
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are the annual data of all 31 provinces from 2001 to 2020, collected from Wind and CSMAR databases. 

4.1.1 Local government debt profile 

Local government bond stock: the number of government bonds (𝑥1), the balance of government bonds (𝑥2), 

the proportion of government bonds (𝑥3). 
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Total bond stock: the total number of bonds (𝑥7), the total balance of bonds (𝑥8), the growth rate of total 

bond balance (𝑥9). 

Issuance and redemption of local government bonds: the issuing amount of government bonds (𝑥10), the 

issuing number of government bonds (𝑥11 ), government bond redemption amount (𝑥12 ), government bond 
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bonds (𝑥15 ), the issuing number of local financing institution bonds (𝑥16 ), local financing institution bond 

redemption amount (𝑥17), local financing institution bond redemption number (𝑥18), local financing institution 

bond net financing amount (𝑥19). 

Issuance and redemption of total bonds: total issuance amount (𝑥20 ), total issuance number (𝑥21 ), total 

redemption amount (𝑥22), total redemption number (𝑥23), and total net financing amount (𝑥24). 

4.1.2 Local government fiscal profile 

Fiscal revenue status: local government fiscal revenue (𝑥25), fiscal revenue growth rate (𝑥26). 

Fiscal expenditure status: local government fiscal expenditure (𝑥27), fiscal expenditure growth rate (𝑥28). 

4.1.3 Local economic development profile 

Economic scale and development: GDP (𝑥29), GDP growth rate (𝑥30). 

Economic structure: primary industry GDP (𝑥31), secondary industry GDP (𝑥32), tertiary industry GDP (𝑥33), 

the proportion of primary industry GDP (𝑥34), the proportion of secondary industry GDP (𝑥35), the proportion of 

tertiary industry GDP (𝑥36). 

4.1.4 National macroeconomic profile 

Macroeconomic trends: Shanghai Composite Index (𝑥37), inflation rate (𝑥38). 

Therefore, we constructed an explanatory variable set containing 38 variables from the above four aspects of 

all 31 provinces from 2001 to 2020 annually. 

 

4.2 Constructing the training set and testing set. 

In order to predict the future debt risk levels, we need to use the explanatory variables of the past years to 

predict the future explained variable. In this case, we concatenate the explanatory variable sets of the past three 

years (𝑋𝑡−3, 𝑋𝑡−2, 𝑋𝑡−1) as new explanatory variable set 𝑋 and the explained variable of the current year (𝑌𝑡) 

as the forecast target 𝑌. 

Finally, we get 496 samples, we divided them into training and testing samples according to the proportion 

of 4: 1, thus getting our training and testing set for debt risk early warning system based on machine learning. 

4.3 Modeling and results. 

We implement machine learning to construct the local government debt risk early warning system. We not 

only use classic machine learning, such as Naive Bayes, the K-Nearest Neighbors, and Support Vector Machines 

but also use ensemble models, such as Random Forest and Gradient Boosting Decision Tree. The entire local 

government debt risk early warning system based on machine learning is shown in Figure 3. 

 

Figure 3. The entire local government debt risk early warning system 
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We use the training set to train these machine learning models, and acquire their prediction performance on 

the testing set. The prediction performance of these machine learning models is shown in Table 3. 

Table 3.  The prediction performance of machine learning models 

Machine learning models Accuracy on the testing set 

Support Vector Machines 59.4% 

Naive Bayes 75.0% 

K-Nearest Neighbors 80.2% 

Decision Tree 81.3% 

Gradient Boosting Decision Tree 89.6% 

Random Forest 90.6% 

According to the results, we can easily find that Random Forest has the highest overall accuracy. In this case, 

we further calculate its precision, recall, and F-measure, thus exploring its prediction performance on different 

risk levels. The prediction performance on different risk levels of Random Forest is shown in Table 4. 

Table 4.  Prediction performance on different risk levels of Random Forest 

Risk Level Precision Recall F-Measure Support 

Low-level Risk 0.98 0.98 0.98 57 

Mid-level Risk 0.71 0.71 0.71 17 

High-level Risk 0.88 0.88 0.88 25 

Overall accuracy 0.92 99 

We find that Random Forest has better performances on low-level risk prediction and high-level risk 

prediction, and performs slightly worse on mid-level risk prediction. This may be due to the rapid increase of debt 

risk in many provinces after 2014, resulting in a small sample size of mid-level risk. However, the local 

government debt risk early warning system performs well in the prediction of high-level risk (F-measure = 0.88). 

In this case, we can accurately forecast high-level debt risk in advance. 

4.4 Feature importance. 

Exploring explanatory variables that have a greater impact on the future debt risk level and making the 

horizontal comparison of different explanatory variables is a focus of this study. In this way, we are looking 

forward to helping the local government focus on key issues in debt management. 

We use the feature importance of Random Forest to help us achieve this goal. Feature importance is generally 

calculated by Gini Index. We use 𝐺𝐼 to represent Gini Index, 𝐹𝐼 to represent feature importance. 

Gini Index is calculated as follows: 

     𝑮𝑰𝒅 = ∑ ∑ 𝒑𝒅,𝒌𝒑𝒅,𝒌′𝒌′≠𝒌
𝑲
𝒌=𝟏 = 𝟏 − ∑ 𝒑𝒅,𝒌

𝟐𝑲
𝒌=𝟏                         (2) 

The number of sample categories is 𝐾. 𝑝
𝑑,𝑘

 represents the proportion of category 𝑘 at node 𝑑.  

The feature importance of the explanatory variable 𝑥𝑗 at node 𝑑 is the change of Gini Index before and 

after node 𝑑 branching: 

     𝑭𝑰𝒋,𝒅
(𝑮𝒊𝒏𝒊)

= 𝑮𝑰𝒅 − 𝑮𝑰𝒍 − 𝑮𝑰𝒓                                (3) 

𝐺𝐼𝑙 and 𝐺𝐼𝑟 is the Gini Index of the two new nodes 𝑙 and 𝑟 after branching at node 𝑑. Supposing 𝐷 is 

the node set of 𝑥𝑗 in decision tree 𝑖, then the feature importance of 𝑥𝑗 in tree 𝑖 is: 

    𝑭𝑰𝒊,𝒋
(𝑮𝒊𝒏𝒊)

= ∑ 𝑭𝑰𝒋,𝒅
(𝑮𝒊𝒏𝒊)

𝒅𝝐𝑫                                   (4) 

Supposing that the number of decision trees in the Random Forest is 𝑛, then: 
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     𝑭𝑰𝒋
(𝑮𝒊𝒏𝒊)

= ∑ 𝑭𝑰𝒊,𝒋
(𝑮𝒊𝒏𝒊)𝒏

𝒊=𝟏                                    (5) 

Finally, assuming that the number of explanatory variables is 𝑀, we normalize the feature importance of the 

explanatory variable 𝑥𝑗: 

     𝑭𝑰𝒋 =
𝑭𝑰𝒋

(𝑮𝒊𝒏𝒊)

∑ 𝑭𝑰𝒎
(𝑮𝒊𝒏𝒊)𝑴

𝒎=𝟏

                                      (6) 

In this way, we can acquire the feature importance of each explanatory variable. We show the ten variables 

with the highest feature importance in Random Forest and their feature importance scores in Figure 4.  

 

Figure 4. Feature importance scores of the ten variables with the highest FI 
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government bonds of year 𝑡 − 1, 𝑥22,𝑡−1 is the total redemption amount of year 𝑡 − 1, 𝑥16,𝑡−2 is the issuing 

number of local financing institution bonds of year 𝑡 − 2, and 𝑥14,𝑡−1 is the government bond net financing 

amount of year 𝑡 − 1. We find that bond redemption pressure (𝑥17,𝑡−1) is the most important feature, and bond 

redemption pressure often comes from excessive debt issuance scale (𝑥10,𝑡−1 and 𝑥16,𝑡−1). Therefore, the primary 

task of preventing debt risks is to control the scale of debt issuance, thereby alleviating the future debt redemption 

pressure. This also requires the joint efforts of local governments and financing institutions. 

Besides, we find that local economic structure also has an important impact on future debt risk. 𝑥36,𝑡−3 is 
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assessment indicator "debt ratio" is still worth to be considered and compared to our assessment system.  

We calculate the yearly debt ratio (𝐷𝑅) for all 31 provinces and find that the risk threshold of the debt ratio 
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is 100%. By implementing the same methodology for defining the risk level in our assessment system, we define 

that 𝐷𝑅 ≤ 1 is the low-level risk, 1 < 𝐷𝑅 ≤ 2 is the mid-level risk, and 𝐷𝑅 > 2 is the high-level risk.  

Among the entire 620 samples, 82 cases are high-level risk under the assessment of 𝐷𝑅, accounting for 13%. 

However, high-level risk cases account for 23% under our assessment system based on 𝐷𝑅𝐼. This comparison 

indicates that our comprehensive debt risk assessment system can effectively recognize more potential high-level 

risk cases than the general indicator. Furthermore, we find that our debt risk assessment system can detect the 

deterioration of debt status earlier than the general indicator. We compare the average risk level growth pattern of 

all provinces based on 𝐷𝑅 and 𝐷𝑅𝐼 in Figure 5. Our assessment system detects the rapid risk growth trend in 

2014. In contrast, the general assessment system based on 𝐷𝑅 responses to the deterioration in 2016. 

 

Figure 5. The comparison of the average debt risk level based on DR and DRI 

We also use the debt risk level based on 𝐷𝑅 as explained variable to construct an early warning system. 

Random Forest still has the best performance on the testing set with the overall accuracy of 91%. Similarly, we 

further explore the ten variables with the highest feature importance for the early warning system based on 𝐷𝑅. 

However, these variables are mainly about the issuance and redemption of local government because the 

assessment indicator 𝐷𝑅  is relatively simple and partial. These variables are 𝑥10,𝑡−1 , 𝑥14,𝑡−1 , 𝑥2,𝑡−1 , 𝑥1,𝑡−1 , 

𝑥11,𝑡−1, 𝑥20,𝑡−2, 𝑥15,𝑡−2, 𝑥21,𝑡−1, 𝑥20,𝑡−1, 𝑥10,𝑡−2, illustrating that they are all belonged to local government debt 

profile. Apparently, these variables cannot indicate the key issues from the economic structure and the balance 

between fiscal revenue and expenditure like our early warning system does. 

To sum up, our debt risk assessment system based on 𝐷𝑅𝐼 can effectively recognize more potential high-

level risk cases and detect the deterioration of debt status earlier than the general indicator 𝐷𝑅. Besides, our debt 

risk early warning system has a better overall prediction accuracy than the system based on 𝐷𝑅, and our early 

warning system can indicate the key issues of debt risk management more comprehensively. 

 

5. CONCLUSIONS AND LIMITATIONS 

In this research, we design a local government debt risk assessment system from two perspectives of debt 

status and fiscal performance. According to the debt risk index (𝐷𝑅𝐼), we define the debt risk levels of local 

governments. We find that the debt risk has distinct regional characteristics since the proportion of high-level risk 

cases in eastern provinces and municipalities is significantly lower than that in other inland provinces. Also, the 

development of local government debt risk has a rapidly increasing pattern especially after 2014, which indicates 
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that the debt risk of local government is an urgent problem that needs to be managed immediately. 

Based on the debt risk index (𝐷𝑅𝐼) and extensively collected explanatory variables, we implement machine 

learning to establish a local government debt risk early warning system. We use various machine learning 

algorithms and ensemble models, thus acquiring their prediction performance on the testing set. We find that 

Random Forest has the best prediction performance, with an overall accuracy of 92% and a high-level risk 

accuracy of 88%. Furthermore, we use feature importance to make the horizontal comparison of explanatory 

variables. We illustrate ten variables with the highest feature importance and explain how we can better arrange 

the debt management by focusing on key issues according to these variables. Finally, we verify that our debt risk 

assessment and early warning system has a better performance than the general debt risk indicator. 

There are still some limitations of our research. Due to the limitation of data sources, we are unable to obtain 

some of the explanatory data we expect, such as land transfer fees of local governments. Besides, we only assess 

and forecast the local government debt risk from the perspective of a single province. However, there are also risk 

spillover effects between neighboring provinces. Therefore, how to comprehensively consider individual 

government risk and regional risk spillovers is an important topic of future work on debt risk management. 

 

ACKNOWLEDGEMENT 

This research was supported by the Natural Science Foundation of China (72071160), and the Chinese 

Ministry of Education Humanities and Social Sciences Fund (18YJAZH142). 

 

REFERENCES 

[1] Liu Y. (2018). Analysis on the causes and influencing factors of Chinese local government debt. Ms D Thesis. Shandong: 

Shandong University. (in Chinese) 

[2] Feng B. (2010). Research on the fiscal risks of local government investment and financing platforms. Finance and 

Economics, (02):4-7. (in Chinese) 

[3] Gong H. (2016). The risk and resolution of local debt under the new normal. Ms D Thesis. Shanghai: East China 

University of Science and Technology. (in Chinese) 

[4] Kumar M, Woo J. (2010). Public debt and growth (IMF Working Paper WP/10/174). Washington, DC: International 

Monetary Fund. 

[5] Westphal C, Rother P. (2012). The impact of high government debt on economic growth and its channels: An empirical 

investigation for the euro area. European economic review, 56.7: 1392-1405. 

[6] Pollin R. (2012). US government deficits and debt amid the great recession: what the evidence shows. Cambridge Journal 

of Economics, 36.1: 161-187. 

[7] Cai H, Treisman D. (2005). Does competition for capital discipline governments? Decentralization, globalization, and 

public policy. American Economic Review, 95.3: 817-830. 

[8] Zhao R, Tian Y, Lei A, Boadu F, Ren Z. (2019). The effect of local government debt on regional economic growth in 

China: a nonlinear relationship approach. Sustainability, 11.11: 3065. 

[9] Polackova H. (1999). Contingent government liabilities: A hidden fiscal risk. Finance & Development, 36(001). 

[10] Ruzzante M. (2018). Financial Crises, Macroeconomic Shocks, and the Government Balance Sheet: A Panel Analysis. 

Washington, DC: International Monetary Fund. 

[11] Duca M L, Peltonen T A. (2013) Assessing systemic risks and predicting systemic events. Journal of Banking & Finance, 

37.7: 2183-2195. 

[12] Zhong H, Lu M. (2015). How fiscal transfer payments affect local government debt. Journal of Financial Research, (09):1-

16. (in Chinese) 

[13] Wu X, Han L. (2017). China's local government debt competition: an empirical study based on provincial spatial panel 



The Twenty one Wuhan International Conference on E-Business－Artificial intelligence & IoT（AIoT）enabled Business Innovation             683 

data. Finance and Trade Economics,38(09):48-62. (in Chinese) 

[14] Zhao X. (2020). Research on the Index System of Local Government Debt Risk Evaluation. Modern Economic 

Information, (03):192-193. (in Chinese) 

[15] Athey S. (2019). The Impact of Machine Learning on Economics. The Economics of Artificial Intelligence: An Agenda, 

507-552. 

[16] Pedregosa F, Varoquaux G. (2011). Scikit-learn: Machine learning in Python. the Journal of Machine Learning Research, 

12: 2825-2830. 


	Local Government Debt Risk Assessment And Early Warning System Based On Machine Learning
	Recommended Citation

	Special Seminar: Assessing Emergent Business IT Using the Web of System Performance

