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Abstract  

In this paper we describe a method for the discovery of exceptional values in business intelligence (BI) 

systems, in particular OLAP information systems. We also show how exceptional values can be 

explained by underlying causes. OLAP applications offer a support tool for business analysts and 

accountants in analyzing financial data because of the availability of different views and managerial 

reporting facilities. The purpose of the methods and algorithms presented here, is to extend OLAP 

based systems with more powerful analysis and reporting functions. We describe how exceptional 

values at any level in the data, can be automatically detected by statistical models. Secondly a generic 

model for diagnosis of atypical values is realized in the OLAP context. By applying it, a full 

explanation tree of causes at successive levels can be generated. If the tree is too large, the analyst 

can use appropriate filtering measures to prune the tree to a manageable size. This methodology has a 

wide range of applications such as interfirm comparison, analysis of sales data and the analysis of 

any other data that possess a multi-dimensional hierarchical structure. The method is demonstrated in 

a case study on financial data. 

Keywords: Exception reporting, Variance analysis, Business Analytics, OLAP, Explanation. 



1 Introduction  

Modern firms can store millions of transaction data in company databases, and consequently the 

potential of obtaining valuable new business insights from business data has increased enormously. 

The proliferation of sophisticated software with new analysis tools and the online availability of data 

will alter the way of working of business and financial analysts. Large amounts of transaction data are 

nowadays stored in a company data warehouse and multi-dimensional data items like sales(2008, 

product, region) can be extracted from the data warehouse and organized in so called OLAP cubes for 

analysis. Typical questions like “Why has sales increased in 2008 compared to 2009” or “Why is 

performance of our branch office ABC low compared to the average” can be answered by inspection 

of multidimensional data cubes. In principle the analyst can explore the data by using the standard 

operators in OLAP like drill-down, roll-up and slice (Han and Kamber 2005). But as the data sets 

become large, browsing through the data in search for atypical values may become a complicated and 

tedious task. Moreover when it comes to an efficient in depth examination of the underlying causes, 

there is still a shortage of tools to intelligently prune a large tree of causes to its essential branches. In 

this paper we propose several extensions of the OLAP framework for intelligent variance analysis. 

Remarkable differences of actual versus reference values; like actual versus budget, actual versus 

historical, etc., are automatically detected by statistical models or normative models. In the next step 

these differences are explained by generating the most important causes at lower level data. The latter 

process is guided by several heuristic rules to reduce information overload.  

The remainder of this paper is organised as follows. In Section 2, we summarize the most important 

OLAP database concepts and notations. In Section 3, we show our methodology for explanatory 

analysis of exceptional values. This section is structured as follows. In Subsection 3.1, we show how 

exceptional values in OLAP databases are defined and computed using various normative models. In 

Subsection 3.2, we present a general methodology for the explanation of such values based on the 

internal structure of the database. In Subsection 3.3, we propose techniques to prune (the tree of) 

explanations to its essential parts. In Subsection 3.4, we discuss how to construct consistent chains of 

reference objects for various types of normative models. In Section 4, we present a case study with 

financial sales data. Finally, we draw some conclusions in Section 5. A formal mathematical 

representation of OLAP databases is given in Appendix A which is used throughout the paper. 

2 OLAP information systems 

An important and popular front-end business intelligence application for business analysis and 

decision support is the OLAP or multi-dimensional database. OLAP databases are capable of 

capturing the structure of business data in the form of multi-dimensional tables which are known as 

data cubes that form an essential part of information systems, like DSS, MIS, and ERP systems. 

Manipulation and presentation of such information through interactive multi-dimensional tables and 

graphical displays provide important support for the business analyst. 

The highly normalized form of the relational data model for OLTP databases is inappropriate in an 

OLAP database for performance reasons (Kimball 1996). Therefore, OLAP database implementations 

typically employ a star model, which stores data de-normalized in a central fact table and associated 

dimension tables. This type of data model allows for fast query access because the number of table 

joins is heavily reduced compared to the relational model.  

In a star scheme, data is organized into measures and dimensions. Measures are the basic numerical 

units of interest for analysis and textual dimensions correspond to different perspectives for viewing 

measures. Dimensions are usually organized as dimension hierarchies, which offer the possibility to 

inspect measures on different dimension hierarchy levels. Aggregating measures up to a certain 



dimension level with aggregation functions like SUM, COUNT, and AVERAGE, creates a multi-

dimensional view of the data, also known as the data or OLAP cube.  

Drill-down equations are formed by the application of a specific aggregation function f on a measure 

y(C), somewhere in the lattice L (see Appendix A for details of the formal notation). The aggregation 

we consider here is the common SUM function. The measure y is an additive drill-down measure if for 

every cell c C∈ , where C is a cube in the lattice L, we have 
1 1

1 ( )

( ) ( )q n q n

q

i i i i i i

e R c

y c y e
−∈

= ∑K K K K

.  
(1) 

The latter equation is a used for expanding a dimension that is of interest. A business model M is a 

system of relations between measures. These relations can be derived from any business domain. 

Relations between measures are denoted by 
1 2 1 2( ) ( ( ))n ni i i i i i

y C f Cx=K K
, (2) 

where and y and 1 2( , , , )
n

x x xx = K , are measures on the same cube C. M represents a system of 

business model equations, where each equation is defined by an instance of the above equation. A 

example of an equation from a financial database is given by: profit(C) = revenues(C) − costs(C).  

3 Identification and explanation of exceptions 

3.1 Exceptional values 

Exception identification is a comparison activity carried out by business analysts. The process of 

looking for exceptional cell values is equivalent to the process of looking for exceptional cell 

residuals, also known as problem identification or management by exception reporting (Judd et al. 

1981). The residual of a cell ∂y(c) in some cube C is defined as, the difference between its actual 

value, y
a
(c), and some reference value, y

r
(c): ∂y(c) = y

a
(c) − y

r
(c). The computation of the reference 

value is based on a normative model .The size of ∂y(c) is the exception score for that cell. To identify 

relevant exceptions we only exceptions with a score exceeding a threshold δ . If the cell residual ∂y(c) 

> δ, an exception score ∂y(c) = ‘high’ is added to the list of exceptional cells. Likewise, if the value of 

∂y(c) < −δ, an exception score ∂y(c) = ‘low’ is added.  

The normative behaviour in a multi-dimensional database, is usually defined by goals that have been 

formulated by management. Here we discuss two classes of normative models (R) that are relevant: 

• R is a managerial normative model (Pounds 1969): 

o Planning and budget models, the plan or determined budget is the expectation; 

o Historical models, expectations based on extrapolation of past experience and trends; 

o Extra-organizational models, models where expectations are derived from competition, 

customers, professional organizations, industry and branch averages, etc. 

• R is a statistical normative model. Decision-makers may also apply more abstract normative 

models in the form of statistical models, to compute or estimate the expected value of important 

measures (Daniels and Caron 2009). When applying a statistical model the expected behaviour 

represents the statistically normal case (Feelders and Daniels 2001). We distinguish between two 

broad classes of statistical models that can be applied in an OLAP database: 

o Multi-way ANOVA models, expectations for continues measures are computed by multi-way 

ANOVA models; 

o Contingency table models, expectations for discrete measures are computed by the independen-

cy model or the log-linear model. 



3.2 Methodology for explanation 

If an exceptional cell value ∂y(c) is identified, the next step is to explain this exception within the 

internal structures of the OLAP database, i.e. the system of drill-down equations and/or the system of 

business model equations. To do this we propose 1) a top-down explanation method for both systems 

of equations and 2) a special greedy explanation method if only additive drill-down equations apply. 

1) To determine the contributing and counteracting causes for in ∂y we define a measure of influence 

as follows:  

inf( , ) ( , )r a r

i i i
x y f x yx−= − , (3) 

Where f(x) is a relation as defined in (1) or (2) and where ( , )r a

i i
f xx−  denotes the value of ( )f x  with 

all variables evaluated at their norm values, except 
i

x . The inf-measure represents a form of ceteris 

paribus reasoning where the xi's play the role of causes that produced y. The set of contributing 

(counteracting) causes Cb (Ca) is defined as measures xi of x with inf( , ) 0
i

x y y×∆ > ( 0)< . In words, 

the contributing causes are those variables whose influence values have the same sign as y, and the 

counteracting causes are those variables whose influence values have the opposite sign.  

The above definitions produce “one-level” explanations, explanations based on a single business 

model equation or drill-down equation. In general however, it is meaningful to continue an explana-

tion of ∂y to lower levels in the OLAP hierarchy or by continuing in the business model. Causes can 

be chained together, from one level to the next in these systems, until maximal explanation is 

obtained.  

2) In the special class that the measure y is an additive drill-down measure (like in OLAP), equation 

(3) can be transformed into a simple form:  

Proposition 1. (Transitivity): If 1 2[ ] [ ]p nC i i i i= =K  and 1 2[ ] [ ]q nC j j j j= =K  are cubes in L where 

q pC C≤ , pc C∈  and qc C′∈ , and y is an additive drill-down measure then: 

; ; ; ;inf( ( ), ( )) ( ) ( )a a a r
y c y c y c y c

j i j j′ ′ ′= − . (4) 

The proof of the proposition is given in (Caron 2012) . 

This proposition states that, in a system of additive drill-down equations the influence of a variable 

( )y c
j ′  on any ancestor variable y in its upset { }c′↑ is given by ; ;( ) ( )a r

y c y c
j j′ ′− . Transitivity greatly 

simplifies the computation of influence values on the upset of a cell, because we only have to compute 

the difference between the actual and reference value of a cell, instead of repeatedly applying equation 

(1). This property is used in a greedy algorithm for the explanation. The inputs for the algorithm is an 

exceptional cell and a table with actual, norm and influence values for elements in the exceptional 

cell’s downset. In the second step the causes are determined in the aggregated table by selecting the n 

largest causes and filtered by some filter measure (see Subsection 3.3). The output of the algorithm is 

the tree of largest causes.  

3.3 Reducing information overload 

Because every drill- down equation in the multi-dimensional database yields a possible explanation, 

the number of explanations generated for a single symptom can be very large. By leaving out 

insignificant influences we can reduce information overload to a large extent. We propose three 

generic reduction methods (RM1-RM3) to cut down the number of explanations.  

RM1) Small influences are left out in the explanation by a measure of parsimony. The parsimonious 

set of contributing causes, denoted by Cbp, is the smallest subset of the set of contributing causes, such 

that its influence on y exceeds a particular fraction T
+
 of the influence of the complete set. The fraction 



T
+
 is a number between 0 and 1, and will typically 0.9 or so. Alternatively, in the case of the greedy 

algorithm the analyst might select the number of significant causes he wants so see for a particular 

symptom. In this way the analyst can simply select the n largest causes. For example, the analyst can 

generate a top-10 list of largest causes for only the Product dimension.  

RM2) The number of explanations is reduced by applying a measure of specificity for each applicable 

equation. This measure quantifies the “interestingness” of the explanation step. The measure is defined 

as: 

# possible causes
specificity ( ) = 

#  actual causes
S . (5) 

The number of possible causes is the number of right-hand side elements of each equation, and the 

number of actual causes is the number of elements in the parsimonious set of causes. By using this 

measure of specificity, we can diminish the number of explanation paths if only the most specific 

dimensions are explored.  

RM3) The analyst can also manually select a few dimensions for further exploration and ignore those 

which seem less interesting.  

3.4 Consistency of reference objects 

A correct interpretation of the influence measure (see expression (3)) is only possible if and only if the 

consistency constraint is fulfilled. This constraint says that the reference values must satisfy the same 

functional requirements as the actual values, i.e. ( )a a
y f x=  and ( )r r

y f x= , where the reference 

objects are obtained by a normative model R. This is not always the case, because in some situations, 

( )r r
y f x≠  due to the form of the function f or the type of normative model R applied. Here we 

describe under what conditions the constraint is satisfied. We discuss how consistent chains of 

reference objects can be formed for the different types of normative models. Actual values in the 

OLAP context are consistent because they satisfy the drill-down equations (equation (1)) or business 

model equations (equation (2)) by definition. Often reference values are computed directly from the 

actual values in the OLAP database. In the case that ( )y f x= , and it is given that ( )r
y R y= , 

( )r
Rx x= , and f R R f=o o , i.e. the computation of reference values is commutative, then the 

reference values are consistent. Now there is a natural canonical way to construct a consistent chain of 

reference values if the above requirement is satisfied. If the chain is formed with strictly drill-down 

equations, we can create a path in the downset of { }c↓  level by level, with both actual as reference 

values for successors of c and if the chain is formed with strictly equations from the business model 

M, we can obtain a business model with both actual as reference values for the business measures.  

For each type of normative model a consistent chains of reference values can be constructed. Here we 

consider two important cases. 

1) R is selected as a historical model. In this case the reference objects are basically internal, and 

directly available in the database, because the Time dimension is in principle always part of the star 

model. The historical reference objects, in the case of pairwise comparison, are determined by a 

specific slice operation on the Time dimension, where, for example, the previous year is selected as 

the normative model. Because the reference objects are just cells in a cube C, the consistency of 

reference values in drill-down equations is guaranteed by definition.  

2) R is selected as a statistical model. Statistical normative models, in general, do not produce a 

consistent chain of reference values, because many statistical models have multiplicative terms that 

result in reference values that are not commutative, i.e. f R R f≠o o . An exception to this general 

rule are some additive ANOVA models. Suppose that 1A  and 2A  are additive ANOVA models. 



Reference values are now computed by 1( )r a
y A y=  and 2 ( )r a

Ax x= . Consistency holds if and only if 
r

y =  1 1 2( ) ( ( )) ( ( )) ( )a a a r
A y A f f A fx x x= = = , thus 1 2A f f A=o o . The construction of a consistent 

chain of reference values is guaranteed, if and only if, the additive ANOVA model used for the child 

cell is a specialisation of the ANOVA model used for the parent cell. With a specialized ANOVA 

model we mean a model that is the result of a drill-down operation on one effect ( )qi

q qDλ in the 

ANOVA model used for the parent cell.  

Proposition 2. (Consistency of ANOVA models): If reference values are computed with ANOVA 

models for ( )qiy c  and 
1
( ')qiy c

−
, consistency holds if 

• the ANOVA model is linear, i.e. contains no interaction effects, and 

• the ANOVA models at both levels are the same in each dimension, except for dimension q to 

which the drill-down operator is applied. In this dimension it is a specialisation, corresponding to 

the lower level of aggregation of the data at level 1q − . 

The proof of this proposition is given in (Caron 2012). 

4 Case study: explanatory analysis of financial OLAP data 

The database used for the case study consists of 42.063 records and is obtained from Cognos (Cognos 

2008). The central fact table represents the financial data set. It contains the measures like profit, 

revenues, costs, etc. The financial data set has dimensions tables, like Time (T), Product (P), Location 

(L), etc.. The hierarchies for these dimensions are given by T[Month]p T[Quarter]p T[Year]p T[All-

Times], P[Product]p P[ProductType]p P[ProductLine]p P[All-Products], and L[Name]p L[Position] 

p L[City]p L[Country]p L[All-Locations]. 

4.1 Exception identification 

First the applicability of the method for statistical exception identification is shown in an example. 

Here we apply the method on the cube Year × Country × ProductLine, with slices S
Year=2001 

and
 

S
ProductLine=Personal Accessories

, for the measure y
231

= revenues
231

. The resulting cube 2001 × Country × 

Personal Accessories is denoted by C. The cube's initial actual data is presented in Figure 1, it 

describes the revenues figures of the GoSales company in 20 countries where the company is active 

for 5 types of product accessories in the year 2001.  

The algorithm for exception identification is configured with R selected as a simple additive ANOVA 

model. Here the additive two-way ANOVA model  

231

1 2
ˆ ˆˆ ˆ(2001,Country, Personal Accessories) (Country)+ (Personal Accessories)y µ λ λ= +  

is applied to compute the reference values. All the residuals in C are now compared with a range of 

threshold values given by the probability values 0.01, 0.05, 0.1, and 0.15. For the thresholds δ = 1.036 

and -δ = 1.036, we find that the cell c = (United States, Binoculars) in the year 2001 is the only (low) 

exception with the residual ∂y(c)/s= -1.212, because -1.212 < -1.036. This exceptional cell is indicated 

with a yellow color in Figure 1. The analyst now might want to explore this deviating cell in more 

detail, to find he reasons for the deviation in the cell's downset. 



 

Figure 1:  Revenue figures, derived from the financial database, organised per type of Personal 

Accessories (P
1
) and Country (L

3
) with a slice on the year 2001 (T

2
). Here the cell 

(United States, Binoculars) is identified as a moderate ``low exception'' . 

4.2 Top-down explanation 

Here we address the question: “Why are the revenues in the cell (2001, U.S.A., Binoculars) on level 

231 relatively low compared with the expected value for this cell?” The answer to this question is 

given with top-down explanation in the downset {↓c}, in particular in the Time dimension over the 

path p = [231]→ [131] → [031]. In this case the analyst wants to explain the exception solely in the 

Time dimension over the path p, i.e. on the Quarter and Month level (see RM3). As an additional 

reduction method, RM1 is applied here with fraction T
+
 = T

−
 = 0.9, to remove the effect of marginal 

causes. For explanation of the event, for each cell on the path p in {↓c}, both the actual as the 

reference value are required. Here y is the additive measure revenues, therefore the actual values are 

directly available by applying drill-down operators on the cell c. For example, the operation 
1' ( )

T
c R c

−=  produces the actual values for cells on the Quarter level: 

4
231 131

1

( ) (2001.Q ,U.S.A.,Binoculars)i

i

y c y
=

=∑ . 

Moreover, the reference values for cells in p are computed here by application of the same type of 

normative model R, as used for the computation of the reference value for the root cell c. Therefore, 

for each cell 1' ( )
T

c R c
−=  its reference values are computed with the additive ANOVA model A1 

131

1 2 3
ˆ ˆ ˆˆ ˆ( ') (2001.Quarter)+ (Country)+ (Personal Accessories)y c µ λ λ λ= + , 

in the context cube 2001.Quarter × Country × Personal Accessories. A1 is a specialized additive 

ANOVA model for the quarters, which is a specialization of ANOVA model A0 within an unfolded 

Time dimension. The model contains the effects of the ANOVA model that was used for the parent 

cell, plus the 2001.Quarter-effects. The two conditions for Proposition 2 are fulfilled, and therefore the 

drill-down equation for the reference values holds: 

4
231 131

1

ˆ ˆ( ) (2001.Q ,U.S.A.,Binoculars)i

i

y c y
=

=∑ . 



Next in Table 1 comparison is made between the actual and the reference values for the cell c in the 

Time dimension, on the level Quarter. In this table the influence values are computed by expression 

(4), because the measure revenues is additive. The inf-measure is correctly interpreted as a quantitative 

specification of the change in y
231

(c) that is explained by a change in y
131

(c') by consistency. 

 

Table 1. Data for explanation of ∂y
231

(c) = “low” in the Time dimension, on the level Quarter 

in the context cube 2001.Quarter × Country × Personal Accessories. 

In the table relative influences are computed by (y
a
(c)-y

r
(c))/inf(y(c'),(c)). From the data in the table it 

can be concluded that Cbp ={(Q1,.,.), (Q2,.,.), (Q3,.,.), (Q4,.,.)}, since all the contributing causes are 

needed to explain the desired fraction T
+
. Because in this explanation step no parsimonious 

counteracting causes are identified, Cap = ∅ .  

Because all causes on the Quarter level are significant, the top-down algorithm continues explanation 

for all quarters on their constituent months, i.e. the next level in the analysis path p. To determine the 

influences of these individual months, reference values have to be computed by the algorithm for each 

month by estimating an additive ANOVA model. Therefore, for each cell 1'' ( ')
T

c R c
−=  its reference 

value is computed by the specialized ANOVA model A2 

031

1 2 3
ˆ ˆ ˆˆ ˆ( '') (2001.Month)+ (Country)+ (Personal Accessories)y c µ λ λ λ= + , 

in the context cube 2001.Month × Country × Personal Accessories. The model A2 is a specialization of 

model A1 within the Time dimension, from the Quarter to the Month level. In this way, consistent 

reference values are formed for each quarter Qi given by 

3
131 031

j

1

ˆ ˆ(2001.Q ,U.S.A.,Binoculars) (2001.Q .Month , U.S.A.,Binoculars)i i

i

y y
=

=∑ , 

where i = 1,2,3,4 and j = 1,2,3. The values are consistent because, the ANOVA model applied on the 

Month level, is a specialization of the ANOVA model applied on the Quarter level, and therefore the 

conditions for Proposition 2 are met. 

As an example, comparison is made in Table 2 between the actual and the reference values for the cell 

(2001.Q4, U.S.A, Binoculars) and its children on the Month level. 

 

Table 2. Data for explanation of y
131

(2001.Q4, U.S.A, Binoculars) = “low” in the Time 

dimension, on the level Month in the cube 2001.Quarter.Month × Country × Personal 

Accessories. 

From the data in the table, it can be concluded that Cbp = {(Q4.Oct,.,.),(Q4.Nov,.,.),(Q4.Dec,.,)}, since 

all the contributing causes are needed to explain the desired fraction T
+
. Obviously, Cap = ∅ . All the 

months of the last quarter show the same pattern; in each month the realized revenues are relatively 



low in the U.S.A for the ProductType Binoculars. In particular, the month October stands out as a 

large contributing cause, it explains 44% of ∂y
131

(2001.Q4, U.S.A, Binoculars) and 13% of ∂y
231

(2001, 

U.S.A, Binoculars). 

The explanation tree in the lower part of Figure 2, summarizes the results of this explanation. In this 

figure, the straight lines indicate parsimonious contributing causes and (possible) dotted lines indicate 

counteracting causes, the numbers on the lines indicate the relative values for the influence measures, 

and the ratios indicate the specificity value (S) of the explanation step (see RM2). In addition, we give 

a business interpretation of the complete explanation tree for the Time dimension. From its inspection 

it can be concluded that the revenues in the cell c declined because the revenues decreased in all 

quarters and all months, they basically all show the same pattern. However, the largest part of the 

decrease, 56%, occurred in the last two quarters on the year. Especially, the months July, September, 

and October are relatively large causes and are sure candidates for further managerial inspection. 

=4/3
P

S

=4/4
T

S

=4/4
L

S

 

Figure 2: Explanations trees that partially explain the exceptional cell revenues(2001, U.S.A, 

Binoculars) = ``low'' in the Product (P), Time (T), and Location (L) dimension. 

Furthermore, in Figure 2, three partial explanation trees are depicted, from west, south, to east, 

corresponding with the explanation trees for the Product, Time, and Location dimension, respectively. 

For the root level in each of the trees we have computed the measure of specificity S for each 

dimension. For all the one-step explanation that are possible in the downset of the exceptional cell c, 

the specificity value range is SP ≥ ST ≥ SL (4/3 ≥ 4/4 ≥ 4/4). With RM2 the most specific explanation 

step is taken, in this case in the direction of the Product dimension. The top-down algorithm now 

proceeds the explanation process with the cells (.,., Seeker 35), (.,., Seeker 50), and (.,., Seeker Mini). 

For each of these cells the measure of specificity is applied again and the explanation step is selected 

with the highest specificity value, and so on. In the algorithm this mechanism can be continued until it 

reaches the base cube. By the application of the measure of specificity the business analyst is 

automatically guided through the exceptional cell’s downset {↓c}. This reduction method selects in 

each explanation step, the dimension for explanation that is the most specific. 

4.3 Greedy explanation 

Here we identify exceptions in the cube C = 2001 × Country for the measure profit
1
, labelled by the 

variable y, with a historical normative model, in this case the profit figures of the previous year, 

represented by the cube C' = 2000 × Country. The following cells in C are marked as exceptions: a 

moderate high exception is the cell (2001, China) and the cells (2001, Canada), (2001, The 

                                              
1 Notice that the actual data for this cube is not presented in this paper because of space limitations. 



Netherlands), (2001, Spain), (2001, Sweden), and (2001, Belgium). The largest exception is found in 

the cell c = (2001, The Netherlands), where ∂y(c) = y
a
(c) − y

r
(c') = 199,690.65 − 378,324.70 = 

−178,634.05. Subsequently, we want to explore the exceptional cell ∂y(c) in more detail, to identify 

possible causes for this exception in { }c↓ . In words, we address the following business question: 

“Why is the measure profit in the cell (2001, The Netherlands) on level 233 relatively low compared 

with the reference value for this cell, the profit in the previous year in The Netherlands on the 

aggregated product level ‘ALL-Products’, represented by the cell (2000, The Netherlands), in the cube 

C under consideration?” Here the exceptional cell ∂y(c) is explained with greedy explanation in only 

the Product dimension.  

In Table 3, the data for greedy explanation for the city of Amsterdam is presented. From the data in 

the table we can conclude that y
222

(., ., Camping Equipment) is the largest contributing cause in the 

Product dimension and y
220

(., ., Golf Equipment.Irons.Hailstorm Titanium Irons) is the largest 

counteracting cause. Interestingly, is the cause y
220

(., ., Camping Equipment.Tents.Star Dome) which 

is relatively large contributing cause on the lowest level of the Product dimension.  

 

Table 3. Aggregated table for the Product dimension where the actual object is the year 2001, 

the norm object is the year 2000, and the influence values for instances within the 

Product dimension are related to the exceptional cell profit
223

(c). 

In Figure 3, the results are depicted in an explanation tree, which reports specifically the 10 largest 

contributing causes for the exception in the Product dimension (see RM1). 
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Figure 3:  Greedy explanation in the Product dimension reporting the 10 largest causes. 



4.4 Scalability 

Although transaction databases can be very large the kind of analysis discussed in the paper is mostly 

performed on aggregated data. The method for explanation as described in this paper is scalable since 

all operations are linear in the number of records in an OLAP data cube. Note that here the ANOVA 

models for computation of the reference values also have linear complexity. If other more complex 

statistical models are applied like complex time series models or neural networks with many 

parameters the computational complexity may increase drastically. Another point of concern is the 

huge number of drill-down paths in OLAP if the number of dimensions and their depth increases. The 

full tree of explanations can have  

1 2

1 2

( )!

! ! !

k

k

n n n

n n n

+ + +K

K
  

paths, where 
k

n is the number of possible levels in dimension k. In this case the complexity is still 

linear in the size of the dataset, but exponential in the number and depth of the dimensions. However, 

this can be resolved by applying the specificity heuristic (see RM2) such that in each step only the 

most specific dimension is selected for explanation. 

5 Conclusion 

In this paper we proposed some new methods for investigation and evaluation of financial data that are 

stored in multi-dimensional OLAP databases. Exceptional values are automatically discovered using 

statistical or normative models. Interesting dimensions to be expanded are computed from a business 

model and can be analyzed in further detail and displayed in a tree of causes. Several strategies to 

reduce information overload are presented and applied in the case study. We believe that the 

methodology put forward here, can be effectively employed in a wide range BI systems. Example 

applications are: interfirm comparison (Daniels and Caron 2009), sales analysis (Caron 2012), crime 

analysis (Caron and Veenstra 2007), analysis of variance in accounting, and the generation of fishbone 

diagrams. The method can also be applied in a continuous auditing framework, the expected values 

can be used as a benchmark and are compared with the actual values as described in this paper. Larger 

deviations serve as a trigger for audit activities in which case the explanation method automatically 

generates important dimensions that can be explored in further detail. Computerized diagnosis in the 

business and management domain is an important research area, studied in the fields of Operations 

Research and Artificial Intelligence. In our opinion, this paper contributes substantially to the 

integration of diagnostic support in business information systems. 

Appendix A  

In OLAP databases dimensions can be represented by 1 2

1 2, , , nii i

n
D D DK  where each domain 

ki

k
D represents a dimension k, e.g. Time, Location, Product and so on, from the associated business 

process, with a set of dimension levels {0,1, ,max }
k k

i = K . For example, the Time dimension might 

have the following levels: Day, Week, Month, Quarter, Season, and Year. In dot-notation an example 

hierarchy for the Time dimension is represented as Year.Quarter.Month. The key structure in the 

multi-dimensional database is the data cube. A cube C is defined as the Cartesian product over the 

levels of the subsets of the available domains 
1 2

1 2( ),  where n k ki i ii i

n k k
C X X X X D= × × × ⊆K .  

For example, C = {2008, 2009}
2
 × Germany

3
 × Product

2
 is an example of a cube. Also every pivot 

table in MS Excel is an example of a 2 dimensional cube. 



A cube C is composed out of one or more cells. A cell c is defined as an instance element of a cube C 
1 2 1 1 2 2

1 2 1 1 2 2( , , , ),  where , , ,n n ni i ii i i i i i

n n n
c d d d d X d X d X= ∈ ∈ … ∈K .  

A number of navigational operations are available for the manual exploration OLAP cubes, e.g. down, 

roll-up, slice and dice, allowing interactive querying and analysis of the data. The drill-down operator 

is defined by  
1 1

( 1)1

1 1( )q qn n
i ii ii i

q q n q nR X X X X X X
−− × × × × = × × × ×K K K K .  

A roll-up operator in dimension q, given by 1

qR
+ , is defined similarly. This is the inverse of the drill 

down operator and aggregates a cube to a higher level for dimension q.  

Given a cube C and a set S of roll-up operators we can generate an aggregation lattice L of cubes by 

applying all possible subsets of S to the cube C. The minimal element of L is C and the maximal 

element of L is the cube where all operators in S are applied to C. The minimal element is also called 

the base cube of the lattice and the maximal element is the top cube. A measure y is defined as a 

function on a cube C 
1 2 1 2

1 2:n ni i i ii i

n
y D D D X× × × →K

K ,  

where measure values are in , , or .X N Z   R=  
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