
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2011 Wirtschaftsinformatik

2011

Similarity Determination in Activity Sequences – A
Supportive Framework
Jörg Schmidl
Technische Universität München, schmidl@in.tum.de

Holger Wittges
Technische Universität München, wittges@in.tum.de

Helmut Krcmar
Technische Universität München, krcmar@in.tum.de

Follow this and additional works at: http://aisel.aisnet.org/wi2011

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2011 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Schmidl, Jörg; Wittges, Holger; and Krcmar, Helmut, "Similarity Determination in Activity Sequences – A Supportive Framework"
(2011). Wirtschaftsinformatik Proceedings 2011. 35.
http://aisel.aisnet.org/wi2011/35

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2011%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011?utm_source=aisel.aisnet.org%2Fwi2011%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2011%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011?utm_source=aisel.aisnet.org%2Fwi2011%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011/35?utm_source=aisel.aisnet.org%2Fwi2011%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Similarity Determination in Activity Sequences –

A Supportive Framework

Jörg Schmidl
Technische Universität München

Boltzmannstraße 3
85748 Garching, Germany

+49 89 322 99 83 10

schmidl@in.tum.de

Holger Wittges
Technische Universität München

Boltzmannstraße 3
85748 Garching, Germany

+49 89 322 99 83 13

wittges@in.tum.de

Helmut Krcmar
Technische Universität München

Boltzmannstraße 3
85748 Garching, Germany

+49 89 289 19 530

krcmar@in.tum.de

ABSTRACT

An increasing number of information systems support their users

by helping them in reusing existing knowledge and experience.

Often this is done by retrieving similar instances like similar

documents, similar process executions or similar persons. While

the recommendations use similarity as central concept, the

selection of a suitable measure is often done by intuition. This

paper introduces a framework that supports the application

engineer in selecting and configuring a suitable similarity

measure. The requirements of the intended framework are

gathered before the architectural implications are detailed. The

resulting framework is applied in a case study in which project

performance prediction is to be supported by the similarity of the

projects’ activity sequences. The results show the framework’s

utility by allowing a comparably simple configuration to yield a

considerable support in selecting and configuring a suitable

similarity measure.

Keywords

Similarity Measure, Activity Sequence, Similarity Framework,

Business Processes

1. INTRODUCTION
Today, support by Information Systems (IS) is omnipresent in

organizations. In particular the trend of increasing knowledge

intensity of everyday tasks leads to the increased use of IS to

support the knowledge worker [7]. IS typically log users’

activities for administrative reasons e.g. authorization control or

for analytical purposes e.g. web server logs to determine usage

behavior. Activity logs are also increasingly used by applications

for the support of the end user. These applications provide

recommendations based on the activity logs. For example, they

deliver similar items to the user depending on his previous

searches for other items [19]. Other software recommends the

next steps in a process, based on what has been done so far and

what others have done in a similar situation [23; 25; 21]. Yet

other support systems recommend who to contact in a social

network based on the contextual overlap of the two [16].

The common theme among these support systems is their

reliance on the concept of similarity to support the user. They

recommend similar documents, similar process steps or similar

persons, contingent on the current context, which needs to be

modeled in an appropriate way.

While all these applications build on the concept of similarity,

the interpretation of why two or more objects are to be

considered similar depends on the application and its use cases

for which the similarity-based application is employed.

The challenge when using similarity-based applications lies in

determining a suitable notion of similarity. This is a complex

task. There are many approaches stemming from diverse

disciplines. They build upon definitions of similarity that are

specific to those disciplines. In addition, most similarity

measures use a number of parameters to determine how the

similarity between two objects is determined. Finding a suitable

configuration of a similarity measure is, therefore, a challenge.

Responding to this challenge, this paper introduces a framework

that supports the developer of similarity-based applications when

faced with the selection and configuration of suitable similarity

measures. The framework allows to configure different similarity

measures and in a next step to evaluate their appropriateness for

the target application. Features of various applications that use

similarity determination are taken into account to determine

requirements for the framework. The implementation based on

these requirements is detailed subsequently. In a case study, we

demonstrate the utility of the framework in creating a similarity-

based application.

The paper is organized as follows. Section 2 gives an overview of

related work. Section 3 derives requirements for a framework to

support the selection and configuration of similarity measures for

activity sequences. Section 4 presents the paper’s core

contribution, outlining the framework that meets the

requirements as outlined in section 3. Section 5 presents a case

study that shows the utility of the framework in a real world

setting. The paper concludes with a discussion and recommends

further research.

10
th
 International Conference on Wirtschaftsinformatik,

16
th

- 18
th
 February 2011, Zurich, Switzerland

797

2. RELATED WORK
This contribution introduces a generic framework that supports

the application engineer in selecting and configuring a suitable

similarity measure for activity sequences. Its benefits are

twofold. Practitioners can use the framework with minimal effort

to find suitable similarity measures for their applications. On the

other hand it provides a basis for researchers investigating

properties of similarity measures for activity sequences.

A similar approach was taken in the process mining discipline

where the generic ProM framework supports the development

and application of process mining algorithms [6; 30]. The

acceptance of this generic framework inspired us to create a

similar framework to support further research of similarity

measures for activity sequences and their application. In analogy

to the framework described in this contribution, ProM acts as

incubator for new algorithms and concepts in process mining.

Additionally, ProM also operates on activity sequences.

However, ProM’s central concern is the support of process

mining, i.e. the recovery of process models from event logs.

Although it has incorporated many additional concepts and

algorithms that extend its use to more than only process recovery,

the determination of a suitable similarity measure is not in the

scope of process mining. This is why our framework makes use

of ProM’s facilities wherever appropriate for example when

accessing data sources or creating process models if this is

necessary for the similarity measure. However, our framework’s

core functions are too different to integrate them into the existing

ProM framework as a plug-in

Some of ProM’s plug-ins make use of the concept of similarity

for example to predict execution times of process instances based

on previously executed process instances [28]. This is similar to

what we discuss in the case study in chapter 5. However, while

our case study aims at finding a well-suited similarity measure

underlining the utility of our framework, in [28] the authors only

use one kind of similarity measure and describe how to adapt its

parameters best.

The challenge to find a suitable similarity measure has also been

addressed in another context. In [10] the authors investigated

how similar users or similar content can be determined in

different social media to increase its usage. In all their

experiments the authors used the same similarity measure, but

used nine different sources for similarity information

investigating their effects on six different social media

applications. The results showed that the source of similarity

information had significant influence on the perceived quality of

the system’s suggestions and also that the influence varies with

respect to the different applications. In this paper we also stress

that similarity measures must be tailored to the application that

makes use of them. Additionally, in our framework we also

acknowledge the great influence of the initial data and in what

format it is collected. However, while in [10] quantifying the

influence of different data sources for a concrete application was

the goal, we focus on creating a generic framework that could

support tasks like the one in [10]. Similarly, in [24] the authors

investigate the influence of different similarity measures on

recommendations in an online social network. They applied six

different similarity measures to recommend potentially

interesting sub-communities to their users and investigate the

influence of the measure on the quality of the recommendation.

In contrast to the contribution at hand, the authors in [24],

however, focus on one use case and not on a generic support tool.

Also they only use similarity measures that operate on sets, while

our framework allows the usage of other similarity features as

well.

3. REQUIREMENTS ANALYSIS FOR THE

FRAMEWORK
Here, the requirements for a framework to support the selection

and configuration of measures for similarity-based applications

are documented. Requirements engineering can be done in many

different ways [13]. Sources of requirements can be for example

domain knowledge, existing systems, users, standards or

regulations. In the following we use existing frameworks, source

systems, data format standards and applications that use

similarity measures as source for requirements elicitation. Each

requirement is annotated with a number for reference in the

outline of the framework’s architecture.

A similarity measure is appropriate if it supports the goals of the

target application. Therefore the determination of an appropriate

similarity measure consists of two phases: firstly, selecting and

configuring a similarity measure and secondly, checking the

fitness for the target application. However a prerequisite is

having data that is suitable to act as source for similarity

information. This step is particularly important, because the

selection itself greatly influences the result of the similarity

determination [10]. Therefore, a generic framework must have

the three components as shown in Figure 1. In the following each

identified requirement references its corresponding component as

indicated in this figure.

Figure 1 : Steps for determining suitable similarity measure

The requirements for the first component are elicited by

inspecting different process aware information systems (PAIS)

[8], such as ERP systems, project management systems and

personnel management systems, the format of their data and how

the log information is interpreted by the application and by

persons.

Whenever it is desirable for an application to utilize the

similarity of activity sequences, the first step is to retrieve those

activity sequences from source application logs. But many

applications may serve as sources for information and their data

formats also take many forms. Some applications, for example

ERP systems, store log information in databases while others

such as web servers use files for this purpose, which are accessed

through differently. A requirement for the framework, therefore,

is:

The framework should support both – data stored in

files and in databases (R.1a)

In addition, the format of the data may vary. While data in a

database is structured by definition, file-based logs can be stored

798

in comma separated value (CSV) files, using plain text with or

without providing header information about the meaning of each

section in a line, which is a still quite common solution. Other

file-based logs are stored using some XML dialect with or

without providing a schema definition along with it, especially

when interoperability is important. Yet other IS use a log

structure that is not plain text, is proprietary and needs parts of

the IS logic to decode the log. Since all of these data formats are

found in applications that can act as data source, the framework

should fulfill the following requirement:

The framework should support the retrieval of data

from sources that are structured, semi-structured or use

structures in a proprietary format (R 1b).

Additionally, the granularity of the log information may differ.

Some applications log every user interaction, such as web

servers, while others only log certain events including, for

example, the change of a status indicator in a project

management system. The same is true for context information

that goes along with the log entry, which also can differ

significantly in its extent. For example, while browsing in an

intranet, much context information of an user is typically at hand,

while anonymous access to an internet site offers less context

information. Therefore, another requirement for the framework is

as follows:

The framework should be flexible enough to handle

both rich data sources and to extract or amend less rich

data sources (R.1c).

IS also differ in their pervasiveness. Some IS log user interaction

in the background with little or no user involvement, such as web

browsers while they browse through a website, while other IS

only write into their logs when explicitly requested by the user,

such as for example accounting systems. This influences the

granularity and the possibilities for interpreting the log, because

in the first case we often need to interpret implicit behavior

while in the second case the intention of an user is more explicit

and related more strongly to the log entry. Depending on the

knowledge about the process that is supported by the IS, it is

possible to amend log data with context information. This creates

another requirement for the framework:

The framework needs to be agnostic to how the data is

captured from a technical point of view, but needs to

provide means for amending the data with implicit

information (R.1d).

Also, the kinds of stored data differ. Some applications store an

event, or activity respectively, in their logs, i.e. what has

happened. Others store data that reflects the situation after an

activity has been performed, i.e. the result of what has happened.

A web browser for example might store the event “page

index.html has been requested”, while a project management

system might store the status “project budget is (now) 100k €”,

but not the event itself that increased the budget to this amount.

Another requirement for the framework, therefore, is as follows:

The framework should have the capability to transform

log information containing status snapshots into log

information containing status changes (R.1e).

Independent from the characteristics of the data source itself,

more than one application log may contain information for an

activity sequences, i.e. the information contained in one

application log can augment information from another log. For

example, a project management system could contain the

execution history of a project, while in a separate accounting

system, information about consumed budget is kept. This is why

the framework should fulfill another requirement:

The framework should allow the flexible and iterative

enrichment of log data from multiple sources (R.1f).

Being able to import data from arbitrary data sources and being

able to transform them in a suitable format forms the basis for

the second component of the framework in Figure 1. It allows to

apply similarity measures to the input data. The requirements for

the second component were elicited by reviewing the properties

of thirteen similarity measures found in literature, extracting

their common features and deriving requirements from their

common features. The measures were used in a wide range of

disciplines such as protein function prediction in biology,

comparison of Web Service definitions in computer science and

overlap calculation in graph theory, to name a few application

scenarios.

Before discussing different kinds of similarity measures, it is

necessary to take the goal of their use into account. Applications

that make use of the similarity of activity sequences can have

different target functions. For example, in project controlling it is

often relevant to assess the likeliness of success. This could be

done by determining similar projects that have been completed

already, taking their success as an indicator for the currently

running project. In that case, the goal is to make a good

estimation about project success. Another example with a

different target function can be found in product recommendation

engines where users are presented with similar products that

overlap with their peer’s preferences. In this case, the goal is to

leverage the cross-selling potential. Different target functions

have different definitions of when a similarity measure works

well on a set of activity sequences and when it does not. It is

often appropriate to adapt a similarity measure to suit its

intended support for a goal, using supervised learning techniques

[33]. The framework’s similarity measure component should,

therefore, fulfill the following requirement:

The framework should have the capability to label a

training set of activity sequences with an indicator of

its utility in relation to the target application’s goal

(R.2a).

There are a number of different ways to determine the similarity

between two entities. For this reason the framework needs to be

flexible enough to support each different way. In a first instance,

an entity can be described by certain flat attributes, for example a

project is described by the number of project members and the

total budget. In that case, the two entities can be compared

according to their attribute values, where the comparison can be

done with different algorithms depending on for example the

data types or data ranges. This is why the framework should

fulfill the following requirement:

799

The framework should be able to support similarity

measures that operate on input entities that are

described by attribute-value pairs (R 2b).

In a second instance, an entity can have structured components,

for example a project is described by the activities that have been

performed during its execution. In that case, the two entities can

be compared according to the overlap of the same constituting

parts, i.e. the same activities. The framework should, therefore,

fulfill another requirement:

The framework should be able to support similarity

measures that operate on structured input entities by

for example comparing the overlap of components

(R.2c).

Additionally, the constituting parts can themselves have

attributes, for example each activity in a project can have a

specific person that is responsible. Therefore, the comparison of

entities can be based on constituting components, acknowledging

the difference in attributes as well. Essentially, this is an

extension of the requirement described before, where the

constituting components, were treated as flat structures and were

compared for equality. The framework should fulfill the derived

requirement:

The framework should be able to support similarity

measures that operate on structured input entities

where each structured component is (additionally)

described by attribute-value pairs (R.2d).

Finally, it is possible to take the relationship between the

constituting parts into account. The relationship represents the

temporal or logical order of the constituting parts and may also

reflect interleaving of those activities. Addressing this fact, the

framework should fulfill the following requirement:

The framework should be able to support similarity

measures that operate on the structure of its entities,

i.e. that use structural properties of the input data for

similarity determination (R2.e).

Additionally, many similarity measures use one or more

parameters to configure the computation of similarity. The

framework must, therefore, fulfill an additional requirement:

The framework should offer the capacity to process

parameters for each similarity measure that determine

its behavior (R.2f).

Each similarity measure typically focuses on one or at least a

small set of properties of the input object. However, it is possible

that the desired notion of similarity is best reflected by a

combination of different properties. In this case, the

simultaneous application of different similarity measures is

necessary. This poses another requirement to the framework:

The framework should allow for a compounded

calculation of similarity using different measures

(R.2g).

As indicated above, the structural properties of activity

sequences can be used for the similarity determination. Yet, each

activity sequence itself has a linear structure by definition. To

find out about the dependencies between activities, a model of

possible sequences indicating their relationship is required. In

many cases, explicit models of activity sequences are not

available because they are too expensive to create or because the

activity sequences are too flexible to render a model useful.

Nevertheless, if the usage of structural properties is deemed

necessary, there needs to be a way to at least recover an implicit

model for the activity sequences. It would have to be

reconstructed from the IS logs and would then indicate the

process “as it is lived”. In terms of similarity determination, it

can be used to deduce structural properties of an otherwise linear

activity sequence. The framework should fulfill another

requirement:

The framework should provide a possibility to create a

(process) model using the activity sequences that are

available (R.2h).

We have reasoned above, that similarity measures only have a

purpose with respect to their target application. Therefore, our

framework should facilitate the selection and configuration of an

appropriate measure. To find out about the utility of the selected

measure and its configuration, the results have to be seen in the

light of the application that they will be used for. The framework

needs to be integrated into the target implementation or needs to

be integrated into a suitable representation thereof to show its

utility. Especially if supervised learning techniques are used for

the selection and configuration of similarity measures, the

feedback of the application about how well-suited the similarity

measure’s results are for the intended use is pivotal. Therefore,

the framework needs to fulfill a requirement that intentionally

covers a broad spectrum of interpretations to encompass arbitrary

similarity-based applications:

The framework should support the integration of

similarity-based applications or suitable

representations thereof that consume the results of the

similarity determination and give the framework

feedback about the quality of the results (R.3).

4. PROPOSED ARCHITECTURE
The requirements discussed above informed the design of the

framework. The logical structuring in three different components

(see Figure 1) proved useful for the elicitation of requirements.

For the implementation of the necessary functionality it turned

out that the second component can be split into three modules:

one that supports classifications for supervised learning, one that

can mine a process model from input logs for the support of

structural similarity measures and one for the application of

similarity measures itself. Therefore the architecture features a

modular design with five main modules (see Figure 2). The

framework handles the flow of action by instantiating one or

more plug-ins for each module and passing on the control

subsequently. However, it is not mandatory to use all modules,

i.e. classification of activity sequences is only necessary when

supervised learning should be supported and the creation of an

activity sequences’ model is only necessary if structural

properties should be used in the similarity determination.

800

Figure 2 : The framework's modules

The framework was implemented using Java, because it is a very

common programming language that many application engineers

can work with. Wherever appropriate, existing applications and

frameworks were integrated into the framework directly. This is

true for parts of the import module that builds upon the

ProMImport application and the process mining module ProM,

that relieved us from the effort of implementing process mining

algorithms. If the functionality of the incorporated applications

did not entirely suit our needs, we extended them to meet our set

of requirements. In this section, the framework’s five modules

are detailed. The reasons for the design choices in each module

are explained by reference to the requirements in chapter 3.

4.1 Importing Data into the Framework
The requirements analysis showed that activity sequences are

frequently stored in different locations, i.e. databases or files,

and have different formats. Therefore, importing data into the

framework for similarity determination cannot be done with one

single import routine but rather must be done by offering an

interface that supports as much flexibility as possible. A plug-in

that implements this interface then offers the application-specific

ability to extract activity sequences.

Extracting information from logs is a common challenge. An

existing tool, the ProMImport Framework [9], served as a good

basis for the import module, although its extraction mechanisms

primarily focus on the support of process mining. For its use in

the framework, ProMImport had to be extended. The ability to

store the extracted data before displaying it and the ability to

connect the output of one import plug-in to the next import plug-

in were added. In this way, requirements R.1a and R.1b are

addressed by delegating the specifics of the data extraction to

plug-ins while offering a generic interface.

The requirements analysis also shows that relevant information

for activity sequences could be spread across different logs that

logically complement the information contained in each. The

ProMImport Framework had no support for aggregating

information found in different kinds of sources for one combined

import result. Therefore, the concept of chaining importer plug-

ins has been implemented into the framework. While

ProMImport would display the results of the import directly, the

framework’s import module can deliver the results to another

importer plug-in to augment the results, yielding, in the end, one

integrated import result. This fulfills requirement R.1f, which

states that information could be spread across different sources.

Offering the ability to connect arbitrary data sources also

requires that a suitable data format is defined within the

framework that can be used for intermediate storage. As the

requirement analysis indicated, logs can have varying

expressiveness concerning the granularity of logged activities and

concerning each activity’s context information. The internal data

format must be designed in such a way that the transformation of

source data into this internal format is without loss of

expressiveness or limits the loss to a minimum. Data formats that

are crafted like this can be found in the WFMC’s specifications

of the Common Workflow Audit Data (CWAD) [32] and in the

MXML format [29]. Both data formats are abstract enough to

represent the contents of different application logs. Being

tailored to the needs of a workflow system, the CWAD format

has a considerable number of attributes that only apply in a

workflow context. The MXML format on the other hand,

abstracts from workflows and therefore allows a more

straightforward transformation of arbitrary data. Therefore,

MXML is adopted as the internal data format for the framework

because it is flexible enough to handle logs with varying

granularity and is abstract enough to handle logs with varying

contextual data. This fulfills requirements R.1c and R.1d, which

state that the granularity of data can vary.

The chosen data format conceptually stores sequences of events,

which is also true for the CWAD format and many others. On the

other hand the results of the requirements analysis pointed out

that there are also logs that do not store activities as events but

rather by storing the results of the activities. Consequently, there

needs to be a mechanism to transform logs containing data states

into event sequences. While this problem has been addressed in

theoretical computer sciences [15], there is no actionable

implication for an implementation as would be necessary for the

framework. For that reason, the framework incorporates a

configurable, XML-based application for this purpose. After one-

time configuration, it automatically selects defined portions of

the source data that contains sequences of states and transforms

them into event sequences during data import. The events are

created using activity names that are configured before importing

the data. This fulfills requirement R.1e. In addition, for each

activity attributes can be assigned and their values can be

calculated using basic arithmetic and string operations. This

fulfills requirement R.1f.

4.2 Classifying Activity Sequences
The requirement analysis specifies that a label must be assigned

indicating the utility with respect to the desired target, if

supervised learning is to be used. In principle, two different ways

to allow for labeling are possible: automated or manual. In one

case, activity sequences are labeled according to one or more

rules that are created by a domain specialist. For example, the

result of project executions as good, mediocre or bad could be

automatically determined using the budget-to-spending ratio of

each project as basis for a rule. However, this automated

approach has a significant disadvantage. If there was a rule

available that perfectly labels this type of activity sequences,

then this rule is at the same time a perfectly suitable similarity

measure and there would not be any need for using the

framework in the first place. However, the more complex activity

sequences are, the less likely it is that a person knows according

to which measures an activity sequence should be evaluated.

This person nevertheless may often be able to indicate the result

tacitly without knowing how to derive this judgment formally.

Therefore, the framework uses the other choice, namely the

manual labeling approach. In this case, a person classifies a

training set of the activity sequences and stores the results in a

801

csv file. This file is then used as an input source for the

framework to automatically classify the training set of activity

sequence. As outlined in the requirements analysis, labeling is

not always necessary and is implemented as an optional step in

the framework. Having the labeling module fulfills requirement

R.2a.

4.3 Generating a Model of the Activity

Sequences
The requirements analysis shows that many applications do not

have an explicit model for the execution of activity sequences,

but its users may follow implicit models that for example stem

from corporate rules or from the technically possible interaction

via a graphical user interface. If the implicit model can be

explicated in a possibly only approximated model, it can be used

to extract structural properties of an otherwise linear activity

sequence. Inductively creating a model from instances contained

in a log is the main concern of the process mining discipline [1;

3]. There are many algorithms available to mine a model from

instances. The application of these algorithms is facilitated by

the ProM framework [6; 30] that has many of them integrated as

plug-ins already. However, ProM returns its mined models

typically as event-process-chains (EPC) or as petri-nets [18] that

perfectly serve the purpose of modeling the execution semantics.

In the context of determining similarity, the execution semantics

do not play a large role though, which allows for the

simplification of petri-nets and EPCs into simple graphs that only

consist of edges and vertices. This also creates the ability to use

similarity measures that work with simple graphs.

The transformation is done as follows (see Figure 3). Whenever

the ProM framework returns a petri-net1, the framework needs to

transform it by creating one node for each of the petri-net’s

transitions (blocks in the figure). Those nodes are connected to

one another by inspecting which transitions are connected in the

petri-net, where the term connected is interpreted as follows.

Two transitions are connected if there is exactly one place

(circles in the figure) in between them. If the model has explicit

routing nodes (not shown in the figure; would be XOR, OR or

AND, with the obvious semantics), then two transitions are

connected if there is a sequence of zero or more routing nodes

and one place in between them, but no other transition.

Additionally the resulting graph is extended with explicit Start

and End nodes that are implicit in petri-nets. Using this

definition and this way of transforming the petri-net, it does not

matter if one uses explicit routing nodes or implicit routing by

means of petri-net firing semantics. Both will be transformed

into the same graph. An example of implicit routing can be found

in the petri-net on the left part of Figure 3. In that example Task

3 must always be executed in accordance to petri-net firing

semantics.

1 In the context of process mining and also similarity

determination EPCs can be transformed into petri-nets without

loss of relevant information

Figure 3 : Transformation of a Petri-net to a graph

The transformation is adequate. The argument is as follows.

Since essentially places are removed from the petri-net, along

with the routing nodes, if there are any, only the connection

between transitions are left that are now considered nodes. It is,

however, not obvious anymore if those connections are to

represent exclusive execution or parallel execution. It is no

longer known which transitions are prerequisites of certain nodes

and, therefore, explicit information about the execution

semantics is lost. However, this is not a problem for the intended

use. The transformed model is solely used to identify the path

that was taken by a process instance so far. Therefore, there is no

need to know which connections previously modeled exclusive or

parallel execution. The connections that are used by the instance

were obviously parallel, the ones that have not been used but

could have been according to the graph are of no interest, but

obviously have represented OR/XOR split alternatives. It is also

not a problem that there is no information about which nodes are

prerequisites of another node, since the further proceeding of the

process instance is of no interest. Utilizing the existing ProM

framework but adapting its output fulfills requirement R.2h.

4.4 Determining the Similarity between

Activity Sequences
The requirements analysis indicates that the framework must

offer an interface for the creation of its own similarity measures.

Nevertheless, it is desirable to have a reasonable number of

algorithms available in the framework to make it useful from the

start. As the algorithms differ with respect to the parts of the

activity sequence they use for the computation, the framework

should offer at least one algorithm for each kind of similarity

measure. This guarantees that other similarity measures that

operate on the same kind of input data can be integrated into the

framework. The framework has 13 similarity measures integrated

in its initial phase, that can work with the general properties

(requirement R.2b) of an activity sequence, the overlap of

activities (requirement R.2c), taking into account the activities

attributes if necessary (requirement R.2d) and also taking into

account structural properties (requirement R.2e).

Within the framework, the main task of each similarity measure

is to determine a similarity matrix, i.e. it must create a matrix

with as many rows and columns as there are activity sequences

with each entry containing the degree of similarity between the

respective combinations of activity sequences. This very general

representation of a similarity measure’s result allows

applications to extract the relevant information flexibly. This

fulfills requirement 5 which states that applications building

upon the similarity of activity sequences can have diverse needs

with respect to the similarity measure. A downside is, that this

way of storing a similarity measure’s result is not the most

802

efficient way considering computational cost and space

requirements.

The requirements analysis also reveals that similarity measures

frequently need configuration to a certain degree. The framework

provides the means to properly configure a similarity measure.

Each similarity measure plug-in is requested to publish its

necessary parameters to the GUI component and can then process

them as needed. This fulfills requirement R.2f.

Further, the requirement analysis shows that cases must be

supported in which one similarity measure is not enough. A

combined result of different similarity measures might fit the

application’s needs better than a single measure could. The

framework supports this kind of configuration. Internally, each

measure computes one similarity matrix. The matrices are then

combined to yield one similarity matrix. The combination is done

by also allowing for a weighting between the measures. This

fulfills requirement R.2g.

4.5 Applying the Selected Similarity Measure

in the Target Application
The framework is designed to support any application that builds

upon the use of activity sequence similarity. This creates the

need to offer different configuration mechanisms. One way of

configuring the similarity application is the use of incrementable

parameters. The parameters are set up with a maximum, a

minimum and an initial value, along with a step size. The

application iteratively performs its task and changes the

incrementable parameter as indicated by the step size, until the

upper or lower limit is reached. This functionality is indicated by

the circle below the similarity component in Figure 2. The usage

of the parameter is not controlled by the framework itself, but by

the application, while the framework performs the increment. If

more than one incrementable parameter is set for the application,

the framework ensures that every possible combination is

explored.

Additionally, the framework offers the application an interface

for interacting with the intermediate results2. The concept is as

follows: Directly after the intermediate information is created,

the application is asked to pre-process the intermediate

information. This happens before the determination of weight

distribution and before using incrementable parameters. If the

application uses this option, it can tell the framework how to pre-

process the dataset and by this means adapt it to its needs. It is

then provided with the pre-processed data instead of the plain

intermediate results. This step is performed as long as the

application indicates that it still wants to change the data. This

implementation is generic enough to support arbitrary

applications but offers enough functionality to still support the

application engineer which fulfills requirement R.3. An

illustration of the utility of this feature is part of the case study in

chapter 5.

2 The imported activity sequences, the potentially mined model,

and the potentially created classification are considered as

intermediate results.

4.6 General Features
The goal of the framework is not only to relieve the application

architect of the task of finding a suitable similarity measure, but

also to find a well-suited configuration of the similarity measure.

The similarity application module supports this feature. When

the usage of more than one measure is desired, the framework

can be used to determine the best combination in terms of

weighting. The user only needs to specify how fine-grained the

search of the best solution should be by providing an increment

value. This value is then used to exhaustively search the result

space, which is done by iteratively using each weighting

combination for the similarity measures. The combined

measures’ result is determined in the light of the application that

builds upon them, which in turn informs the framework how well

this combination is suited to its needs.

After each possible iteration that might stem from the presence

of incrementable parameters application pre-processing calls or

optimal weight determination, the application returns its

collected information to the framework. The collected

information reflects the respective performance of each possible

combination. For this purpose, it uses a multi-dimensional array,

where each dimension represents one incrementable parameter,

and the array’s value represents the parameterization’s

performance with respect to the application’s performance

criteria.

To enable the user to visually explore the relationships, the user

can select a graph that shows a two-dimensional projection of the

resulting multi-dimensional array. The two dimensions of the

graph can be determined without limitation.

5. CASE STUDY
The framework’s capabilities are investigated in a real life

scenario, where the similarity of activity sequences is used to

amend the functionality of an existing application. As one

instantiation of an IS that benefits from similarity determination,

in the case study, a project management system is investigated.

The results of the case study inform the company how to make

better use of what has been learned in previous projects with

only minimal effort. On the other hand the case study shows the

framework’s ability to scale and support the application

engineer.

5.1 Case Study Background
The company in our case study had been using a proprietary

project management application that kept track of the status and

the customer interaction during project execution for a number of

years prior to the case study. It distinguished between nine

different statuses a project can have, such as customer contacted,

price negotiated. Additionally in each status, information like

assigned employees, estimated project cost and profit and

realized cost and profit are stored. Also an SAP system was used

for keeping track of the employee’s time on different projects.

The system contained a history of 124 projects covering

consultancy and prototypical development of applications for

customers. Each dataset contained predefined steps that indicated

the status of the project, interactions with the customer, the

803

respective dates of these interactions and information about who

is involved in the respective phases of the project.

Up until the case study, the project management system was used

for (retrospective) project reporting and for giving the project

portfolio manager an up-to-date overview of the status of the

projects. There was, however, no actionable support feature, like

project progress projection or reusing experiences from previous

projects. The project members saw it as a valuable approach to

find similar projects using the activity sequences that could be

extracted from the logs. The assumption was, that helping a

project manager of a currently running project in finding similar

projects, would allow him to learn from the experience of similar

previously finished projects. This way he would be presented

with the likely performance of his current project utilizing the

performance of the similar projects as a predictor and contact

details of the related projects’ managers to ask them for support.

However, the team members could not clearly define “similar” in

this context. The project portfolio manager was able to indicate

the quality of the projects’ processes, which ranged from poor to

good, without being able to state which parameters could be used

to support his judgment. This is a typical problem in complex

decision environments.

The goal, therefore, was to identify similar projects, where

relevant information about the different projects was stored in a

project management system. Because it was not known which

similarity measures can be useful and neither which features to

use, the central research question was: Which similarity

measures should be used and in what way to support this

knowledge management initiative. As the range of possible

measures and possible configurations is large and the evaluation

of each single measure and configuration is a time-consuming

task, the case study lends itself to applying our framework.

5.2 Configuration of the Framework’s

Modules
The proprietary data within the project management system was

stored in an XML dialect specific to the application that could

not be imported into the framework using an existing

ProMImport plug-in. This is why a new one was developed.

Because it was not known which influence the granularity of the

log entries would have on the similarity measure’s suitability, we

created the importer plug-in configurable to this respect. This

allowed us to extract two, differently verbose representations.

One transformed the data by interpreting the change between

nine given high-level status indicators as activities. The other

imported data by additionally interpreting more fine-grained

interactions like “insert expense type” as activities. Having two

differently large sets for the same source information supports

the analysis of the effect on similarity measures that is related to

the size of activity sequences. Additionally, some accounting

related data was not maintained in the project management IS

directly, although it is logically connected to it. Hence, in the

case study setting, the imported data from the project

management system had to be amended with additional data

from an SAP system, for which we could reuse parts of

PromImport. Implementing the new importer plugin required

some effort but did not take longer than a few days. The

configuration of the plug-ins however was straight forward and

took only a few minutes.

One of the goals for the company was to estimate the

performance of a project by utilizing the similarity of its activity

sequence with respect to previously finished projects. However,

the stakeholders did not know which features were the best ones

to use to determine similarity, while knowing how projects as a

whole can be evaluated. For this reason, making use of a

supervised learning approach is a suitable approach, which

justified the use of the framework’s classification module.

Within this step, each activity sequence was augmented with the

performance judgment of the project portfolio manager using a

three-valued classification indicating whether a project was

positive, negative or neutral. The configuration of the

classification module was straight forward and took less than an

hour.

In interviews, the stakeholders agreed that the interaction

between different activities on the project were related to its later

performance, giving rise to the use of structure-oriented

similarity measures. Given the complex interactions within a

project, the company did not have an explicit interaction model

for their project management system. If structure-oriented

similarity measures were used, retrieving a model required using

the model generating facilities offered by the framework. A

limited number of algorithms included in the ProM framework

proved useful in this case study. After some experimentation, the

α-algorithm [2], the multi-phase algorithm [2] and the genetic-

mining-algorithm [17] proved suitable enough for the model

determination task.

The stakeholders could not give an informed recommendation on

which properties would best support or not support a similarity

determination. This is why a diverse set of different measures

has been used to determine the most suitable one. As the

activities in the logs amounted to changes in the project status

and are known in beforehand, it was viable to interpret activities

as similar whenever they have the same name. The usage of

equivalence classes or the consideration of the activities’

attributes was not necessary in this case. Altogether, the case

study used nine similarity measures, out of which five neglected

the structural properties, while the other four relied on structural

properties for the determination of similarity. They included the

Dice Coefficient, the Overlap Coefficient [26], a bag of words

[14] adaptation to activities, a Term-Frequency-Inverse-

Document-Frequency [11] adaptation to activities, the

Levenshtein distance [31] for activities, graph isomorphism [27],

maximum common sub-graph [5], graph edit distance [20] and

random walk kernels [12]. This covered a broad range of

different measures which made use of all the functionalities

supported by the framework. Each of these measures has its

special advantages and disadvantages which is why we expected

them to operate differently well depending on the input data.

However, while the description and especially the comparison of

their properties is a valuable contribution, it is out of scope in

this paper. The configuration of the similarity measures took no

more than a couple of minutes for each measure.

The configuration of the application module was done as follows:

The application that is to benefit from the determination of

804

activity sequence similarity is intended to estimate the

performance of a project using three predefined values for the

performance. To create its estimation the application does a

classification, which in the case study was done using a k-

nearest-neighbor classifier – a common approach for

classification. To determine which neighbors, i.e. which projects

are “near”, the application utilized the similarity measures’

results as its basis. The number of nearest neighbors typically

has a large influence on the classification results and must

therefore be taken into account when searching for suitable

configurations. In the framework, it is configured as an

incrementable parameter (see section 4.5), i.e. the framework

iterates through different combinations of this parameter and

tests the results of each configuration separately.

The application used a second incrementable parameter. Because

the aggregation of the k-nearest neighbors’ class indicator into

one single answer can be done in different ways, the desired

algorithm can be selected using an incrementable parameter. The

application module offered four different ways to do this such as

majority vote and using different weighting mechanisms

according to distance. The parameter iterated over those four.

The application should later serve the purpose of providing an

estimate concerning the future outcome of a current project, i.e. a

project that has not ended yet. To evaluate the performance of the

similarity measures and their parameter configuration, the

available data was split in training and test data. The test data,

however, needed special treatment. The available data consisted

of finished projects, but for testing the prediction quality, it is

necessary to have projects that are not finished yet. For that

reason, each activity sequence was first pruned using a value as

indicated by an incrementable parameter and then compared to

the remaining completed activity sequences to emulate the

situation of a currently running project. The pruning was

performed to an increasing degree using the third incrementable

parameter.

Figure 4 : Illustration of the steps for the use case

Because every project has a performance value, assigned by the

project portfolio manager before the test run, it was possible to

compare the results of the prediction to the actual performance

value for each project. The aggregation of the single results were

used to determined the overall suitability of a similarity measure

for the task of predicting the performance of a project by using

four different indicators that are typically used to evaluate

classifiers: precision, recall, accuracy [4] and the F-measure [22].

The results were stored in a multi-dimensional data structure and

were selectively displayed in a 2-D graph according to user-

defined selection criteria. The steps within the case study to test

the quality of different similarity measures are illustrated in

Figure 4.The implementation of the application module’s plug-in

for the case study consumed most time and took a few days.

However the program code can be integrated into the target

application, therefore, the time would have been necessary

anyway.

5.3 Case Study Results
The configuration as detailed in the previous section was used to

perform the project performance prediction with 11 different

settings for the pruning of a respective activity sequence, which

reflects increasingly mature projects in terms of their run time.

Also 124 unique values for the k-nearest-neighbor classifier were

tested. In each iteration the four fitness indicators for the

similarity measure were determined. Altogether seven different

classification approaches were used, three of which were using

simple heuristics3. The heuristics were used to compare the

result of the other approaches in the light of reference results.

This helped to understand the influence of potential biases in the

input data. Most similarity measures outperformed all heuristics

which indicated that a potential bias of the data had no

significant influence. In each iteration, the data structure

consisted of a 124-by-124 matrix – one line and column per

activity sequence, corresponding to 15,376 entries, which in turn

needed 7,688 computations of similarity values due to symmetry

in the matrix. For each similarity measure, there were 11 * 124

application configurations for the 7,688 computations resulting in

10,486,432 similarity results per measure and 94,377,888 in

total.

Table 1. Results of different similarity measures on

prediction accuracy in the case study

 Small activity log Large activity log

Measure

Dice Coefficient 76 % 72 %

Overlap Coefficient 69 % 68 %

Bag of activities 70 % 70 %

TFIDF 74 % 66 %

Levenshtein 78 % 72 %

Graph isomorphism 67 % 33 %

Max. common-sub-

graph

79 % ?4

Graph edit distance 75 % 64 %

3 Simple heuristics were to always classify as good, bad or

neutral

4 Determination was not possible due to the algorithm’s

computation complexity in combination with the large dataset.

805

Random walk 78 % 66 %

For lack of space, not all results can be displayed in this paper.

Table 1 shows the highest accuracy values for each similarity

measure on both data sets. The Table shows the variation of

results that can be experienced when using different measures.

The difference in accuracy can be quite significant (10% on

small logs, 39% on large logs), where the highest values are on a

level, suitable for real life application.

The results of this case study can be seen from different angles.

For the company that utilized our framework, knowing the

maximum achievable accuracy for project performance prediction

was valuable information, as it supports the project managers’

interpretation of predictions. Without the framework, the effort

for the determination would have been too high and some

arbitrary, possibly non-optimal, similarity measure would have

been used.

This relates to another result of the case study. We wanted to

find out how well the framework could support application

engineers and how much effort could be saved. The most time in

the case study was spent programming the importer plug-in and

the application module plug-in. These two tasks were necessary

for the extension of the project management system anyway and

both are independent of the similarity measures that were

applied. Only the adaptation to the framework’s interface caused

additional effort. Together these implementation tasks took

several days. Afterwards, however, the configuration of each

module could be done in a matter of hours. This indicates the

framework’s value for application engineers, as the

implementation and configuration without the framework would

have taken much longer.

Another goal was to determine the scalability of the framework.

In the case study, the framework extracted large volumes of data

from the initial data source. Additionally, it computed process

models and performed classifications. And finally, it performed

nearly 100 million similarity calculations. With the exception of

one similarity measure that is inherently computationally hard (it

is NP-complete), the calculations were performed very quickly

and none of them took longer than a few hours on standard

desktop PC. This indicates the scalability of the framework.

6. CONCLUSION AND OUTLOOK
This contribution was motivated by the observation that many

applications make use of the concept of similarity of activity

sequences. However, the problem lies in finding the right

measure for determining similarity and configuring the measure

appropriately. Due to the large number of possible algorithms

and configurations, a selection and configuration of a suitable

measure should be automated and supported to relieve the

domain specialist of routine tasks. The authors, therefore, call for

the creation of a framework that supports the application

engineer in finding the right measure. The requirements for such

a framework are deduced by analyzing the data formats of

contemporary information systems, similarity measures that are

used in similarity-based applications and frameworks that are

used in similar disciplines. Building upon and structuring the

requirements, the components of a supportive framework are

proposed. It is geared to be as flexible as possible, highlighting

five modular components that allow the integration of plug-ins to

cater for expendability. The framework’s utility is shown in a

case study where a suitable similarity measure for the

performance prediction of projects is investigated. Utilizing the

framework it was possible to successfully automate the

computation of almost 100 million similarity values to find a

suitable similarity measure. This was a task that did not take

more than one person-day in the case study for configuring the

framework.

While the framework was shown to be of great use, it was

applied only in one case study. Great care has been taken to

anticipate the needs of all applications that could potentially

benefit from using the framework. To further verify the

frameworks utility and also benefit from its potential, we intend

to perform more case studies, especially in the area of knowledge

management. We will use the framework to find suitable

measures for recommendations, this time using persons and their

interactions with IS as units of analysis. Another direction for

further research lies in determining the properties of different

similarity measures with respect to the input data. The case study

already gave some interesting insights in possible properties.

Those will have to be investigated more thoroughly to derive

general recommendations.

7. REFERENCES
[1] Aalst, W.M.P.v.d.; van Dongen, B.F.; Herbst, J.;

Maruster, L.; Schimm, G.; Weijters, A.J.M.M. (2003):

Workflow Mining: A Survey of Issues and Approaches.

In: Data and Knowledge Engineering, Vol. 47, 2, pp.

237-267.

[2] Aalst, W.M.P.v.d.; Weijters, T.; Maruster, L. (2004):

Workflow Mining: Discovering Process Models from

Event Logs. In: IEEE Transactions on Knowledge &

Data Engineering, Vol. 16, 9, pp. 1128-1142.

[3] Agrawal, R.; Gunopulos, D.; Leymann, F. (1998):

Mining Process Models from Workflow Logs. In: Sixth

International Conference on Extending Database

Technology, pp. 469-483.

[4] Baeza-Yates, R.; Ribeiro-Neto, B. Modern information

retrieval.

[5] Bunke, H.; Shearer, K. (1998): A graph distance metric

based on the maximal common subgraph. In: Pattern

recognition letters, Vol. 19, 3-4, pp. 255-259.

[6] Dongen, B.F.v.; de Medeiros, A.K.A.; Verbeek,

H.M.W.; Weijters, A.J.M.M.; van der Aalst, W.M.P.

(2005): The ProM Framework: A New Era in Process

Mining Tool Support. In: ICATPN, pp. 444-454.

[7] Drucker, P.F. (1999): Knowledge-Worker Productivity:

THE BIGGEST CHALLENGE. In: California

Management Review, Vol. 41, 2, pp. 79-94.

[8] Dumas, M.; van der Aalst, W.; Ter Hofstede, A.

(2005): Process-aware information systems: bridging

people and software through process technology,

Wiley-Blackwell 2005.

[9] Gunther, C.; van der Aalst, W. (2006): A generic

import framework for process event logs. In:

Applications and Theory of Petri Nets 2005, 26th

806

International Conference, ICATPN 2005, Miami, USA,

June 20-25, 2005, Proceedings, Vol. 4103, pp. 81.

[10] Guy, I.; Jacovi, M.; Perer, A.; Ronen, I.; Uziel, E.

(2010): Same places, same things, same people?:

mining user similarity on social media, p. 41-50.

[11] Jones, K. (2004): A statistical interpretation of term

specificity and its application in retrieval. In: Journal of

documentation, Vol. 60, pp. 493-502.

[12] Kondor, R.; Lafferty, J. (2002): Diffusion kernels on

graphs and other discrete input spaces, p. 315-322.

[13] Kotonya, G.; Sommerville, I. Requirements

Engineering: Processes and Techniques. 1998. John

Wiley & Sons.

[14] Lewis, D. (1998): Naive (Bayes) at forty: The

independence assumption in information retrieval. In:

Applications and Theory of Petri Nets 2005, 26th

International Conference, ICATPN 2005, Miami, USA,

June 20-25, 2005, Proceedings, Vol. 1398, pp. 4-18.

[15] McCarthy, J. (2002): Actions and other events in

situation calculus, p. 615-628.

[16] McDonald, D.; Ackerman, M. (2000): Expertise

recommender: a flexible recommendation system and

architecture, p. 231-240.

[17] Medeiros, A.K.A.d.; Weijters, A.J.M.M.; Aalst,

W.M.P.v.d. (2004): Using Genetic Algorithms to Mine

Process Models: Representation, Operators and

Results. Eindhoven University of Technology,

Eindhoven.

[18] Peterson, J. (1981): Petri Net Theory and the Modeling

of Systems. In: PRENTICE-HALL, INC.,

ENGLEWOOD CLIFFS, NJ 07632, 1981, 290.

[19] Resnick, P.; Varian, H.R. (1997): Recommender

Systems. In: Communications of the ACM, Vol. 40, 3,

pp. 56-58.

[20] Sanfeliu, A.; Fu, K. (1983): Distance measure between

attributed relational graphs for pattern recognition. In:

IEEE TRANS. SYS. MAN CYBER., Vol. 13, 3, pp.

353-362.

[21] Schonenberg, H.; Weber, B.; Van Dongen, B.; van der

Aalst, W. (2008): Supporting flexible processes

through recommendations based on history. In:

Business Process Management, pp. 51-66.

[22] Shaw, W.; Burgin, R.; Howell, P. (1997): Performance

standards and evaluations in IR test collections:

Cluster-based retrieval models. In: Information

Processing and management, Vol. 33, 1, pp. 1-14.

[23] Shkundina, R.; Schwarz, S. (2005): A Similarity

Measure for Task Contexts. Paper presented at the 6th

International Conference on Case-Based Reasoning,

ICCBR, August 23-26, 2005, Workshop Proceedings,

Chicago, IL, USA, p. 261-270.

[24] Spertus, E.; Sahami, M.; Buyukkokten, O. (2005):

Evaluating similarity measures: a large-scale study in

the orkut social network, p. 684.

[25] Stahl, A. (2004): Learning of knowledge-intensive

similarity measures in a case-based reasoning. PhD,

Universität Kaiserslautern 2004.

[26] Tan, P.; Steinbach, M.; Kumar, V. (2005): Introduction

to data mining, Pearson Addison Wesley Boston 2005.

[27] Ullmann, J. (1976): An algorithm for subgraph

isomorphism. In: Journal of the ACM (JACM), Vol. 23,

1, pp. 31-42.

[28] van der Aalst, W.; Schonenberg, M.; Song, M. (2009):

Time Prediction Based on Process Mining. In: BPM

Center Report BPM-09-04, BPMcenter. org.

[29] van Dongen, B.; van der Aalst, W. (2005): A meta

model for process mining data, p. 309–320.

[30] Verbeek, H.; Buijs, J.; van Dongen, B.; van der Aalst,

W. ProM 6: The Process Mining Toolkit. In.

[31] Wagner, R.; Fischer, M. (1974): The string-to-string

correction problem. In: Journal of the ACM (JACM),

Vol. 21, 1, pp. 168-173.

[32] WFMC (1998): Audit data specification. Technical

Report WFMCTC - 1015 Version 1.1, 1998.

[33] Witten, I.; Frank, E. (2002): Data mining: practical

machine learning tools and techniques with Java

implementations. In: ACM SIGMOD Record, Vol. 31,

1, pp. 76-77.

807

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2011

	Similarity Determination in Activity Sequences – A Supportive Framework
	Jörg Schmidl
	Holger Wittges
	Helmut Krcmar
	Recommended Citation

	Proceedings Template - WORD

