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Abstract. Determining the QoS (quality of service) of composite Web services 
is of high importance for both service providers and service consumers. Hetero-
geneity of service descriptions, however, often hinders the aggregation of QoS 
parameters. We propose ontology-based QoS aggregation that integrates the 
semantics of QoS parameters and their aggregation into the overall aggregation 
process. The contribution is a QoS aggregation ontology and a QoS aggregation 
method that uses this ontology. We demonstrate the usefulness of our proposal 
for designers of composite services and assess its computational efficiency. 

Keywords: Ontology, QoS, Service Composition, SOA, Web Service 

1 Introduction 

Composite Web services play an important role in services computing, since they 
allow realizing business processes by composing elementary services under a shared 
workflow and providing this business process “as a service” [1]. An essential task 
within service composition [2] is determining the quality of service (QoS) of compo-
site services. This task is called QoS aggregation. 

QoS aggregation is non-trivial due to the heterogeneity of service descriptions, and 
in particular its QoS parameters. Heterogeneity is concerned with syntax, i.e., the 
lexicon for representing QoS, and semantics, i.e., the meaning of a QoS. Existing 
specifications for service descriptions (e.g., WSDL [3]) and service level agreements 
(SLAs) (e.g., WS-Agreement [4]) provide constructs for QoS parameters by a small 
set of attributes including name, data type, and unit of measurement. Service provid-
ers may use these constructs to define specific parameters. Whereas these specifica-
tions provide a common syntax, the problem of semantic heterogeneity still remains. 

Any endeavor to resolve semantic heterogeneity faces the trade-off between stand-
ardization and flexibility. Standardization would restrict the use of QoS parameters to 
a particular set of standard parameters. Whereas aggregating these parameters is easy, 
the providers must revise their custom service descriptions according to the standard. 
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The main disadvantage of this approach is that it assumes the ontological commitment 
of all the service providers to that standard. This assumption, however, contradicts the 
idea of loosely coupled Web services in services computing [5]. Flexibility is 
achieved by giving the service providers full control over their service descriptions. 
The problem of heterogeneity must then be solved by the services users, who com-
pose services from different providers under a shared workflow. 

We aim at balancing the trade-off between standardization and flexibility by main-
taining the custom service description and aligning them to an intermediate semantic 
layer. Unlike current semantic approaches to QoS standardization, we restrict the 
ontological commitment to one annotation per QoS parameter. Thus, the objectives of 
this research are to: (1) develop an ontology-based QoS aggregation method for com-
posite Web services with well-formed workflows, and (2) apply this artifact to com-
posite Web service of different complexity to demonstrate its usefulness and assess its 
computational efficiency. These objectives constitute design science research [6], 
because it designs and evaluates an artifact (method) that is informed by prior artifacts 
(composition patterns [14]) and theories (workflow [15], description logic [21]). We 
evaluate the proposed artifact by rigorously demonstrating its usefulness via a two-
level evaluation, which consists of a detailed scenario (descriptive evaluation method) 
and a simulation using a prototype implementation (experimental evaluation method). 
The contributions of this research are the QoS aggregation ontology and aggregation 
method for composite Web services. In our previous work [7], we have presented a 
preliminary ontology. In this paper, we (1) propose and formalize the aggregation 
method, (2) revise the ontology, and (3) report the two-level evaluation. 

The remainder of this paper is structured as follows. In the next section, we discuss 
the approaches for QoS aggregation. Subsequently, we provide the basic notions for 
composite service and QoS. Then, we present the QoS aggregation ontology and the 
method. We evaluate our proposal through a set of experiments and draw conclusions. 

2 Related Work 

QoS aggregation has been the subject of much research in services computing. We 
examine two aspects, heterogeneity of QoS parameters and aggregation methods.  
Standardization on the syntactical level provides formats for representing parameters 
in service descriptions and SLAs. WS-Agreement [4] defines a format for SLAs. The 
QoS parameters are regarded as domain-dependent; hence WS-Agreement does not 
define specific parameters and does not solve semantic heterogeneity. Harmonization 
on the semantic level could overcome this problem, by defining common QoS param-
eters [8]. Ontologies have been proposed that specify the conceptualization of QoS 
formally [9-10], though they do not provide information for QoS aggregation. 

For QoS aggregation, it would be sufficient to amend the service description with 
information about aggregation procedures. Haq et al. propose to state aggregation 
functions for SLA parameters explicitly [11]. These functions are stored in a specific 
attribute that extends the WS-Agreement specification. The drawback of this ap-
proach is service providers need to determine the function for all parameters correctly. 
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Aggregation functions for QoS parameters are used in [12-13], which stress that 
the specific parameter sets used are extensible without fundamentally altering the 
overall approach. This fact sheds light on the important insight to abstracting from 
diverse and domain-specific QoS parameters. A significant contribution stems from 
Jaeger et al. [14] who ground QoS aggregation on workflow patterns [15] and deduce 
so-called composition patterns and respective aggregation functions. Similarly, Car-
doso et al. [12] propose a graph reduction algorithm for QoS aggregation. 

The rationale for ontology-based QoS aggregation is to integrate constructs from 
Web services research, in particular, the composition patterns and aggregation func-
tions, into an ontology and an aggregation method. This approach could minimize the 
additional effort for service providers in annotating their service descriptions as well 
as increase the flexibility for service consumers to explore a wider range of services. 

3 Basic Model 

We consider composite service as a collection of services that are governed under a 
shared workflow (directed acyclic graph, DAG). Figure 1 shows an example work-
flow, which contains six tasks and four gateways (represented by diamond shapes). 

 

t1

t2

t4

t3

t5

t6

ANDsplit
ANDjoin

ORsplit

ORjoin

 

Fig. 1. Example workflow 

To instantiate the workflow for different services, the tasks are separated from actual 
services by means of a binding, which is part of the succeeding definition. 

 
Definition 1 (Composite Service). A composite service is a tuple CS = (W, B) of 
workflow W and binding B. W is a directed acyclic graph W = (T, G, A, CG), where 

 T is a finite non-empty set of tasks t  T, G is a finite set of gateways g  G, 
 N = T  G is a finite set of nodes, with T  G = , 
 A is a set of arcs connecting tasks with tasks, tasks with gateways, and gateways 

with tasks, thus A  (T  T)  (T  G)  (G  T), 
 CG is a function which assigns a type to each gateway; CG: G  {XORsplit, 

XORjoin, ANDsplit, ANDjoin, ORsplit, ORjoin, Loop}. 
 B is a binding function, which assigns a service s  S to each task, i.e., B: T  S. 

The model is restricted to well-formed (structured) workflows, where W has exactly 
one start and end node and is weakly connected. The correct usage of the different 
gateway types, thus how to connect nodes by arcs, is given as follows:  
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 Each task t  T has exactly one input arc and one output arc, i.e., |•t| = |t•| = 1. 
 Each gateway g’ G with CG(g’) = {XORsplit, ANDsplit, ORsplit} has exactly one 

input arc and at least two output arcs, i.e., |•g’| = 1 and |g’•| ≥ 2. 
 Each gateway g’ G with CG(g’) = {XORjoin, ANDjoin, ORjoin} has at least two 

input arcs and exactly one output arc, i.e., |•g’| ≥ 2 and |g’•| = 1. 
 Each gateway g’ G with CG(g’) = {Loop} has one input arc and two output arcs, 

i.e., |•g’| = 1 and |g’•| = 2. Let a1 = (n1, g’) be the input arc, then one output arc a2 
connects back to node n1 with a2 = (g’, n1), and one output arc a3 connects to an-
other node with a3=(g’, n2) and n1 ≠ n2. 

The CS model is not bound to a particular workflow language such as the Business 
Process Model and Notation (BPMN) and the Web Services Business Process Execu-
tion Language (WS-BPEL), but conveys common constructs of workflow languages. 

QoS is described in a SLA, which contains QoS information by means of guaran-
tees on parameters; the most common guarantee is that the parameter fits into a given 
domain of minimum or maximum values, e.g., maximum execution time. The basic 
model of SLA is made of service, parameters, and parameter values (definition 3). 
The classification C is important for QoS aggregation, because otherwise service 
parameters of different services cannot be identified as those to be aggregated. 

 
Definition 2 (Composite QoS). QoS(CS) is a function that determines the composite 
QoS for the services S of a composite service CS. 

 
Definition 3 (SLA). A service level agreement is a tuple SLAs = (P, V, C). P is a set 
of parameters p1, …, pj, V is a set of values v1, ..., vj for these parameters, and C is a 
function which assigns a type to each parameter. 

4 Ontology-based QoS Aggregation 

We present our ontology-based QoS aggregation method by (1) deducing the aggrega-
tion ontology from composition patterns and (2) specifying the aggregation algorithm. 

4.1 QoS Aggregation Ontology 

Rationale. The composite QoS depends on two determinants: QoS parameters and 
workflow. QoS parameters are diverse with regard to number, name, data type, and 
conceptualization and rarely adhere to any standard. Instead of contributing to their 
harmonization, we propose a classification exclusively with regard to their aggrega-
tion. This classification is built upon the following principle: If two parameters share 
the same aggregation function, then they belong to the same parameter type, regard-
less of other characteristics. Applying this principle results in five parameter types: 

 Type 1: Parameters that are always summed up along all deterministic paths of the 
workflow (e.g., cost of service execution). For non-deterministic paths, the aggre-
gation depends on whether the lower or upper bound is calculated. 
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 Type 2: Parameters for which the critical path is determined by the maximal values 
in parallel executions (e.g., duration of execution time). 

 Type 3: Parameters that denote a capacity (e.g., throughput). 
 Type 4: Parameters that denote a probability (e.g., uptime probability). 
 Type 5: Parameters for which the critical path is determined by the minimal values 

in parallel executions (e.g., key length of the service’s encryption algorithm). 

The second determinant workflow is analyzed by means of workflow patterns [14]; 
this analysis arrives at a set of composition patterns CP = {Sequence, Loop, 
XORXOR, ANDAND, ANDDISC, OROR, ORDISC}. For instance, the OROR pattern 
describes an OR-split followed by OR-join. ANDDISC and ORDISC describe AND-
split and OR-split followed by a m-out-of-n join (discriminator). The latter is used 
when an activity is triggered after m out of n branches have been completed (e.g., to 
improve response time, two databases are queried and the first result is processed, the 
second is ignored) [15]. Both determinants span a matrix of cases, with each cell giv-
ing the respective aggregation function. We define the set of all aggregation functions 
as: 

X = {xcp,p | cp ג CP  p ג Ps, xcp,p : R
n՜ Թ, n ג N +}                        (1) 

PS is the set of parameters of service s. n denotes the number of parameters to be ag-
gregated; the domain of xcp,p consists of n-tuples with QoS parameters of the constitu-
ent services. Since the aggregation function depends on (p, cp), there exist 5 • 7 = 35 
aggregation functions. These assume that the parameters share the same unit of meas-
urement (UoM). The literature provides mature methods for converting UoM [19]. In 
addition, an OWL ontology for these UoM is available [20]. 

Several pairs (p, cp) share the same aggregation function. Thus, we reduce the 
number of functions to only seven. We define generic aggregation functions x  X as 
shown in Table 1, with x1, ..., xn denoting the parameter values of the services to be 
aggregated, and k for the number of iterations in a Loop pattern. To each pair (p, cp), 
we assign the respective aggregation function. Following [14], we distinguish upper 
and lower bound (as shown in Table 2). This distinction is necessary to assess wheth-
er a particular parameter value meets the guarantee defined in the SLA (see section 3). 
Calculating expected or average parameter values is only possible, if the distribution 
of the non-deterministic control flows (i.e., XORXOR, ANDDISC, OROR, and 
ORDISC) is known [14]; however, this information is not available. 

Table 1. Generic aggregation functions. 

Aggregation 
function 

Definition Aggregation 
function 

Definition 

sumx  1 1
( ,…, )

n

sum n ii
x x x x


  powerx  ( ) k

powerx x x  

productx  1 1( ,…, ) n
product n i ix x x x   linearx  ( )linearx x kx  

maxx  1 1( ,…, ) ( ,…, )max n nx x x max x x  
identityx  ( )identityx x x

 
minx  1 1( ,…, ) = ( ,…, )min n nx x x min x x   
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Table 2. Aggregation functions for upper and lower bounds of five QoS parameter types. 

Type Bound Sequence Loop XORXOR ANDAND ANDDISC OROR ORDISC 

1 
Upper sumx

 linearx
 maxx

 sumx
 sumx

 sumx
 sumx

 

Lower sumx
 linearx

 minx
 sumx

 sumx
 minx

 minx
 

2 
Upper sumx

 linearx
 maxx

 maxx
 maxx

 maxx
 maxx

 

Lower sumx
 linearx

 minx
 maxx

 minx
 minx

 minx
 

3 
Upper minx

 identityx
 maxx

 minx
 minx

 sumx
 sumx

 

Lower minx
 identityx

 minx
 minx

 minx
 minx

 minx
 

4 
Upper productx

 powerx
 maxx

 productx
 productx

 maxx
 maxx

 

Lower productx
 powerx

 minx
 productx

 productx
 productx

 productx
 

5 
Upper minx

 identityx
 maxx

 minx
 minx

 maxx
 maxx

 

Lower minx
 identityx

 minx
 minx

 minx
 minx

 minx
 

4.2 Ontology Specification 

The ontology formally defines the conceptualization of composition patterns, parame-
ter types, aggregation functions, and their relations. We specify the ontology using 
description logics (DL), which is a family of formalisms for representing knowledge 
within a domain. DL provides high expressiveness, while it retains computational 
completeness and decidability [21]. This logic is also the basis of the Web Ontology 
Language OWL DL [22]. The methodology for creating the ontology is a rigorous 
deduction process from the content of table 1 and 2. Syntactical correctness is 
checked by implementing the ontology in OWL DL and performing standard checks 
that are built in the OWL editor used. Completeness is guaranteed by covering all the 
content of table 2. 

Figure 2 gives an overview of the concepts and roles. The ontology consists of 
three concept hierarchies for parameter types P, composition patterns CP, and aggre-
gation functions AF. The actual formula term is represented by F and the functional 
role hasF. For each parameter type concept, we add one sub-concept for commonly 
used parameters (i.e., cost, execution time, throughput, uptime probability, and en-
cryption). These parameters constitute examples only. 

The dependencies are expressed by restrictions over the two roles forP and forCP. 
Table 3 summarizes these restrictions. For instance, a sequence of Type1 parameters 
is aggregated by sum; hence the concept Sum is extended by Sumz哀forP.Type1 

益唖forCP.Sequence. Since Sum is valid for more than one pair, the concept definition 
consists of several pairs of restrictions being concatenated by a logical OR (in DL 
signified by 寡); i.e., for Type1 it is valid for Sequence, ANDAND, and ANDDISC, 
whereas for Type2 it is valid for Sequence only. 
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AF

P
forP

Type1

Type3

Type4

CP

Sequence

Loop

XORXOR

forCP

Max

Min

Power

F

hasF

ANDAND

ANDDISC

OROR

ORDISC

Type2

Type5

Product

Sum

Linear

Identity

Concept inclusion

Role

LowerBound

UpperBoundCost

Throughput

Uptime
Probability

ExecutionTime

Encryption

 

Fig. 2. QoS aggregation ontology (overview) 

Table 3. Concept definitions for aggregation functions. 

Concept Definition 

Sum 

院forP.Type1家(胤forCP.(Sequence寡ANDAND寡ANDDISC)) 

寡(院forP.Type2家胤forCP.Sequence)寡(院forP.(Type1寡Type3)家 

胤forCP.(OROR寡ORDISC)家(胤forP.UpperBound)) 

Product 
院forP.Type4家((胤forCP.(Sequence寡ANDAND寡ANDDISC)) 

寡(胤forCP.(OROR寡ORDISC))家(胤forP.LowerBound)) 

Min 

(院forP.(Type1寡Type2寡Type3寡Type5)家(胤forCP.(XORXOR寡OROR寡ORDISC)家 

(胤forP.LowerBound))寡(院forP.(Type3寡Type5)家(胤forCP.(Sequence寡ANDAND寡 

ANDDISC))寡院forP.Type4家胤forCP.XORXOR家胤forP.LowerBound)寡(院forP.Type2家 

胤forCP.ANDDISC家胤forP.LowerBound) 

Max 

(胤forCP.XORXOR家胤forP.UpperBound)寡(院forP.Type2家胤forCP.ANDAND)寡 

(院forP.Type2家胤forCP.(ANDDISC寡OROR寡ORDISC)家胤forP.UpperBound)寡 

(院forP.(Type4寡Type5) 家胤forCP.(OROR寡ORDISC) 家胤forP.UpperBound)) 

Power 院forP.Type4家胤forCP.Loop 

Linear 院forP.(Type1寡Type2)家胤forCP.Loop 

Identity 院forP.(Type3寡Type5)家胤forCP.Loop 

4.3 QoS Aggregation Algorithm 

The aggregation is performed on workflow W. Algorithm 1 (Figure 3) is executed for 
W’s start node ns. If the workflow begins with an XOR/AND/ORsplit, all branches are 
processed recursively. The aggregated nodes are collected in the set N’ (lines 01-05). 
The actual aggregation is performed based on the respective pattern using algorithm 2 
(Figure 3) and the result is stored in the join nodes (lines 06-13). These nodes are used 
by algorithm 1 to detect subsequent Sequence and Loop patterns (line 14). 
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Algorithm 1. QoS(B(n)) = aggregateQoS(n) 
inputs: DAG node n 
outputs: aggregated QoS for node n 
01 if n{ORsplit, ANDsplit, ORsplit} then 
02    N’=  //nodes to be aggregated 
03    foreach n’N :(n, n’)A : 
           n’T {XORsplit, ANDsplit, ORsplit} 
04       QoS(B(n’))=aggregateQoS(n’) 
05       N’=N’{n’} 
06    if n=XORsplit then 
07       QoS(B(n))=aggregateValues(XORXOR, N’) 
08    else if n=ANDsplit then 
09       QoS(B(n))=aggregateValues(ANDAND, N’) 
10    else // n=ORsplit 
11       QoS(B(n))=aggregateValues(OROR, N’) 
12    n’=getJoinNode(n) 
13    QoS(B(n’))=QoS(B(n)) // QoS for join node 
14   n=n’ 
15 if n’N:(n, n’)A : 
        n’T {XORsplit, ANDsplit, ORsplit} then 
16   QoS(B(n))=aggregateValues(Sequence, 
                          getSequenceNodes(n)) 
17 if n’N:(n, n’)A  n’=Loop then 
18    QoS(B(n))=aggregateValues(Loop, {n}) 
19 return QoS(B(n)) 

Algorithm 2. QoS(B(N’))=aggregateValues(cp, 
N’) 
inputs: composition pattern cpCP,  
             set of DAG nodes N’ 
outputs: aggregated QoS values of N’ 
01 foreach pP 
02    myP=createIndividual(p) 
03    myCP=createIndividual(cp) 
04    myAF=createIndivudual(AF) 
05    myAF.setProperty(forP, myP) 
06    myAF.setProperty(forCP, myCP) 
07       foreach f 嫁myAF 
08          if f 可AF then 
09              break  //end inner for loop 
10    SV(QoS(B(N’)), p) = f(SV(QoS(n1N’), p), 
           ..., SV(QoS(n|N’|N’), p)) 
11 return QoS(B(N’)) 

Fig. 3. Aggregation algorithms 

The existence of a subsequent node in DAG results in the detection of Sequence pat-
terns (line 15). However, determining the nodes that belong to a sequence is a non-
trivial process, as sequence patterns are not made explicit in the DAG. Thus, we intro-
duce the function getSequenceNodes(n) that performs this task. The function works as 
follows: For task nodes, non-nested XORsplit, ANDsplit, ORsplit, and subsequent task 
nodes are collected, whereas XOR/AND/ORsplit nodes are recursively aggregated 
using algorithm 1. For XOR/AND/ORsplit nodes, i.e., for the detection of nested Se-
quence patterns in XORXOR, ANDAND, as well as XORXOR patterns, DAG is trav-
ersed until the corresponding join node is reached for each branch. The nested pat-
terns are also recursively aggregated using algorithm 1. Loop nodes indicate multiple 
executions of the preceding node. Algorithm 1 detects these patterns and performs the 
aggregation using algorithm 2 for the preceding node (algorithm 1, lines 17-18). 

The concrete aggregation (i.e., calculation of the aggregated values) is performed 
by algorithm 2, which uses the aggregation ontology. For inferring the correct aggre-
gation function, it first creates individuals for the parameter (line 02), composition 
pattern (line 03), and aggregation function (line 04). myAF, the instance of the latter, 
belongs to the general concept AF only, since we do not know the aggregation func-
tion yet. Next, we relate these three individuals by the roles forP and forCP (lines 05-
06). Then, the knowledge base is queried for all concept memberships of myAF. DL 
reasoning returns three memberships (loop in line 07): T (the top concept to which all 
individuals belong), AF (asserted in line 4), and the specific one denoted by f. We use 
f for calculating the parameter value by considering all nodes of the input set N’ (line 
10). The QoS parameter aggregation is performed separately for each parameter (line 
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01). The function SV: V  P  V reduces a vector of values V to a subvector of pa-
rameter values described by P. Finally, we return the aggregated QoS values. 

5 Evaluation 

We demonstrate the usefulness in a scenario of service composition. We assess the 
efficiency in a set of experiments using a prototype implementation. 

5.1 Usefulness 

We consider the following scenario: A designer has defined the workflow as shown in 
Figure 1. He has selected for each task one service and the workflow has been execut-
ed several times successfully. After some time, the execution fails due to the provider 
of the service for task t2, who is unable to guarantee the agreed service level. There-
fore, this service must be replaced by a suitable service. By using a service discovery 
functionality (which is not subject of our proposal), three candidate services are 
found. These services have been described using custom parameters as shown in Ta-
ble 4. 

The problem with these services is that their QoS parameters are not aligned to a 
shared conceptualization. If a particular service is selected for t2, its parameters can-
not be aggregated with the parallel service of task t3 and all subsequent tasks in the 
workflow. A potential solution for this problem would be that the designer rejects the 
service and asks the service providers to submit a revised service description, which 
conforms to the standard syntax of the designer; for example, replacing “Price” by 
“Cost”. The disadvantage of this approach is that the service composition process is 
broken and the designer must wait for the new service description to arrive. 

Table 4. Example service offers. 

Service provider Service ID Parameter Value 
SP1 S1 Cost 0.85 

ExecutionTime 500 
SP2 S2 Price 0.75 

ResponseTime 600 
S3 Price 0.70 

ResponseTime 700 

 
By using the proposed aggregation method, there are two options for solving the 
problem of heterogeneous QoS parameters. First, the designer could take the current 
service descriptions and add a semantic annotation to each parameter of service S1 
through S3. Figure 4 illustrates such an annotation by showing the SLA for S2 speci-
fied in the WS-Agreement format. The original SLA offer is then amended by a refer-
ence to a concept from the ontology as follows: the attribute sawsdl:modelReference 
contains a mapping of the literal ResponseTime to the concept ExecutionTime of the 
ontology which is identified by the namespace qosns). Having made this annotation, 
the service parameters are aligned to the conceptualization that is also used in the 
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description of the other services in the workflow, in particular the services that are 
bound to task t3. Therefore, their QoS parameters can be aggregated and thus the 
stopped process of service composition can be continued. In this sense, the ontology-
based aggregation method assists the designer in maintaining workflows and choosing 
substitutes for failed services. The concrete decision of what service to select, howev-
er, depends on the designer’s preferences and is not affected by the aggregation meth-
od. 

 
<wsag:AgreementOffer ...> 

  ... 

  <wsag:ServiceDescriptionTerm ... 

     wsag:ServiceName="S2"> 

  ... 

  <wsla:SLAParameter name="ResponseTime" 

     type="wsla:float" unit="ms"> 

  ... 

  </wsag:ServiceDescriptionTerm> 

  ... 

</wsag:AgreementOffer> 

<wsag:AgreementOffer ...> 

  ... 

  <wsag:ServiceDescriptionTerm ... 

    wsag:ServiceName="S2"> 

  ... 

  <wsla:SLAParameter name="ResponseTime" 

    type="wsla:float" unit="ms" 

    sawsdl:modelReference=" 

       &qosns;ExecutionTime"> 

    ... 

  </wsag:ServiceDescriptionTerm> 

 ... 

</wsag:AgreementOffer> 

Fig. 4. Example SLA offer by the service provider (left) and with annotation (right) 

The second option assumes an ontological commitment of the providers of the ser-
vices S1 through S3 to the ontology. In this case, each provider still uses his/her own 
syntax for service parameters, but provides a semantic annotation for each parameter 
as part of the service description. These annotations are the same as the ones shown in 
Figure 4. The difference is that annotations are made by the service provider. The 
annotation process is supported by virtually any XML tool, since the SA-SLA specifi-
cation provides a standard-conform XML schema for SLA specifications [10]. 

The advantage of this option is that the process of service composition can be con-
tinued immediately by aggregating the QoS parameters under consideration for task t3 
and the entire workflow. These aggregates are handed over to a service selection 
functionality, which selects the best service from a set of services; the selection is 
either performed by the designer or a component that automates this process. Particu-
lar methods for service selection are beyond the scope of our proposal. Existing ser-
vice selection methods [23] can be combined with our proposal, which complements 
the selection problem by resolving the heterogeneity of QoS parameters. 

5.2 Efficiency 

Experimental Setup. We have implemented the proposed aggregation method in a 
Java prototype application. Workflows are stored in WS-BPEL and SLAs in SA-SLA 
format. SA-SLA constitutes a combination of WSLA [24] and WS-Agreement for the 
SLA schema and SAWSDL [25] for semantic annotations. Experiments are per-
formed on Scientific Linux 5.5 on a machine with two Intel Xeon E5630 CPUs (4C, 
2.53 GHz) and 16 GB RAM. The prototype is a single-threaded application though. 

We study how the proposed aggregation method works for different types of com-
posite services with regard to their complexity and coverage. Complexity is measured 
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by the following metrics: number of tasks (|T|), number of gateways (|G|), number of 
arcs (|A|), and number of parameters (|P|) in QoS(CS). We consider three workflows 
W1, W2, W3 with 4, 8, and 12 tasks and bind one service to each task. Fig. 5 shows 
these workflows as BPMN processes. In BPMN, loop is not represented by a gateway 
node but a modification of the task node. Therefore, the number of gateways in CS is 
3, 6, and 10, with number of arcs being 10, 19, and 31 respectively. 

In the experiments, we instantiate each workflow multiple times for different 
SLAs. We describe each service by five parameters. The reason for this choice is to 
have full coverage of the ontology’s concepts for parameters, i.e., type1 to type5. 
Coverage is thus measured by the percentage of the ontology’s concepts that the QoS 
aggregation experiments use. Since we are interested in the effectiveness of the ap-
proach, each workflow covers all parameter concepts (5) and composition pattern 
concepts for Sequence, Loop, XORXOR, and ANDAND. This coverage of CPs is high-
er than in [11] and [16], and equal to [18]. 

The experiments study two variations. The first variation is concerned with the 
workflow’s complexity. We will study the influence of |T| on the time required for 
QoS aggregation. By setting the range of this variable to {4, 8, 12}, the simulation 
yields three data sets that provide indications of the system’s scalability. The second 
variation is concerned with the reasoner that is used, since ontology-based systems 
add computational effort for asserting and retrieving facts. We use the two reference 
Java ontology frameworks Jena 2.6.4 and OWL API 3.2.2 and three reasoners in the 
following setup: Jena with OWLMicroReasoner, Jena with Pellet 2.2.2, OWL API 
with HermiT 1.3.3, OWL API with Pellet 2.2.2, OWL API with FaCT++ 1.5.2. 
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Fig. 5. BPMN workflows W1 (left), W2 (middle) and W3 (right) 

We compare the ontology-based method with conventional aggregation, i.e., system 
with no reasoner, but explicit aggregation functions. This comparison is possible, 
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because the workflows and SLAs are known prior to execution and have been anno-
tated with aggregation functions exclusively for conventional aggregation. 

These two variations span a set of 3 • 6 = 18 experiments. In each experiment, we 
apply the aggregation method to five different SLAs per service and compute the QoS 
50 times (thus 250 runs per experiment). We arrive at 18 • 5 • 50 = 4,500 runs. The 
SLAs are generated prior to executing the experiments and values are assigned to 
each parameter (uniform distribution, interval [1,100]). The concrete values do not 
affect the method’s performance, but are used to check the correctness of the compo-
site QoS (effectiveness of the method). 

 
Results. With regard to varying the number of tasks, Figure 6 shows the mean execu-
tion time for all 18 experiments. Each of the six configurations suggests a linear com-
putation time. The figure also indicates that the baseline implementation of the aggre-
gation method without reasoning is valid due to its linear complexity. 

First, we assess the distribution of execution time in each experiment by using the 
following distribution properties: mean, median, minimal value (Min), maximal value 
(Max), standard deviation (STD), and coefficient of variation (CV). Table 5 shows 
these measures for the largest workflow W3. We observe the following: The data 
points tend to be very close to the mean (CV between 1.7 and 5.2%). Whereas Min 
and Max span a relatively wide interval, very few data points are close to Min and 
Max. These findings hold for all reasoner setups. 
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Fig. 6. Mean execution time for six reasoner setups 

Second, we assess the efficiency of each setup by comparing their mean execution 
time to the fastest setup (no reasoner). Table 6 shows the relative increase caused by 
using the ontology: The increase ranges from [0.097; 0.101] for OWL API FaCT++ to 
[1.282; 1.1309] for Jena OWLMicroReasoner. These results lead to two important 
findings: On one hand, all OWL API setups outperform the Jena setups and require 
between 9.7% and 15.9% additional time compared to no reasoner. This increase is 
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rather small for an ontology-based method and could be attributed to efficient 
reasoner systems. On the other hand, the relative additional time does not increase 
with the number of workflow tasks (as shown by the series W1, W2, and W3). This 
finding is encouraging for ontology-based QoS aggregation and suggests that the 
approach is also efficient for workflows of higher complexity. 

Table 5. Distribution properties of execution time in ms for workflow W3. 

Reasoner setup Mean Median Min Max STD 
No reasoner 4,029 4,003 3,932 6,667 178.91 
Jena Micro 9,193 9,157 9,013 13,457 282.81 
Jena Pellet 6,363 6,325 6,183 9,062 212.64 
OWL API HermiT 4,514 4,486 4,326 6,251 158.97 
OWL API Pellet 4,608 4,580 4,508 5,212 87.25 
OWL API FaCT++ 4,340 4,307 4,231 4,745 85.82 

Table 6. Relative increase of mean execution time due to OWL reasoning. 

Reasoner setup W1 W2 W3 
Jena Micro 130.9% 128.8% 128.2% 
Jena Pellet 60.5% 60.1% 59.5% 
OWL API HermiT 13.4% 13.4% 13.2% 
OWL API Pellet 15.9% 15.7% 15.5% 
OWL API FaCT++ 10.1% 9.7% 9.9% 

6 Conclusion 

We have presented a QoS aggregation ontology and an aggregation method that uses 
this ontology for composite Web services. We have shown the usefulness of our pro-
posal in a use case scenario of service failure that requires to repair an existing com-
posite service by substituting the failed service. In particular, the approach suggests 
that designers of composite services have more flexibility in choosing services that 
have not been aligned to standard QoS parameters. In this sense, the developed arti-
fact helps in balancing the trade-off between standardization and flexibility, which 
arises from resolving semantic heterogeneity. The assessment of the method’s effi-
ciency using the prototype implementation suggests that adding an ontology into the 
aggregation process increases the computational effort by about 10% for the fastest 
reasoner setup (OWL API FaCT++). We argue that this increase is compensated by 
the higher flexibility available for both the service provider and the service consumer. 

The results of this work are not limited to a specific domain, since QoS aggrega-
tion is a problem in any domain with composite services. The proposed ontology 
enables the providers to expose their capabilities to potential user, who request a par-
ticular service in the course of his/her service composition. Unlike current QoS ontol-
ogies, our approach does not rely on a comprehensive semantic description of Web 
services nor requires commitment to a Web service ontology. Adding annotations to 
existing SLAs does not affect conformance to the WS-Agreement specification. 

The current QoS aggregation ontology contains one example parameter for each 
parameter type. It is important to note that these parameters represent examples only. 



 

1356 
 
 
 

Using the ontology would typically start with linking application- or domain-specific 
parameters to one parameter type (by making the respective parameter a sub-concept 
of one of the type-x concepts). In our current work, we could have added many more 
parameters, however, the only added value is to help the user find the right parameter 
type. Such an extension of the ontology does not require any modification to the con-
cepts P, CP, and AF including all role restrictions. The ontology, however, is limited 
to its five parameter types. If a new parameter type is needed, then a new sub-concept 
of P must be defined. In addition, the definitions of all AF sub-concepts must be ex-
tended with additional role restrictions. 

Another limitation of our approach is that it requires all service parameters to be 
annotated. Even if one annotation is missing or incorrect, the entire QoS aggregation 
process will fail. This limitation is important in cross-organizational workflows incor-
porating autonomous service providers. A promising solution to circumvent this 
drawback is the integration of fault-tolerant or probabilistic [17] QoS aggregation 
methods into our approach. 
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