
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2003 Proceedings European Conference on Information Systems
(ECIS)

2003

Towards Definitive Benchmarking of Algorithm
Performance
Andrew Lim
Hong Kong University of Science and Technology, iealim@ust.hk

Wee-Chong Oon
National University of Singapore, oonwc@comp.nus.edu.sg

Wenbin Zhu
National University of Singapore, zhuwb@comp.nus.edu.sg

Follow this and additional works at: http://aisel.aisnet.org/ecis2003

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2003 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Lim, Andrew; Oon, Wee-Chong; and Zhu, Wenbin, "Towards Definitive Benchmarking of Algorithm Performance" (2003). ECIS
2003 Proceedings. 92.
http://aisel.aisnet.org/ecis2003/92

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2003%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2003?utm_source=aisel.aisnet.org%2Fecis2003%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2003%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2003%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2003?utm_source=aisel.aisnet.org%2Fecis2003%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2003/92?utm_source=aisel.aisnet.org%2Fecis2003%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Lim, Oon and Zhu Towards Definitive Benchmarking

Towards Definitive Benchmarking of Algorithm
Performance

Andrew Lim1, Wee-Chong Oon2, Wenbin Zhu2

1Department of IEEM, Hong Kong University of Sci and Technology

Clear Water Bay, Kowloon, Hong Kong
Tel: +852 23587116; Email: iealim@ust.hk; Fax: +852 23580062

2Department of Computer Science, National University of Singapore

3 Science Drive 2, Singapore 117543
Tel: +65 68746891; Email: {oonwc, zhuwb}@comp.nus.edu.sg; Fax: +65 67794580

Abstract

One of the primary methods employed by researchers to judge the merits of new heuristics and
algorithms is to run them on accepted benchmark test cases and comparing their performance
against the existing approaches. Such test cases can be either generated or pre-defined, and both
approaches have their shortcomings. Generated data may be accidentally or deliberately skewed
to favor the algorithm being tested, and the exact data is usually unavailable to other
researchers; pre-defined benchmarks may become outdated. This paper describes a secure
online benchmark facility called the Benchmark Server, which would store and run submitted
programs in different languages on standard benchmark test cases for different problems and
generate the performance statistics. With carefully chosen and up-to-date test cases, the
Benchmark Server could provide researchers with the definitive means to compare their new
methods with the best existing methods using the latest data.

Keywords: Benchmarking of algorithms, Web-based Benchmark Server

1 Introduction

 Across computer science research, the evaluation of a new heuristic or algorithm is
primarily dependent on its performance when compared to other existing approaches when tested
on representative (i.e. benchmark) data. In general, benchmark data is either pre-defined or
generated. In the current research environment, both have significant shortcomings as the
definitive measure of an algorithm’s performance.

 Pre-defined benchmarks are specific test cases that are designed to be representative
examples of a particular problem and made available to all. Since previous research on the
problem will be based on these benchmarks, new researchers need not implement the old
methods. Instead, they can evaluate these methods based on published results. However, such

Lim, Oon and Zhu Towards Definitive Benchmarking

benchmarks will eventually become outdated. For example, the standard benchmark for the
Vehicle Routing Problem with Time Windows (VRPTW) has long been the 56 test cases of 100
customers devised by Solomon (Solomon 1987). Given today’s increased computing power and
technology, Solomon’s test cases are no longer sufficient. A well-known extension has been
proposed that includes instances with up to 1000 customers (Homberger 1999). Unfortunately,
researchers that adopt this new problem set cannot compare their new methods with existing
ones unless they implement the old methods and run them on the new test data.

 For most problems, however, no pre-defined benchmarks exist. As a result, researchers
have no choice but to generate their own representative test data. This is clumsy and inexact for
several reasons. Firstly, the generation of such test cases can be difficult, time-consuming and
challenging (Hall and Posner 2001), and the generated data may be erroneous or insufficient.
Secondly, researchers seldom reveal the actual data used for their experiments as the data may be
confidential or sensitive, or too large. Instead, they describe the data’s characteristics in general
terms. For instance, a typical test set for a Shortest Path Problem algorithm might be described as
“20 undirected Euclidean random graphs of 100 vertices and 500 edges”. This makes their
claims difficult to verify or disprove, and indeed unscrupulous researchers may deliberately
choose favorable test cases. Elevated performance claims are especially difficult to prove if the
approach involves some random element (like Simulated Annealing) or training phase (like
Neural Networks). Thirdly, the researcher must implement all the other approaches that he
wishes to test his own approach against. As the researcher may not be familiar with the other
approaches, this is another time-consuming and error-prone process.

 There are other problems with the current benchmarking process. The actual running of
the program on multiple test cases can be time-consuming and tedious. Researchers also often
summarize algorithm performance using some overall measure like average performance or best
n results, but may (inadvertently or deliberately) omit some critical measure like worst-case
performance. In summary, the weaknesses of current benchmarking practice stem from (1) lack
of carefully designed, consistent and current data; (2) incomplete or misleading performance
evaluation statistics; and (3) implementation difficulties.

 Benchmarking of algorithms is somewhat related to the automatic grading of
programming assignments. A number of work has been done to automate this process (Forsythe
and Wirth 1965, Urs von Matt 1994, Joy and Luck 1995, Jackson 1996, Leal and Moreira 1998,
Kurnia, Cheang and Lim 2001, and Cheang, Kurnia, Lim and Oon 2003).

 In the rest of the paper, we will present the unique challenges in automating the process
of benchmarking algorithms. Section 2 presents the system architecture and design, and related
technical issues, including fairness, scalability, security, fraud prevention and performance.
Section 3 addresses our methodology and issues in deployment. Section 4 provides the
conclusion.

Lim, Oon and Zhu Towards Definitive Benchmarking

2 The Benchmark Server

 The Benchmark Server (working title) is a secure online distributed system that promises
to overcome all the above weaknesses of current benchmarking practice (See Section 1 and Zhu
2002). Its core service is to securely run submitted programs on pre-defined benchmark data, and
then return the appropriate performance statistics. The pre-defined benchmarks will be a
combination of revealed data and statistically similar secret data. The performance of submitted
programs will be ranked against all other submissions according to various criteria, allowing the
researcher to easily judge his program’s relative ability. All programs will be stored, and made
available for public scrutiny upon permission of the submitter. This is an extension of the Online
Judge system (Kurnia, Cheang and Lim 2001, and Cheang, Kurnia, Lim and Oon 2003) that was
used as an automated programming assignment grader.

 The Benchmark Server is composed of (1) a main server that controls the running of the
programs; (2) multiple computing servers that perform program executions and benchmarking;
(3) an information storage containing problem, benchmark, submission and server information;
and (4) a user interface allowing user registration, program submission and statistics display.
Each component is further divided into subcomponents for modularity and maintainability.
Figure 1 shows the system architecture.

Main Server

Information
Storage

User
Interface

Computing
Server

Controller

Computing
Server

.

.

.

Execution
Monitor

Compiler Slave
Server

User
Registration

Reporting
System

Submission
System

DBInformation
Module

Server
ManagerDispatcher Queue

Figure 1: System Architecture

Lim, Oon and Zhu Towards Definitive Benchmarking

 A new user registers onto the Benchmark Server via the user registration subcomponent.
This information is stored in the database. The user can now submit programs through the
submission system, which will be inserted into the priority queue in the main server. These
programs are passed to the dispatcher, which uses a rule-based system to control the treatment of
the target program (e.g. which benchmarks to load, which compiler to use). The appropriate
benchmarks and problem information is retrieved from the database. The server manager then
transmits the program to a free computing server if available. The actions of the main server are
overseen by a controller, and real-time information like the current status of all the computing
servers and the queue is stored in a separate information module. When a free slave server
receives a submitted program, it is compiled using the appropriate compiler. The execution
monitor records the performance statistics, which are saved onto the database. Finally, these
statistics are displayed using the reporting system.

 The aim of the Benchmark Server is to provide the research community with the
definitive source of up-to-date benchmarking for a wide variety of problems, and the tools to
perform such testing in a thorough, consistent and convenient manner. To achieve this aim, a
number of basic requirements must be addressed. The rest of this section briefly describes how
the Benchmark Server fulfils these requirements.

2.1 Security

Security is of paramount importance to any Internet venture, and is especially so for the
Benchmark Server as it involves running external programs. Therefore, several measures have
been taken to ensure the highest level of system security.

A malicious program can potentially crash the entire system. To prevent this, all

submitted source code is scanned for restricted system or function calls, such as those that
attempt to kill other processes or make network connections. Compiled programs are executed in
a sandbox under restricted user permission allowing limited memory resources and CPU time.
Furthermore, writes are only permitted to standard output. Finally, the main server and
computing servers are situated on different machines. Therefore, a malicious program can only
crash the particular computing server it is on, without affecting other submissions or benchmark
data.

A submitted program may attempt to elevate performance values by connecting to a

supercomputer, performing the tests on it, and then transmitting the results back to the program.
To prevent this, all computing servers are on a private network with no Internet access. Firewalls
are also installed on both the main server and computing servers. These measures also prevent
submitted programs from transmitting secret benchmark test cases to external locations. Without
knowing the secret test cases, a user cannot cheat by pre-processing the results offline.

Other security measures include a priority queue system that takes into account the

number of submissions from each user (to prevent one user from flooding the queue with
multiple submissions), and computing server registration requiring a 64-bit integer authorization
token (to prevent external servers from impersonating a computing server and transmitting false

Lim, Oon and Zhu Towards Definitive Benchmarking

benchmark results). While the security of the system cannot be 100% ascertained until it is open
to actual use, we believe that the Benchmark Server is immune to malicious submissions.

2.2 Computing Server Maintenance

The Benchmark Server can support any number of computing servers, and the workload
is distributed evenly among all available servers. Should any particular server fail, it will simply
be removed from the pool of available servers without affecting the rest of the system.

Computing servers are organized into server groups. All machines within a server group

have identical hardware. The system administrator can designate problems to server groups so
that all tests on a problem are done on machines with identical configurations. In this way, new
machines can be added to the system as new server groups.

2.3 Multiple Language Support

The Benchmark Server defines a set of interfaces for programming language support. A
new language is added by implementing an interface for it. For example, the Java language can
be added by implementing

• A Compiler interface that will invoke an external compiler (e.g. javac) to compile a

java program and store the resulting classes in a specified directory; and
• A CmdLine interface, which returns a string specifying how a compiled program is

invoked. For Java, the string returned would be

java –classpath run_dir Main

2.4 Problem Management

Each problem is implemented as a separate package. The Benchmark Server provides
tools to form packages containing the problem definition; its benchmark test cases; a verifier
program that verifies solution correctness; and an evaluator program that evaluates the quality of
a solution. These tools will be released to the public, allowing the proposal and definition of new
problems.

3 Objectives and Research Methodology

It is hoped that the Benchmark Server will emerge as a useful tool for researchers,
academic referees, programmers and students. Researchers will be able to use the Benchmark
Server to find the current best approaches to various problems. By submitting their
implementations, they can directly compare their work with existing algorithms on the exact
same test cases and machines. Similarly, academic referees can verify researchers’ claims via the
Benchmark Server. Programmers of practical applications will be able to refer to the source code

Lim, Oon and Zhu Towards Definitive Benchmarking

of actual implementations of the best algorithms. Finally, the Benchmark Server can serve as a
valuable learning tool for students.

However, this can only come to fruition if the Benchmark Server achieves widespread

acceptance such that the authorities on the various problems submit their algorithms. While the
Benchmark Server has met or will meet all the basic requirements, the natural resistance that
exists against the adoption of new technology (Canton et al 1999) must be overcome. The
objective of this research is to achieve this acceptance.

 An important task is to choose appropriate problems and test sets for the initial release of
the Benchmark Server. While it is simple to generate or devise test cases, it is difficult to justify
that these test cases are sufficient and fair. Proper benchmark test cases is crucial for correct
evaluation of algorithms, especially for approaches with random or training elements like Neural
Networks (Flexer 1995, Prechelt 1996) For the initial implementation, we will likely choose
well-known problems of wide interest with established benchmark test cases. The
aforementioned VRPTW is one likely candidate. In the future, online communities can be set up
for arriving at a consensus on the appropriate definitive benchmarks.

When the appropriate problems have been chosen, it would be useful to implement some
of the common algorithms on them. For VRPTW, possible implementations include Genetic
Algorithm, Simulated Annealing or some greedy heuristic. While these implementations may not
be optimal, they can serve as useful baseline comparisons. Furthermore, since the source code
for implementations will be available for scrutiny, users can submit improved versions to update
the performance statistics.

 The presentation of statistics must also be carefully considered. The performance
statistics of submitted algorithms must be presented in a useful and convenient manner that
allows easy comparison on various aspects of the algorithms. The most useful statistics will be
problem-dependent, and must be chosen and presented with expert knowledge. Ideally,
authorities on each problem should be consulted on the most important aspects to be measured
and the most useful presentation formats. Furthermore, as the number of submissions increase,
information overload must be prevented so that the statistics will not be cluttered by information
on irrelevant algorithms.

 Privacy is an important issue. There may be users who wish to test their approaches
against the existing ones, but do not wish to divulge it. We plan to address this issue by allowing
three types of submissions: source code, executables or results. Source code submission allows
others to scrutinize the submitted code, and is the most useful of the three. If only executables in
binary form are submitted, the Benchmark Server can still test them, but there is a danger of
elevated performance due to pre-processing or other such techniques. Alternatively, if the user
does not wish his program to be available in any form to the public but merely wishes to
advertise its capability, he can simply submit results. These will be published on the web site,
but with the disclaimer that the Benchmark Server has not verified it in any way.

 Like any new venture, advertising will be crucial to the success of the Benchmark Server.
The current plan is to provide it as a free service to academic institutions to encourage

Lim, Oon and Zhu Towards Definitive Benchmarking

widespread adoption. After the system is completed and thoroughly tested in-house, we hope to
advertise it in leading journals and conferences across computer science. The main aim is to let
all researchers know that there is a facility for up-to-date benchmarking available.

 Many other value-added services are also possible. The Benchmark Server serves as the
foundation to set up information repositories on the various problems. When a user checks up on
the latest algorithms to a problem, web links can direct him to sites that contain the details of
these approaches as well as the problem itself. Utilities can also be provided to create images of
statistical information that can be downloaded and used in reports. The Benchmark Server can
also serve as a protection of intellectual property. All submissions will be time-stamped and
stored so that the submitter of the program can prove the originality of his idea. An online
research community can be set up for the purpose of discussing problems, defining new
benchmarks, proposing interesting problems and the general exchange of ideas.

 We believe that the Benchmark Server has the potential to provide an invaluable service
to the computer science community, and must be carefully managed to make this vision a reality.

4 Conclusion

 The Benchmark Server makes use of the global connectivity of the Internet to overcome
the pitfalls of current benchmarking practice. It allows researchers to submit the best
implementations of their algorithms to a worldwide and up-to-date site to be tested on carefully
devised definitive benchmark test cases, so that they can be compared to other algorithms when
run on identical machines using identical resources. It will provide detailed and thorough
statistics for easier comparison, and source code for perusal and adoption. With careful
organization of information, the Benchmark Server can be a powerful educational tool for
students and practical programmers.

 We are currently in the process of choosing appropriate problems and benchmarks for
implementation, and deciding the best methods of displaying performance statistics. In-house
testing should be completed about 2 months from this time of writing, and we are also seeking to
procure more machines for the system. We hope that the Benchmark Server will become the
definitive source of benchmarking information on algorithm performance, and be
enthusiastically adopted by the computer science community in the near future.

Acknowledgements

The paper is supported in part by the funding HIA02/03.EG04 (HKUST) and DAG02/03.EG07
(HKUST).

Lim, Oon and Zhu Towards Definitive Benchmarking

References

Canton, E. J. F.; de Groot, H. L. F; and Nahuis, R. “Vested Interests and Resistance to
Technology Adoption”, CentER Discussion Paper, no. 99106, 1999.

Cheang, B; Kurnia, A.; Lim, A. and Oon, W. “On Automated Grading of Programming
Assignments in an Academic Institution”, Computers and Education, accepted for publication
2003.

Flexer, A. “Statistical Evaluation of Neural Network Experiments: Minimum Requirements and
Current Practice”, Technical Report, Proceedings of the Thirteenth European Meeting on
Cybernetics and Systems Research, R. Trappl (ed.), 1995.

Forsythe, G. E.; Wirth, N. “Automatic grading programs”. Communication of the ACM, (8):275-
-278, 1965.
Hall, N.G.; Posner, M.E., “Generating experimental data for computational testing with machine
scheduling applications”, Operations Research, 49 (7), pp. 854-865, 2001.

Homberger, J. “Extended SOLOMON’s VRPTW Instances”, http://www.fernuni-
hagen.de/WINF/touren/inhalte/probinst.htm

Jackson, D. “A software system for grading student computer programs”, Computers &
Education, v.27 n.3-4, p.171-180, Dec. 1996

Joy, M.S.; Luck, M. “On-line submission and testing of programming assignments”. Innovations
in Computing Teaching, pages 97-103, 1995.

Leal, J., P.; Moreira, N. “Automatic grading of programming exercises”. Technical Report DCC-
98-4, DCC-FC&LIACC, UP, June 1998

Kurnia, A.; Cheang, B and Lim, A “Online Judge”, Computers and Education, 36, pp 299-315,
2001.

Prechelt, L. “A Quantitative Study of Experimental Evaluations of Neural Network Learning
Algorithms: Current Research Practice”, Neural Networks 9(3), pp. 457-462, April 1996

Solomon, M.M. “ Algorithms for the Vehicle Routing and Scheduling Problem with Time
Window Constraints”, Operations Research, no. 35, pp. 254-265, 1987.

Urs von Matt, “Kassandra, the automatic grading system”. SIGCUE, (22):26-40, 1994

Zhu, W. “The Benchmark Server”, Final Year Project report, National University of Singapore,
2002.

http://www.fernuni-hagen.de/WINF/touren/inhalte/probinst.htm
http://www.fernuni-hagen.de/WINF/touren/inhalte/probinst.htm

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2003

	Towards Definitive Benchmarking of Algorithm Performance
	Andrew Lim
	Wee-Chong Oon
	Wenbin Zhu
	Recommended Citation

	Abstract
	2The Benchmark Server
	
	
	
	Security
	Computing Server Maintenance
	Multiple Language Support
	Problem Management

	3Objectives and Research Methodology
	4Conclusion
	References

