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ABSTRACT 

An increasing number of information systems support their users 

by helping them in reusing existing knowledge and experience. 

Often this is done by retrieving similar instances like similar 

documents, similar process executions or similar persons. While 

the recommendations use similarity as central concept, the 

selection of a suitable measure is often done by intuition. This 

paper introduces a framework that supports the application 

engineer in selecting and configuring a suitable similarity 

measure. The requirements of the intended framework are 

gathered before the architectural implications are detailed. The 

resulting framework is applied in a case study in which project 

performance prediction is to be supported by the similarity of the 

projects’ activity sequences. The results show the framework’s 

utility by allowing a comparably simple configuration to yield a 

considerable support in selecting and configuring a suitable 

similarity measure. 

Keywords 

Similarity Measure, Activity Sequence, Similarity Framework, 

Business Processes 

1. INTRODUCTION 
Today, support by Information Systems (IS) is omnipresent in 

organizations. In particular the trend of increasing knowledge 

intensity of everyday tasks leads to the increased use of IS to 

support the knowledge worker [7]. IS typically log users’ 

activities for administrative reasons e.g. authorization control or 

for analytical purposes e.g. web server logs to determine usage 

behavior. Activity logs are also increasingly used by applications 

for the support of the end user. These applications provide 

recommendations based on the activity logs. For example, they 

deliver similar items to the user depending on his previous 

searches for other items  [19]. Other software recommends the 

next steps in a process, based on what has been done so far and 

what others have done in a similar situation [23; 25; 21]. Yet 

other support systems recommend who to contact in a social 

network based on the contextual overlap of the two [16].  

The common theme among these support systems is their 

reliance on the concept of similarity to support the user. They 

recommend similar documents, similar process steps or similar 

persons, contingent on the current context, which needs to be 

modeled in an appropriate way.   

While all these applications build on the concept of similarity, 

the interpretation of why two or more objects are to be 

considered similar depends on the application and its use cases 

for which the similarity-based application is employed.  

The challenge when using similarity-based applications lies in 

determining a suitable notion of similarity. This is a complex 

task. There are many approaches stemming from diverse 

disciplines. They build upon definitions of similarity that are 

specific to those disciplines. In addition, most similarity 

measures use a number of parameters to determine how the 

similarity between two objects is determined. Finding a suitable 

configuration of a similarity measure is, therefore, a challenge. 

Responding to this challenge, this paper introduces a framework 

that supports the developer of similarity-based applications when 

faced with the selection and configuration of suitable similarity 

measures. The framework allows to configure different similarity 

measures and in a next step to evaluate their appropriateness for 

the target application. Features of various applications that use 

similarity determination are taken into account to determine 

requirements for the framework. The implementation based on 

these requirements is detailed subsequently. In a case study, we 

demonstrate the utility of the framework in creating a similarity-

based application.  

The paper is organized as follows. Section 2 gives an overview of 

related work. Section 3 derives requirements for a framework to 

support the selection and configuration of similarity measures for 

activity sequences. Section 4 presents the paper’s core 

contribution, outlining the framework that meets the 

requirements as outlined in section 3. Section 5 presents a case 

study that shows the utility of the framework in a real world 

setting. The paper concludes with a discussion and recommends 

further research. 
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2. RELATED WORK 
This contribution introduces a generic framework that supports 

the application engineer in selecting and configuring a suitable 

similarity measure for activity sequences. Its benefits are 

twofold. Practitioners can use the framework with minimal effort 

to find suitable similarity measures for their applications. On the 

other hand it provides a basis for researchers investigating 

properties of similarity measures for activity sequences.  

A similar approach was taken in the process mining discipline 

where the generic ProM framework supports the development 

and application of process mining algorithms [6; 30]. The 

acceptance of this generic framework inspired us to create a 

similar framework to support further research of similarity 

measures for activity sequences and their application. In analogy 

to the framework described in this contribution, ProM acts as 

incubator for new algorithms and concepts in process mining. 

Additionally, ProM also operates on activity sequences. 

However, ProM’s central concern is the support of process 

mining, i.e. the recovery of process models from event logs. 

Although it has incorporated many additional concepts and 

algorithms that extend its use to more than only process recovery, 

the determination of a suitable similarity measure is not in the 

scope of process mining. This is why our framework makes use 

of ProM’s facilities wherever appropriate for example when 

accessing data sources or creating process models if this is 

necessary for the similarity measure. However, our framework’s 

core functions are too different to integrate them into the existing 

ProM framework as a plug-in  

Some of ProM’s plug-ins make use of the concept of similarity 

for example to predict execution times of process instances based 

on previously executed process instances [28]. This is similar to 

what we discuss in the case study in chapter 5. However, while 

our case study aims at finding a well-suited similarity measure 

underlining the utility of our framework, in [28] the authors only 

use one kind of similarity measure and describe how to adapt its 

parameters best. 

The challenge to find a suitable similarity measure has also been 

addressed in another context. In [10] the authors investigated 

how similar users or similar content can be determined in 

different social media to increase its usage. In all their 

experiments the authors used the same similarity measure, but 

used nine different sources for similarity information 

investigating their effects on six different social media 

applications. The results showed that the source of similarity 

information had significant influence on the perceived quality of 

the system’s suggestions and also that the influence varies with 

respect to the different applications. In this paper we also stress 

that similarity measures must be tailored to the application that 

makes use of them. Additionally, in our framework we also 

acknowledge the great influence of the initial data and in what 

format it is collected. However, while in [10] quantifying the 

influence of different data sources for a concrete application was 

the goal, we focus on creating a generic framework that could 

support tasks like the one in [10]. Similarly, in [24] the authors 

investigate the influence of different similarity measures on 

recommendations in an online social network. They applied six 

different similarity measures to recommend potentially 

interesting sub-communities to their users and investigate the 

influence of the measure on the quality of the recommendation. 

In contrast to the contribution at hand, the authors in [24], 

however, focus on one use case and not on a generic support tool. 

Also they only use similarity measures that operate on sets, while 

our framework allows the usage of other similarity features as 

well. 

3. REQUIREMENTS ANALYSIS FOR THE 

FRAMEWORK 
Here, the requirements for a framework to support the selection 

and configuration of measures for similarity-based applications 

are documented. Requirements engineering can be done in many 

different ways [13]. Sources of requirements can be for example 

domain knowledge, existing systems, users, standards or 

regulations. In the following we use existing frameworks, source 

systems, data format standards and applications that use 

similarity measures as source for requirements elicitation. Each 

requirement is annotated with a number for reference in the 

outline of the framework’s architecture. 

A similarity measure is appropriate if it supports the goals of the 

target application. Therefore the determination of an appropriate 

similarity measure consists of two phases: firstly, selecting and 

configuring a similarity measure and secondly, checking the 

fitness for the target application. However a prerequisite is 

having data that is suitable to act as source for similarity 

information. This step is particularly important, because the 

selection itself greatly influences the result of the similarity 

determination [10]. Therefore, a generic framework must have 

the three components as shown in Figure 1. In the following each 

identified requirement references its corresponding component as 

indicated in this figure. 

 

Figure 1 : Steps for determining suitable similarity measure 

The requirements for the first component are elicited by 

inspecting different process aware information systems (PAIS) 

[8], such as ERP systems, project management systems and 

personnel management systems, the format of their data and how 

the log information is interpreted by the application and by 

persons.  

Whenever it is desirable for an application to utilize the 

similarity of activity sequences, the first step is to retrieve those 

activity sequences from source application logs. But many 

applications may serve as sources for information and their data 

formats also take many forms. Some applications, for example 

ERP systems, store log information in databases while others 

such as web servers use files for this purpose, which are accessed 

through differently. A requirement for the framework, therefore, 

is:  

The framework should support both – data stored in 

files and in databases (R.1a) 

In addition, the format of the data may vary. While data in a 

database is structured by definition, file-based logs can be stored 
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in comma separated value (CSV) files, using plain text with or 

without providing header information about the meaning of each 

section in a line, which is a still quite common solution. Other 

file-based logs are stored using some XML dialect with or 

without providing a schema definition along with it, especially 

when interoperability is important. Yet other IS use a log 

structure that is not plain text, is proprietary and needs parts of 

the IS logic to decode the log. Since all of these data formats are 

found in applications that can act as data source, the framework 

should fulfill the following requirement: 

The framework should support the retrieval of data 

from sources that are structured, semi-structured or use 

structures in a proprietary format (R 1b).  

Additionally, the granularity of the log information may differ. 

Some applications log every user interaction, such as web 

servers, while others only log certain events including, for 

example, the change of a status indicator in a project 

management system. The same is true for context information 

that goes along with the log entry, which also can differ 

significantly in its extent. For example, while browsing in an 

intranet, much context information of an user is typically at hand, 

while anonymous access to an internet site offers less context 

information. Therefore, another requirement for the framework is 

as follows: 

The framework should be flexible enough to handle 

both rich data sources and to extract or amend less rich 

data sources (R.1c). 

IS also differ in their pervasiveness. Some IS log user interaction 

in the background with little or no user involvement, such as web 

browsers while they browse through a website, while other IS 

only write into their logs when explicitly requested by the user, 

such as for example accounting systems. This influences the 

granularity and the possibilities for interpreting the log, because 

in the first case we often need to interpret implicit behavior 

while in the second case the intention of an user is more explicit 

and related more strongly to the log entry. Depending on the 

knowledge about the process that is supported by the IS, it is 

possible to amend log data with context information. This creates 

another requirement for the framework: 

The framework needs to be agnostic to how the data is 

captured from a technical point of view, but needs to 

provide means for amending the data with implicit 

information (R.1d). 

Also, the kinds of stored data differ. Some applications store an 

event, or activity respectively, in their logs, i.e. what has 

happened. Others store data that reflects the situation after an 

activity has been performed, i.e. the result of what has happened. 

A web browser for example might store the event “page 

index.html has been requested”, while a project management 

system might store the status “project budget is (now) 100k €”, 

but not the event itself that increased the budget to this amount. 

Another requirement for the framework, therefore, is as follows: 

The framework should have the capability to transform 

log information containing status snapshots into log 

information containing status changes (R.1e). 

Independent from the characteristics of the data source itself, 

more than one application log may contain information for an 

activity sequences, i.e. the information contained in one 

application log can augment information from another log. For 

example, a project management system could contain the 

execution history of a project, while in a separate accounting 

system, information about consumed budget is kept. This is why 

the framework should fulfill another requirement: 

The framework should allow the flexible and iterative 

enrichment of log data from multiple sources (R.1f).  

Being able to import data from arbitrary data sources and being 

able to transform them in a suitable format forms the basis for 

the second component of the framework in Figure 1. It allows to 

apply similarity measures to the input data. The requirements for 

the second component were elicited by reviewing the properties 

of thirteen similarity measures found in literature, extracting 

their common features and deriving requirements from their 

common features. The measures were used in a wide range of 

disciplines such as protein function prediction in biology, 

comparison of Web Service definitions in computer science and 

overlap calculation in graph theory, to name a few application 

scenarios. 

Before discussing different kinds of similarity measures, it is 

necessary to take the goal of their use into account. Applications 

that make use of the similarity of activity sequences can have 

different target functions. For example, in project controlling it is 

often relevant to assess the likeliness of success. This could be 

done by determining similar projects that have been completed 

already, taking their success as an indicator for the currently 

running project. In that case, the goal is to make a good 

estimation about project success. Another example with a 

different target function can be found in product recommendation 

engines where users are presented with similar products that 

overlap with their peer’s preferences. In this case, the goal is to 

leverage the cross-selling potential. Different target functions 

have different definitions of when a similarity measure works 

well on a set of activity sequences and when it does not. It is 

often appropriate to adapt a similarity measure to suit its 

intended support for a goal, using supervised learning techniques 

[33]. The framework’s similarity measure component should, 

therefore, fulfill the following requirement: 

The framework should have the capability to label a 

training set of activity sequences with an indicator of 

its utility in relation to the target application’s goal 

(R.2a).  

There are a number of different ways to determine the similarity 

between two entities. For this reason the framework needs to be 

flexible enough to support each different way. In a first instance, 

an entity can be described by certain flat attributes, for example a 

project is described by the number of project members and the 

total budget. In that case, the two entities can be compared 

according to their attribute values, where the comparison can be 

done with different algorithms depending on for example the 

data types or data ranges. This is why the framework should 

fulfill the following requirement: 

799



The framework should be able to support similarity 

measures that operate on input entities that are 

described by attribute-value pairs (R 2b).  

In a second instance, an entity can have structured components, 

for example a project is described by the activities that have been 

performed during its execution. In that case, the two entities can 

be compared according to the overlap of the same constituting 

parts, i.e. the same activities. The framework should, therefore, 

fulfill another requirement: 

The framework should be able to support similarity 

measures that operate on structured input entities by 

for example comparing the overlap of components 

(R.2c).  

Additionally, the constituting parts can themselves have 

attributes, for example each activity in a project can have a 

specific person that is responsible. Therefore, the comparison of 

entities can be based on constituting components, acknowledging 

the difference in attributes as well. Essentially, this is an 

extension of the requirement described before, where the 

constituting components, were treated as flat structures and were 

compared for equality. The framework should fulfill the derived 

requirement: 

The framework should be able to support similarity 

measures that operate on structured input entities 

where each structured component is (additionally) 

described by attribute-value pairs (R.2d).  

Finally, it is possible to take the relationship between the 

constituting parts into account. The relationship represents the 

temporal or logical order of the constituting parts and may also 

reflect interleaving of those activities. Addressing this fact, the 

framework should fulfill the following requirement: 

The framework should be able to support similarity 

measures that operate on the structure of its entities, 

i.e. that use structural properties of the input data for 

similarity determination (R2.e).  

Additionally, many similarity measures use one or more 

parameters to configure the computation of similarity. The 

framework must, therefore, fulfill an additional requirement: 

The framework should offer the capacity to process 

parameters for each similarity measure that determine 

its behavior (R.2f). 

Each similarity measure typically focuses on one or at least a 

small set of properties of the input object. However, it is possible 

that the desired notion of similarity is best reflected by a 

combination of different properties. In this case, the 

simultaneous application of different similarity measures is 

necessary. This poses another requirement to the framework: 

The framework should allow for a compounded 

calculation of similarity using different measures 

(R.2g). 

As indicated above, the structural properties of activity 

sequences can be used for the similarity determination. Yet, each 

activity sequence itself has a linear structure by definition. To 

find out about the dependencies between activities, a model of 

possible sequences indicating their relationship is required. In 

many cases, explicit models of activity sequences are not 

available because they are too expensive to create or because the 

activity sequences are too flexible to render a model useful. 

Nevertheless, if the usage of structural properties is deemed 

necessary, there needs to be a way to at least recover an implicit 

model for the activity sequences. It would have to be 

reconstructed from the IS logs and would then indicate the 

process “as it is lived”. In terms of similarity determination, it 

can be used to deduce structural properties of an otherwise linear 

activity sequence. The framework should fulfill another 

requirement: 

The framework should provide a possibility to create a 

(process) model using the activity sequences that are 

available (R.2h). 

We have reasoned above, that similarity measures only have a 

purpose with respect to their target application. Therefore, our 

framework should facilitate the selection and configuration of an 

appropriate measure. To find out about the utility of the selected 

measure and its configuration, the results have to be seen in the 

light of the application that they will be used for. The framework 

needs to be integrated into the target implementation or needs to 

be integrated into a suitable representation thereof to show its 

utility. Especially if supervised learning techniques are used for 

the selection and configuration of similarity measures, the 

feedback of the application about how well-suited the similarity 

measure’s results are for the intended use is pivotal. Therefore, 

the framework needs to fulfill a requirement that intentionally 

covers a broad spectrum of interpretations to encompass arbitrary 

similarity-based applications: 

The framework should support the integration of 

similarity-based applications or suitable 

representations thereof that consume the results of the 

similarity determination and give the framework 

feedback about the quality of the results (R.3). 

4. PROPOSED ARCHITECTURE 
The requirements discussed above informed the design of the 

framework. The logical structuring in three different components 

(see Figure 1) proved useful for the elicitation of requirements. 

For the implementation of the necessary functionality it turned 

out that the second component can be split into three modules: 

one that supports classifications for supervised learning, one that 

can mine a process model from input logs for the support of 

structural similarity measures and one for the application of 

similarity measures itself. Therefore the architecture features a 

modular design with five main modules (see Figure 2). The 

framework handles the flow of action by instantiating one or 

more plug-ins for each module and passing on the control 

subsequently. However, it is not mandatory to use all modules, 

i.e. classification of activity sequences is only necessary when 

supervised learning should be supported and the creation of an 

activity sequences’ model is only necessary if structural 

properties should be used in the similarity determination.  
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Figure 2 : The framework's modules 

The framework was implemented using Java, because it is a very 

common programming language that many application engineers 

can work with. Wherever appropriate, existing applications and 

frameworks were integrated into the framework directly. This is 

true for parts of the import module that builds upon the 

ProMImport application and the process mining module ProM, 

that relieved us from the effort of implementing process mining 

algorithms. If the functionality of the incorporated applications 

did not entirely suit our needs, we extended them to meet our set 

of requirements. In this section, the framework’s five modules 

are detailed. The reasons for the design choices in each module 

are explained by reference to the requirements in chapter 3.  

4.1 Importing Data into the Framework 
The requirements analysis showed that activity sequences are 

frequently stored in different locations, i.e. databases or files, 

and have different formats. Therefore, importing data into the 

framework for similarity determination cannot be done with one 

single import routine but rather must be done by offering an 

interface that supports as much flexibility as possible. A plug-in 

that implements this interface then offers the application-specific 

ability to extract activity sequences.  

Extracting information from logs is a common challenge. An 

existing tool, the ProMImport Framework [9], served as a good 

basis for the import module, although its extraction mechanisms 

primarily focus on the support of process mining. For its use in 

the framework, ProMImport had to be extended. The ability to 

store the extracted data before displaying it and the ability to 

connect the output of one import plug-in to the next import plug-

in were added. In this way, requirements R.1a and R.1b are 

addressed by delegating the specifics of the data extraction to 

plug-ins while offering a generic interface.  

The requirements analysis also shows that relevant information 

for activity sequences could be spread across different logs that 

logically complement the information contained in each. The 

ProMImport Framework had no support for aggregating 

information found in different kinds of sources for one combined 

import result. Therefore, the concept of chaining importer plug-

ins has been implemented into the framework. While 

ProMImport would display the results of the import directly, the 

framework’s import module can deliver the results to another 

importer plug-in to augment the results, yielding, in the end, one 

integrated import result. This fulfills requirement R.1f, which 

states that information could be spread across different sources. 

Offering the ability to connect arbitrary data sources also 

requires that a suitable data format is defined within the 

framework that can be used for intermediate storage. As the 

requirement analysis indicated, logs can have varying 

expressiveness concerning the granularity of logged activities and 

concerning each activity’s context information. The internal data 

format must be designed in such a way that the transformation of 

source data into this internal format is without loss of 

expressiveness or limits the loss to a minimum. Data formats that 

are crafted like this can be found in the WFMC’s specifications 

of the Common Workflow Audit Data (CWAD) [32] and in the 

MXML format [29]. Both data formats are abstract enough to 

represent the contents of different application logs. Being 

tailored to the needs of a workflow system, the CWAD format 

has a considerable number of attributes that only apply in a 

workflow context. The MXML format on the other hand, 

abstracts from workflows and therefore allows a more 

straightforward transformation of arbitrary data. Therefore, 

MXML is adopted as the internal data format for the framework 

because it is flexible enough to handle logs with varying 

granularity and is abstract enough to handle logs with varying 

contextual data. This fulfills requirements R.1c and R.1d, which 

state that the granularity of data can vary. 

The chosen data format conceptually stores sequences of events, 

which is also true for the CWAD format and many others. On the 

other hand the results of the requirements analysis pointed out 

that there are also logs that do not store activities as events but 

rather by storing the results of the activities. Consequently, there 

needs to be a mechanism to transform logs containing data states 

into event sequences. While this problem has been addressed in 

theoretical computer sciences [15], there is no actionable  

implication for an implementation as would be necessary for the 

framework. For that reason, the framework incorporates a 

configurable, XML-based application for this purpose. After one-

time configuration, it automatically selects defined portions of 

the source data that contains sequences of states and transforms 

them into event sequences during data import. The events are 

created using activity names that are configured before importing 

the data. This fulfills requirement R.1e. In addition, for each 

activity attributes can be assigned and their values can be 

calculated using basic arithmetic and string operations. This 

fulfills requirement R.1f. 

4.2 Classifying Activity Sequences 
The requirement analysis specifies that a label must be assigned 

indicating the utility with respect to the desired target, if 

supervised learning is to be used. In principle, two different ways 

to allow for labeling are possible: automated or manual. In one 

case, activity sequences are labeled according to one or more 

rules that are created by a domain specialist. For example, the 

result of project executions as good, mediocre or bad could be 

automatically determined using the budget-to-spending ratio of 

each project as basis for a rule. However, this automated 

approach has a significant disadvantage. If there was a rule 

available that perfectly labels this type of activity sequences, 

then this rule is at the same time a perfectly suitable similarity 

measure and there would not be any need for using the 

framework in the first place. However, the more complex activity 

sequences are, the less likely it is that a person knows according 

to which measures an activity sequence should be evaluated. 

This person nevertheless may often be able to indicate the result 

tacitly without knowing how to derive this judgment formally. 

Therefore, the framework uses the other choice, namely the 

manual labeling approach. In this case, a person classifies a 

training set of the activity sequences and stores the results in a 
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csv file. This file is then used as an input source for the 

framework to automatically classify the training set of activity 

sequence. As outlined in the requirements analysis, labeling is 

not always necessary and is implemented as an optional step in 

the framework. Having the labeling module fulfills requirement 

R.2a. 

4.3 Generating a Model of the Activity 

Sequences 
The requirements analysis shows that many applications do not 

have an explicit model for the execution of activity sequences, 

but its users may follow implicit models that for example stem 

from corporate rules or from the technically possible interaction 

via a graphical user interface. If the implicit model can be 

explicated in a possibly only approximated model, it can be used 

to extract structural properties of an otherwise linear activity 

sequence. Inductively creating a model from instances contained 

in a log is the main concern of the process mining discipline [1; 

3]. There are many algorithms available to mine a model from 

instances. The application of these algorithms is facilitated by 

the ProM framework [6; 30] that has many of them integrated as 

plug-ins already. However, ProM returns its mined models 

typically as event-process-chains (EPC) or as petri-nets [18] that 

perfectly serve the purpose of modeling the execution semantics. 

In the context of determining similarity, the execution semantics 

do not play a large role though, which allows for the 

simplification of petri-nets and EPCs into simple graphs that only 

consist of edges and vertices. This also creates the ability to use 

similarity measures that work with simple graphs.  

The transformation is done as follows (see Figure 3). Whenever 

the ProM framework returns a petri-net1, the framework needs to 

transform it by creating one node for each of the petri-net’s 

transitions (blocks in the figure). Those nodes are connected to 

one another by inspecting which transitions are connected in the 

petri-net, where the term connected is interpreted as follows. 

Two transitions are connected if there is exactly one place 

(circles in the figure) in between them. If the model has explicit 

routing nodes (not shown in the figure; would be XOR, OR or 

AND, with the obvious semantics), then two transitions are 

connected if there is a sequence of zero or more routing nodes 

and one place in between them, but no other transition. 

Additionally the resulting graph is extended with explicit Start 

and End nodes that are implicit in petri-nets. Using this 

definition and this way of transforming the petri-net, it does not 

matter if one uses explicit routing nodes or implicit routing by 

means of petri-net firing semantics. Both will be transformed 

into the same graph. An example of implicit routing can be found 

in the petri-net on the left part of Figure 3. In that example Task 

3 must always be executed in accordance to petri-net firing 

semantics.  

                                                             

1 In the context of process mining and also similarity 

determination EPCs can be transformed into petri-nets without 

loss of relevant information 

 

Figure 3 : Transformation of a Petri-net to a graph 

The transformation is adequate. The argument is as follows. 

Since essentially places are removed from the petri-net, along 

with the routing nodes, if there are any, only the connection 

between transitions are left that are now considered nodes. It is, 

however, not obvious anymore if those connections are to 

represent exclusive execution or parallel execution. It is no 

longer known which transitions are prerequisites of certain nodes 

and, therefore, explicit information about the execution 

semantics is lost. However, this is not a problem for the intended 

use. The transformed model is solely used to identify the path 

that was taken by a process instance so far. Therefore, there is no 

need to know which connections previously modeled exclusive or 

parallel execution. The connections that are used by the instance 

were obviously parallel, the ones that have not been used but 

could have been according to the graph are of no interest, but 

obviously have represented OR/XOR split alternatives. It is also 

not a problem that there is no information about which nodes are 

prerequisites of another node, since the further proceeding of the 

process instance is of no interest. Utilizing the existing ProM 

framework but adapting its output fulfills requirement R.2h. 

4.4 Determining the Similarity between 

Activity Sequences 
The requirements analysis indicates that the framework must 

offer an interface for the creation of its own similarity measures. 

Nevertheless, it is desirable to have a reasonable number of 

algorithms available in the framework to make it useful from the 

start. As the algorithms differ with respect to the parts of the 

activity sequence they use for the computation, the framework 

should offer at least one algorithm for each kind of similarity 

measure. This guarantees that other similarity measures that 

operate on the same kind of input data can be integrated into the 

framework. The framework has 13 similarity measures integrated 

in its initial phase, that can work with the general properties 

(requirement R.2b) of an activity sequence, the overlap of 

activities (requirement R.2c), taking into account the activities 

attributes if necessary (requirement R.2d) and also taking into 

account structural properties (requirement R.2e). 

Within the framework, the main task of each similarity measure 

is to determine a similarity matrix, i.e. it must create a matrix 

with as many rows and columns as there are activity sequences 

with each entry containing the degree of similarity between the 

respective combinations of activity sequences. This very general 

representation of a similarity measure’s result allows 

applications to extract the relevant information flexibly. This 

fulfills requirement 5 which states that applications building 

upon the similarity of activity sequences can have diverse needs 

with respect to the similarity measure. A downside is, that this 

way of storing a similarity measure’s result is not the most 
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efficient way considering computational cost and space 

requirements.  

The requirements analysis also reveals that similarity measures 

frequently need configuration to a certain degree. The framework 

provides the means to properly configure a similarity measure. 

Each similarity measure plug-in is requested to publish its 

necessary parameters to the GUI component and can then process 

them as needed. This fulfills requirement R.2f.  

Further, the requirement analysis shows that cases must be 

supported in which one similarity measure is not enough. A 

combined result of different similarity measures might fit the 

application’s needs better than a single measure could. The 

framework supports this kind of configuration. Internally, each 

measure computes one similarity matrix. The matrices are then 

combined to yield one similarity matrix. The combination is done 

by also allowing for a weighting between the measures. This 

fulfills requirement R.2g. 

4.5 Applying the Selected Similarity Measure 

in the Target Application 
The framework is designed to support any application that builds 

upon the use of activity sequence similarity. This creates the 

need to offer different configuration mechanisms. One way of 

configuring the similarity application is the use of incrementable 

parameters. The parameters are set up with a maximum, a 

minimum and an initial value, along with a step size. The 

application iteratively performs its task and changes the 

incrementable parameter as indicated by the step size, until the 

upper or lower limit is reached. This functionality is indicated by 

the circle below the similarity component in Figure 2. The usage 

of the parameter is not controlled by the framework itself, but by 

the application, while the framework performs the increment. If 

more than one incrementable parameter is set for the application, 

the framework ensures that every possible combination is 

explored. 

Additionally, the framework offers the application an interface 

for interacting with the intermediate results2. The concept is as 

follows: Directly after the intermediate information is created, 

the application is asked to pre-process the intermediate 

information. This happens before the determination of weight 

distribution and before using incrementable parameters. If the 

application uses this option, it can tell the framework how to pre-

process the dataset and by this means adapt it to its needs. It is 

then provided with the pre-processed data instead of the plain 

intermediate results. This step is performed as long as the 

application indicates that it still wants to change the data. This 

implementation is generic enough to support arbitrary 

applications but offers enough functionality to still support the 

application engineer which fulfills requirement R.3. An 

illustration of the utility of this feature is part of the case study in 

chapter 5.  

                                                             

2 The imported activity sequences, the potentially mined model, 

and the potentially created classification are considered as 

intermediate results. 

4.6 General Features 
The goal of the framework is not only to relieve the application 

architect of the task of finding a suitable similarity measure, but 

also to find a well-suited configuration of the similarity measure. 

The similarity application module supports this feature. When 

the usage of more than one measure is desired, the framework 

can be used to determine the best combination in terms of 

weighting. The user only needs to specify how fine-grained the 

search of the best solution should be by providing an increment 

value. This value is then used to exhaustively search the result 

space, which is done by iteratively using each weighting 

combination for the similarity measures. The combined 

measures’ result is determined in the light of the application that 

builds upon them, which in turn informs the framework how well 

this combination is suited to its needs.  

After each possible iteration that might stem from the presence 

of incrementable parameters application pre-processing calls or 

optimal weight determination, the application returns its 

collected information to the framework. The collected 

information reflects the respective performance of each possible 

combination. For this purpose, it uses a multi-dimensional array, 

where each dimension represents one incrementable parameter, 

and the array’s value represents the parameterization’s 

performance with respect to the application’s performance 

criteria.  

To enable the user to visually explore the relationships, the user 

can select a graph that shows a two-dimensional projection of the 

resulting multi-dimensional array. The two dimensions of the 

graph can be determined without limitation. 

5. CASE STUDY 
The framework’s capabilities are investigated in a real life 

scenario, where the similarity of activity sequences is used to 

amend the functionality of an existing application. As one 

instantiation of an IS that benefits from similarity determination, 

in the case study, a project management system is investigated. 

The results of the case study inform the company how to make 

better use of what has been learned in previous projects with 

only minimal effort. On the other hand the case study shows the 

framework’s ability to scale and support the application 

engineer. 

5.1 Case Study Background 
The company in our case study had been using a proprietary 

project management application that kept track of the status and 

the customer interaction during project execution for a number of 

years prior to the case study. It distinguished between nine 

different statuses a project can have, such as customer contacted, 

price negotiated. Additionally in each status, information like 

assigned employees, estimated project cost and profit and 

realized cost and profit are stored. Also an SAP system was used 

for keeping track of the employee’s time on different projects. 

The system contained a history of 124 projects covering 

consultancy and prototypical development of applications for 

customers. Each dataset contained predefined steps that indicated 

the status of the project, interactions with the customer, the 
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respective dates of these interactions and information about who 

is involved in the respective phases of the project. 

Up until the case study, the project management system was used 

for (retrospective) project reporting and for giving the project 

portfolio manager an up-to-date overview of the status of the 

projects. There was, however, no actionable support feature, like 

project progress projection or reusing experiences from previous 

projects. The project members saw it as a valuable approach to 

find similar projects using the activity sequences that could be 

extracted from the logs. The assumption was, that helping a 

project manager of a currently running project in finding similar 

projects, would allow him to learn from the experience of similar 

previously finished projects. This way he would be presented 

with the likely performance of his current project utilizing the 

performance of the similar projects as a predictor and contact 

details of the related projects’ managers to ask them for support.  

However, the team members could not clearly define “similar” in 

this context. The project portfolio manager was able to indicate 

the quality of the projects’ processes, which ranged from poor to 

good, without being able to state which parameters could be used 

to support his judgment. This is a typical problem in complex 

decision environments.  

The goal, therefore, was to identify similar projects, where 

relevant information about the different projects was stored in a 

project management system. Because it was not known which 

similarity measures can be useful and neither which features to 

use, the central research question was: Which similarity 

measures should be used and in what way to support this 

knowledge management initiative. As the range of possible 

measures and possible configurations is large and the evaluation 

of each single measure and configuration is a time-consuming 

task, the case study lends itself to applying our framework. 

5.2 Configuration of the Framework’s 

Modules 
The proprietary data within the project management system was 

stored in an XML dialect specific to the application that could 

not be imported into the framework using an existing 

ProMImport plug-in. This is why a new one was developed. 

Because it was   not known which influence the granularity of the 

log entries would have on the similarity measure’s suitability, we 

created the importer plug-in configurable to this respect. This 

allowed us to extract two, differently verbose representations. 

One transformed the data by interpreting the change between 

nine given high-level status indicators as activities. The other 

imported data by additionally interpreting more fine-grained 

interactions like “insert expense type” as activities. Having two 

differently large sets for the same source information supports 

the analysis of the effect on similarity measures that is related to 

the size of activity sequences. Additionally, some accounting 

related data was not maintained in the project management IS 

directly, although it is logically connected to it. Hence, in the 

case study setting, the imported data from the project 

management system had to be amended with additional data 

from an SAP system, for which we could reuse parts of 

PromImport. Implementing the new importer plugin required 

some effort but did not take longer than a few days. The 

configuration of the plug-ins however was straight forward and 

took only a few minutes. 

One of the goals for the company was to estimate the 

performance of a project by utilizing the similarity of its activity 

sequence with respect to previously finished projects. However, 

the stakeholders did not know which features were the best ones 

to use to determine similarity, while knowing how projects as a 

whole can be evaluated. For this reason, making use of a 

supervised learning approach is a suitable approach, which 

justified the use of the framework’s classification module. 

Within this step, each activity sequence was augmented with the 

performance judgment of the project portfolio manager using a 

three-valued classification indicating whether a project was 

positive, negative or neutral. The configuration of the 

classification module was straight forward and took less than an 

hour. 

In interviews, the stakeholders agreed that the interaction 

between different activities on the project were related to its later 

performance, giving rise to the use of structure-oriented 

similarity measures. Given the complex interactions within a 

project, the company did not have an explicit interaction model 

for their project management system. If structure-oriented 

similarity measures were used, retrieving a model required using 

the model generating facilities offered by the framework. A 

limited number of algorithms included in the ProM framework 

proved useful in this case study. After some experimentation, the 

α-algorithm [2], the multi-phase algorithm [2] and the genetic-

mining-algorithm [17] proved suitable enough for the model 

determination task. 

The stakeholders could not give an informed recommendation on 

which properties would best support or not support a similarity 

determination. This is why a diverse set of different measures 

has been used to determine the most suitable one. As the 

activities in the logs amounted to changes in the project status 

and are known in beforehand, it was viable to interpret activities 

as similar whenever they have the same name. The usage of 

equivalence classes or the consideration of the activities’ 

attributes was not necessary in this case. Altogether, the case 

study used nine similarity measures, out of which five neglected 

the structural properties, while the other four relied on structural 

properties for the determination of similarity. They included the 

Dice Coefficient, the Overlap Coefficient [26], a bag of words 

[14] adaptation to activities, a Term-Frequency-Inverse-

Document-Frequency [11] adaptation to activities, the 

Levenshtein distance [31] for activities, graph isomorphism [27], 

maximum common sub-graph [5], graph edit distance [20] and 

random walk kernels [12]. This covered a broad range of 

different measures which made use of all the functionalities 

supported by the framework. Each of these measures has its 

special advantages and disadvantages which is why we expected 

them to operate differently well depending on the input data. 

However, while the description and especially the comparison of 

their properties is a valuable contribution, it is out of scope in 

this paper. The configuration of the similarity measures took no 

more than a couple of minutes for each measure. 

The configuration of the application module was done as follows: 

The application that is to benefit from the determination of 
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activity sequence similarity is intended to estimate the 

performance of a project using three predefined values for the 

performance. To create its estimation the application does a 

classification, which in the case study was done using a k-

nearest-neighbor classifier – a common approach for 

classification. To determine which neighbors, i.e. which projects 

are “near”, the application utilized the similarity measures’ 

results as its basis. The number of nearest neighbors typically 

has a large influence on the classification results and must 

therefore be taken into account when searching for suitable 

configurations. In the framework, it is configured as an 

incrementable parameter (see section 4.5), i.e. the framework 

iterates through different combinations of this parameter and 

tests the results of each configuration separately.  

The application used a second incrementable parameter. Because 

the aggregation of the k-nearest neighbors’ class indicator into 

one single answer can be done in different ways, the desired 

algorithm can be selected using an incrementable parameter. The 

application module offered four different ways to do this such as 

majority vote and using different weighting mechanisms 

according to distance. The parameter iterated over those four. 

The application should later serve the purpose of providing an 

estimate concerning the future outcome of a current project, i.e. a 

project that has not ended yet. To evaluate the performance of the 

similarity measures and their parameter configuration, the 

available data was split in training and test data. The test data, 

however, needed special treatment. The available data consisted 

of finished projects, but for testing the prediction quality, it is 

necessary to have projects that are not finished yet. For that 

reason, each activity sequence was first pruned using a value as 

indicated by an incrementable parameter and then compared to 

the remaining completed activity sequences to emulate the 

situation of a currently running project. The pruning was 

performed to an increasing degree using the third incrementable 

parameter. 

 

Figure 4 : Illustration of the steps for the use case 

Because every project has a performance value, assigned by the 

project portfolio manager before the test run, it was possible to 

compare the results of the prediction to the actual performance 

value for each project. The aggregation of the single results were 

used to determined the overall suitability of a similarity measure 

for the task of predicting the performance of a project by using 

four different indicators that are typically used to evaluate 

classifiers: precision, recall, accuracy [4] and the F-measure [22]. 

The results were stored in a multi-dimensional data structure and 

were selectively displayed in a 2-D graph according to user-

defined selection criteria. The steps within the case study to test 

the quality of different similarity measures are illustrated in 

Figure 4.The implementation of the application module’s plug-in 

for the case study consumed most time and took a few days. 

However the program code can be integrated into the target 

application, therefore, the time would have been necessary 

anyway. 

5.3 Case Study Results 
The configuration as detailed in the previous section was used to 

perform the project performance prediction with 11 different 

settings for the pruning of a respective activity sequence, which 

reflects increasingly mature projects in terms of their run time. 

Also 124 unique values for the k-nearest-neighbor classifier were 

tested. In each iteration the four fitness indicators for the 

similarity measure were determined. Altogether seven different 

classification approaches were used, three of which were using 

simple heuristics3. The heuristics were used to compare the 

result of the other approaches in the light of reference results. 

This helped to understand the influence of potential biases in the 

input data. Most similarity measures outperformed all heuristics 

which indicated that a potential bias of the data had no 

significant influence. In each iteration, the data structure 

consisted of a 124-by-124 matrix – one line and column per 

activity sequence, corresponding to 15,376 entries, which in turn 

needed 7,688 computations of similarity values due to symmetry 

in the matrix. For each similarity measure, there were 11 * 124 

application configurations for the 7,688 computations resulting in 

10,486,432 similarity results per measure and 94,377,888 in 

total.  

Table 1. Results of different similarity measures on 

prediction accuracy in the case study 

 Small activity log Large activity log 

Measure   

Dice Coefficient 76 % 72 % 

Overlap Coefficient 69 % 68 % 

Bag of activities 70 % 70 % 

TFIDF 74 % 66 % 

Levenshtein 78 % 72 % 

Graph isomorphism 67 % 33 % 

Max. common-sub-

graph 

79 % ?4  

Graph edit distance 75 % 64 % 

                                                             

3 Simple heuristics were to always classify as good, bad or 

neutral  

4 Determination was not possible due to the algorithm’s 

computation complexity in combination with the large dataset.  
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Random walk 78 % 66 % 

 

For lack of space, not all results can be displayed in this paper. 

Table 1 shows the highest accuracy values for each similarity 

measure on both data sets. The Table shows the variation of 

results that can be experienced when using different measures. 

The difference in accuracy can be quite significant (10% on 

small logs, 39% on large logs), where the highest values are on a 

level, suitable for real life application.  

The results of this case study can be seen from different angles. 

For the company that utilized our framework, knowing the 

maximum achievable accuracy for project performance prediction 

was valuable information, as it supports the project managers’ 

interpretation of predictions. Without the framework, the effort 

for the determination would have been too high and some 

arbitrary, possibly non-optimal, similarity measure would have 

been used.  

This relates to another result of the case study. We wanted to 

find out how well the framework could support application 

engineers and how much effort could be saved. The most time in 

the case study was spent programming the importer plug-in and 

the application module plug-in. These two tasks were necessary 

for the extension of the project management system anyway and 

both are independent of the similarity measures that were 

applied. Only the adaptation to the framework’s interface caused 

additional effort. Together these implementation tasks took 

several days. Afterwards, however, the configuration of each 

module could be done in a matter of hours. This indicates the 

framework’s value for application engineers, as the 

implementation and configuration without the framework would 

have taken much longer.  

Another goal was to determine the scalability of the framework. 

In the case study, the framework extracted large volumes of data 

from the initial data source. Additionally, it computed process 

models and performed classifications. And finally, it performed 

nearly 100 million similarity calculations. With the exception of 

one similarity measure that is inherently computationally hard (it 

is NP-complete), the calculations were performed very quickly 

and none of them took longer than a few hours on standard 

desktop PC. This indicates the scalability of the framework. 

6. CONCLUSION AND OUTLOOK 
This contribution was motivated by the observation that many 

applications make use of the concept of similarity of activity 

sequences. However, the problem lies in finding the right 

measure for determining similarity and configuring the measure 

appropriately. Due to the large number of possible algorithms 

and configurations, a selection and configuration of a suitable 

measure should be automated and supported to relieve the 

domain specialist of routine tasks. The authors, therefore, call for 

the creation of a framework that supports the application 

engineer in finding the right measure. The requirements for such 

a framework are deduced by analyzing the data formats of 

contemporary information systems, similarity measures that are 

used in similarity-based applications and frameworks that are 

used in similar disciplines. Building upon and structuring the 

requirements, the components of a supportive framework are 

proposed. It is geared to be as flexible as possible, highlighting 

five modular components that allow the integration of plug-ins to 

cater for expendability. The framework’s utility is shown in a 

case study where a suitable similarity measure for the 

performance prediction of projects is investigated. Utilizing the 

framework it was possible to successfully automate the 

computation of almost 100 million similarity values to find a 

suitable similarity measure. This was a task that did not take 

more than one person-day in the case study for configuring the 

framework.  

While the framework was shown to be of great use, it was 

applied only in one case study. Great care has been taken to 

anticipate the needs of all applications that could potentially 

benefit from using the framework. To further verify the 

frameworks utility and also benefit from its potential, we intend 

to perform more case studies, especially in the area of knowledge 

management. We will use the framework to find suitable 

measures for recommendations, this time using persons and their 

interactions with IS as units of analysis. Another direction for 

further research lies in determining the properties of different 

similarity measures with respect to the input data. The case study 

already gave some interesting insights in possible properties. 

Those will have to be investigated more thoroughly to derive 

general recommendations. 
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