
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2007 Wirtschaftsinformatik

February 2007

Progress in solving large scale multi-depot multi-
vehicle-type bus scheduling problems with integer
programming
Uwe H. Suhl
Freie Universität Berlin, suhl@wiwiss.fu-berlin.de

Swantje Friedrich
Freie Universität Berlin

Veronika Waue
Freie Universität Berlin

Follow this and additional works at: http://aisel.aisnet.org/wi2007

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2007 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Suhl, Uwe H.; Friedrich, Swantje; and Waue, Veronika, "Progress in solving large scale multi-depot multi-vehicle-type bus scheduling
problems with integer programming" (2007). Wirtschaftsinformatik Proceedings 2007. 81.
http://aisel.aisnet.org/wi2007/81

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2007%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2007?utm_source=aisel.aisnet.org%2Fwi2007%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2007%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2007?utm_source=aisel.aisnet.org%2Fwi2007%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2007/81?utm_source=aisel.aisnet.org%2Fwi2007%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

In: Oberweis, Andreas, u.a. (Hg.) 2007. eOrganisation: Service-, Prozess-, Market-Engineering; 8.
Internationale Tagung Wirtschaftsinformatik 2007. Karlsruhe: Universitätsverlag Karlsruhe

ISBN: 978-3-86644-094-4 (Band 1)
ISBN: 978-3-86644-095-1 (Band 2)
ISBN: 978-3-86644-093-7 (set)

© Universitätsverlag Karlsruhe 2007

Progress in solving large scale multi-depot multi-vehicle-type bus

scheduling problems with integer programming

Uwe H. Suhl, Swantje Friedrich and Veronika Waue

Institut für Produktion, Wirtschaftsinformatik und Operations Research

Freie Universität Berlin
D-14195 Berlin

suhl@wiwiss.fu-berlin.de

Abstract

This paper discusses solution methods of multi-depot, multi-vehicle-type bus scheduling

problems (MDVSP), involving multiple depots for vehicles and different vehicle types for

timetabled trips. All models are from real-life applications. Key elements of the application are

a mixed-integer model based on time-space-based networks for MDVSP modeling and a

customized version of the mathematical optimization system MOPS to solve the very large

mixed integer optimization models. The modeling approach was already described in several

other publications. This paper focuses on the solution methods critical to solve the very large

integer optimization models. We discuss aspects to solve the initial LP and the selection of the

starting heuristic. Real life applications with over one million integer variables and about

160000 constraints were solved by the optimizer MOPS. A key role plays also the architecture

of new Windows workstations with Intel 64 bit processors. We present numerical results on

some large scale models and a brief comparison to another state-of-the-art mathematical

programming system. The presented research results have been developed in cooperation with

the Decision Support & OR Lab of the university Paderborn which was responsible for the

development of the MDVSP-model and the application software.

429

1 Introduction

Public transportation companies are under high cost pressures, because market prices for

suburban transportation are not cost covering and traditional subsidies from municipalities are

decreasing. The companies must therefore focus on efficient use of resources, especially

vehicles and drivers.

We consider the scheduling of vehicles under constraints and objectives arising in urban and

suburban public transport. Each timetabled trip can be served by a vehicle belonging to a given

set of vehicle types. Each vehicle has to start and end its work day in one of the given depots.

After serving one timetabled (loaded) trip, each bus can serve one of the trips starting later from

the station where the vehicle is standing, or it can change its location by moving unloaded to an

another station (deadhead trip) in order to serve the next loaded trip starting there.

The cost components include fixed costs for required vehicles as well as variable operational

costs. The variable costs consist of distance-dependent travel costs and time-dependent costs for

time spent outside the depot – the case where a driver is obliged to stay with the bus. All cost

components depend on vehicle type. Since the fixed vehicle cost components are usually orders

of magnitude higher than the operational costs, the optimal solution always involves the

minimal number of vehicles.

The combinatorial complexity of the multi-depot bus scheduling problem (MDVSP) is de-

termined by numerous possibilities to assign vehicle type to each trip, to build sequences of

trips for particular buses, and to assign buses to certain depots. To represent these sequences of

trips, exact modeling approaches known in the literature consider explicitly all possible

connections - pairs of trips that can be served successively.

It is well known that the general MDVSP-model is NP-hard [BeCG87]. The practical

complexity of instances of the MDVSP depends on factors such as:

• the number of timetabled trips,

• the number of depots, or more precisely, the average number of depot-vehicle

type combinations per timetabled trip,

430

• the number of possible unloaded trips, which can vary depending on the

completeness of the distance matrix for stop points.

Since real life MDVSP-models result in a very large number of integer variables and constraints

there have been numerous modeling and optimization approaches to solve such models. There

are three different approaches among the existing modeling techniques:

• Path-oriented - leading to set partitioning formulation [RiSo94],

• Arc-oriented - leading to multi-commodity flow formulation [FoHW94],

• Combinations of these two approaches [CDFT89].

For an overview of the various modeling and optimization techniques see [KlMS06].

In all these models the possible trip connections are considered explicitly and the number of

such connections, corresponding to the number of integer variables, grows quadratic as a

function of the number of loaded trips. Therefore, models with several thousand scheduled trips

become too large to be solved in a reasonable amount of time by standard integer programming

software. Various techniques to reduce the number of possible connections have been proposed

in the literature. Some approaches discard arcs with too long waiting times; others generate arcs

applying the column generation idea to the network flow representation.

The model used in this paper is based on a time-space network based modeling approach

described in [MelKl02, GiKS05, KlMS06]. For completeness we will describe in the following

section the underlying mathematical model in its simplest form.

2 The multi-depot multi-vehicle type scheduling problem (MDVSP)

We define the vehicle scheduling problem (VSP), arising in public bus transportation, as the

task of building an optimal set of rotations (vehicle schedule), such that each trip of a given

timetable is covered by exactly one rotation. For each trip the timetable specifies a departure

time and an arrival time with start and end stations respectively.

Within a bus tour consisting of several (loaded) service trips chained with each other, the use of

deadhead trips (unloaded trips between two end stations) often provides an improvement in

431

order to serve all trips of a given timetable by a minimum number of buses. Thus a work day for

a given bus is defined as a sequence of trips, deadheads, waiting times at stations (parking

stops) and pull-out/pull-in trips from/to the assigned depot. Since deadhead trips mean an

additional cost factor, minimization of this cost and minimization of waiting time cost are

important optimization goals.

There are several variations of the bus scheduling problem involving different side constraints

or numbers of depots and / or of bus types. The constraints and optimization criteria may differ

from one problem setting to another. The presented model can be modified such that several

practical side constraints such as outsourcing of the parts of timetables to private bus companies

or return trips to different depots can be handled.

The multi-depot vehicle scheduling problem involves several depots, so that a vehicle has to

return in the evening to the same depot from which it started in the morning.

A multi-vehicle-type VSP copes with a heterogeneous fleet of vehicles. For a given trip we

define a group of vehicle types this trip can be served by. In a feasible solution each rotation is

assigned to exactly one depot and to one vehicle type. Furthermore, it is possible to state

capacity constraints for depots to consider the number of parking slots for buses. Other kinds of

capacity constrains set a limit for the number of available vehicles of certain bus types and for

the number of certain type vehicles in a given depot.

Time-space network (TSN) models have been proposed for routing problems in airline

scheduling [HBJM95], because they are advantageous in modeling possible connections

between arriving and departing flights. In a time-space network, connections within a location

are realized by using a time line that connects all possible landing and takeoff events within the

location. Thus, there is no need to explicitly model connections for each feasible pair of events

within a location. Time-space network models were not used for bus scheduling problems until

now, because, compared to airline scheduling where deadheading is generally not allowed, bus

scheduling permits unrestricted deadheading. Thus the advantages given by TSN remained

negligible, because of too many deadhead arcs.

However, as was shown in [MelKl02, GiKS05, KlMS06] a new modeling technique exploits

the advantages of TSN models for bus scheduling problems. A crucial modeling technique is

aggregation of possible trip matches, which allows a drastic reduction in model size. This

432

modeling technique allows the solution of large practical MDVSP models with exact solution

algorithms such as integer programming.

Let N = {1,2,…,n} be the set of trips, and let D be the set of depots. The depot is here defined as

a combination of a depot and a vehicle type. The vehicle scheduling network Gd = (Vd,Ad)

corresponding to depot d is defined as an acyclic directed graph with nodes Vd and arcs Ad. Let
d
ijc be the vehicle cost of arc (i,j)∈Ad , which can be a function of travel and idle time. The

vehicle cost of arcs representing idle time activity in the depot is 0. Furthermore, a fixed cost for

using a vehicle is set on the circulation arc. Let Nd(t)∈Ad be the arc corresponding to trip t in

the vehicle scheduling network Gd . Decision variable d
ijx indicates whether an arc (i,j) is used

and assigned to the depot d or not. An upper bound d
iju is defined for each decision variable as

follows:

⎪
⎩

⎪
⎨

⎧

=
 vehicles.available ofnumber maximum theis M whereotherwise, M,

ddepot for capacity theis u wherearcn circulatio a toscorrespond xif ,u
 trip timetablea toscorrespond x if ,1

u dd
ij

d

d
ij

d
ij

The MDVSP model can now be formulated as

 xc min

Dd Aji

d
ij

d
ij

d
∑ ∑
∈ ∈),(

 (1)

 D d ,V i 0, x - x dd
ji

}Ai)(j,:{jAjij

d
ij

dd
∈∀∈∀=∑∑

∈∈ }),(:{

 (2)

 N n 1, x
(n)Nj)(i, D,d

d
ij
d

∈∀=∑
∈∈

 (3)

 D d ,A j)(i, ,u x 0 dd
ij

d
ij ∈∀∈∀≤≤ (4)

 D d ,A j)(i, integer, x dd
ij ∈∀∈∀ (5)

The objective (1) is to minimize the sum of total vehicle costs. Constraints (2) are flow

conservation constraints, indicating that the flow into each node equals the flow out of each

433

node, while constraints (3) assure that each trip must be covered by exactly one vehicle. This is

a time-space network model based on a multi-commodity flow formulation. It should be

mentioned that some integer variables in the MDVSP model can be declared as continuous

variables. They obtain automatically integer values in a feasible integer solution.

3 Solving the Linear Programming relaxation of MDVSP-models

Real life MDVSP-models are usually very large. The following table represents real life models

of the PTV AG and the Decision Support & OR Lab of the university Paderborn. The number

of depots is actually depot-vehicle-type combinations, as mentioned above, and thus

corresponds to the terminology in [Löbe99].

MDVSP model instances Integer model sizes
City #trips #stations #v. types #depots rows variables Int. vars. nonzeros
Halle1 2047 21 3 2 14997 53249 40387 113069
Halle2 2047 21 3 3 21939 87128 67367 184111
Halle3 2047 21 3 4 29031 118768 91957 250675
Mun1 1808 76 1 19 52303 478823 429088 981163
Mun2 3054 49 1 9 61254 573300 515530 1174095
Mun3 11062 161 12 19 163142 1479833 1330580 3031285

Table 1: MDVSP model instances and corresponding integer model sizes

All successful solution methods to solve general integer optimization methods are based on a

branch-and-bound / cut approach. A key role plays the solution of the LP-relaxations: the initial

LP and the LPs corresponding to subproblems (nodes) in the branch-and-bound / cut tree.

There are three competitive solution algorithms to solve general LP-models [Bixb02]:

• primal simplex method, the oldest simplex solution algorithm [Dant63]

• dual simplex method, which has become a strong contender over the years

[Lemk54, Bixb02, Kobe05, KoSu07]

• Interior point algorithms, also called barrier algorithms [Karm84, Mehr92,

Mész96].

It is well known, that there are problem classes where each of those algorithms works best.

Furthermore each method has fundamental advantages and disadvantages:

434

A fundamental advantage of the simplex methods is that an optimal LP solution is a basic

solution. This means that only basic variables may have values between their bounds. Nonbasic

variables (except free variables) have values at their lower or upper bound. Most lower bounds

of practical models are zero. Therefore, an optimal basic solution has typically a smaller number

of nonzero activities than an optimal solution produced by an interior point method. A basic

solution exploits furthermore a tight linear programming relaxation of an integer model. The

simplex method has in addition very good warm start capabilities if an LP-model is slightly

modified and a nearly optimal basic solution is available. The simplex method is therefore the

method of choice for solving LPs during branch and bound / cut algorithms. State-of-the-art

dual simplex codes are in general superior to primal simplex codes. However both codes are

dependant on each other that is the dual requires frequently the primal to remove a cost

perturbation and the primal requires frequently the dual simplex code to remove a bound

perturbation [KoSu07].

Recent interior point technology is based on primal-dual methods [Mehr92, Mész96]. There are

large LP-models which can be solved much faster than with the best simplex codes. The

number of iterations for an interior point method is typically relatively small (20-80) and

independent of the size of the problem. The main work of an iteration is the solution of a

symmetric, positive definite system of linear equations. A symbolic Cholesky factorization can

be computed once by using an ordering algorithm [GeLi81]. The number of nonzeros in the

Cholesky factorization is a key factor for the performance of the interior point method and is

strongly influenced by the ordering algorithm used to compute the pivot sequence. It is

therefore important, in particular for very large LP-models, to experiment with the different

ordering heuristics for a given model class. The Cholesky factorization has in general much

more nonzeros than LU-factorizations in a simplex type algorithm. The use of an interior point

method therefore requires a much larger amount of main memory than the simplex method.

This behavior rules out the use of interior point methods for very large models on some system

platforms such as a classical Windows XP-system with 2 GB address limit (see Table 2).

Another disadvantage is a very limited warm start capability which is required during branch-

and-bound / cut because the similarity of LP subproblems can be exploited by the simplex

method but not by the interior point method.

435

Interior point methods do generally not produce a basic solution. In many situations (integer

programming, tight linear programming relaxations, save / restore of basis) basic solutions are

necessary. There are “cross over” algorithms, also called (optimal) basis identification which

can be used to produce an optimal basic solution from an optimal interior point solution

[Ande99]. These algorithms are specialized simplex algorithms. The crossover method used in

MOPS uses the numerical kernels of the simplex method.

The optimization system MOPS [MOPS06, Suhl94] contains three state-of-the-art engines

which were tested on the MDVSP models. The interior point method in MOPS is based on the

work of C. Mészáros [Mész98]. The dual simplex method was recently completely new

designed and implemented [Kobe05, KoSu07] and is one of the best implementation according

to our benchmarks. A key question was initially which engine is best suited to solve the initial

LP. It was clear from the beginning that the primal simplex method will probably not be

competitive to the other methods on the MDVSP problems. The numerical experiments with the

smallest model Halle1 in Table 1 shows the expected results (see Table 2). We ran a

comparison against Cplex 9.1 [ILOG06] and it shows the same behavior. As a consequence the

larger models were only tested with dual simplex and barrier with crossover (x-over). The

smallest models Halle1 and Halle2 were solved faster with the dual simplex. When model sizes

get larger the barrier code outperforms the dual simplex. This observation is in line with the

fundamental advantage in computational complexity of the barrier code compared to a simplex

code. The following numerical results are based on a typical Windows XP Workstation with a

32-Bit Pentium Processor. This machine has a maximum virtual address space limit of

2 Gigabytes (GB). Under certain conditions an address limit of 3 GB is possible. This type of

workstation is frequently used in practice for running such applications. As can be seen in

Table 2 model Mun3 cannot be solved with the barrier code on such a machine, because the

required virtual memory exceeds 3 GB. We were also not able to solve that model with the

32-Bit barrier code of Cplex 9.1 on this machine.

436

MOPS times (secs) on PIV (3,4 GHz, WinXP) to solve the initial LP Name
Primal simplex Dual simplex Barrier + x-over

Halle1 281.69 21.28 33.19
Halle2 Nt 61.38 73.06
Halle3 Nt 176.05 108.81
Mun1 Nt 3051.58 1519.33
Mun2 Nt 4266.36 798.24
Mun3 Nt 15012.08 nem

nt: not tested, nem: not enough (virtual) memory, i.e. > 2 GB

Table 2: LP Solution times on a 32 Bit Windows workstation with MOPS (32)

Model Mun3 was also solved by Cplex 9.1 on the same 32 bit workstation. The barrier code of

Cplex 9.1 was also not able to solve this model due to insufficient memory. The dual simplex

engine of Cplex 9.1 solved the initial LP of Mun3 in 14832.17 secs. The purpose of this paper is

not to make a comparison between Cplex and MOPS. The test just shows that the current state-

of-the-art system Cplex required also several hours computing to solve this model.

A recent development for Windows / Intel workstations are processor and memory architectures

which allow 64 bit addressing and integer arithmetic. Microsoft provides the operating system

WindowsXP (x64). Intel offers C++ and FORTRAN compilers which generate 64 bit code for

such machines. This development is very important from a practical point of view because

Intel / Windows system platforms are used predominantly in industry. Virtually all 32-bit

software systems run unchanged on such 64 bit systems allowing the parallel use of 32 bit and

64 bit software systems.

It was a straightforward task to recompile MOPS using the Intel Compilers and generating a 64

bit library. The following numerical results with MOPS are based on a workstation with Intel

Xeon processor (3.4 GHz) with Intel 64 bit memory technology 64MT, 4 GB of main memory.

Both CPUs are Xeon Processors with a clock speed of 3.4 GHz. The internal data caches are

identical with 16 KB. The 32 Bit CPU has an on board L2 cache with a size of 1 MB ECC

whereas the 64 Bit CPU has an on board L2 cache with a size of 2 MB ECC resulting in a much

higher memory bandwidth of the 64 Bit CPU. Furthermore the 64 Bit CPU has more registers

and additional instructions. Despite of the same compiler releases one can expect some

differences in the compiled code.

437

MOPS (64) times (secs) on Xeon (3,4 GHz, Win x64 to solve initial LP Name
Dual simplex Barrier + x-over

Mun1 2895.09 1496.81
Mun2 4106.36 778.24
Mun3 11336.45 3490.20

Table 3: LP Solution times on a 64 Bit Windows workstation with MOPS64

One surprise was the result with the dual on Mun3. The time was nearly 4000 secs faster than

the result for the 32 bit version. It is not clear which of the possible influence factors (compiler,

cache size and architecture) was responsible for this result.

A key influence on the running time of the interior point code has the ordering heuristic used for

the Cholesky factorization. There are several well known ordering heuristics such as minimum

degree, minimum local fill-in, and nested dissection [GeLi81] and more recent orderings such

as multisection [AsLi98, Mész98] which are used in MOPS. In the default ordering we perform

the minimum degree and the nested dissection ordering and compare the computed number of

nonzeros; then we select the better ordering i.e. with the fewer number of nonzeros. However

the best results for the MDVSP-models are based on the multisection ordering which was used

throughout in the benchmarks. The following table contains a comparison of two ordering

heuristics with respect to the number of nonzeros and solution times of three models of Table 1

on the Xeon (3.4) and Winx64. Note, that most other LP-models are solved faster with the

default ordering.

default ordering multisection ordering Name
Nonzeros in Cholesky Barrier time (sec) Nonzeros in Cholesky Barrier time (sec)

Mun1 63,648,566 3567.72 45,470,777 1496.81
Mun2 26,887,134 1206.81 22,688,525 778.24
Mun3 84,710,597 5689.22 71,388,781 3490.20

Table 4: LP Solution times and Cholesky nonzeros with the MOPS barrier code and two ordering heuristics

4 Solving the MDVSP-models

The time-space network based models presented above have automatically a very tight LP-

relaxation. The relative gap between the value of the LP-relaxation after IP-Preprocessing and

an optimal integer value is extremely small, sometimes zero. Almost all variables have integer

values in the optimal basic solution of the LP-relaxation. Due to the aggregation of possible

connections, the mathematical model tends to use one general integer variable instead of several

438

binary variables. The optimal vehicle schedule is computed in the post-processing phase from

the optimal network flow via flow decomposition [KlMS06].

The normal IP-Preprocessing [SuSz94] to tighten the LP-relaxation does not produce any

significant improvements. Neither lifted cover cuts [SuWa04] nor clique or implication cuts are

violated in the LP-relaxation(s). Only Gomory mixed integer cuts are able to tighten the LP-

relaxation on some MDVSP-models, reducing the fractionality of the LP-solution. However the

Gomory cuts can be quite dense. The number of nonzeros depends on the density of row k of

the inverse. Therefore inserting the cut may produce significant fill in the following LU-

factorizations of the modified basis matrices reducing the iteration speed in the branch-and-

bound / cut algorithm. Therefore the decision whether a cut is actually appended to the original

model is crucial, in particular for very large models. This aspect is under further investigation

and is not discussed here.

An initial heuristic is used to find good integer solutions quickly. MOPS contains different

heuristics prior to the branch-and-cut algorithm. We use the relaxation-based search space

(RSS) heuristic for solving the MDVSP-models which produces the overall best results.

The RSS heuristic distinguishes between basic and nonbasic integer variables of the current LP

solution after the initial IP-Preprocessing. Let nb the number of nonbasic variables in the LP-

solution and δ a parameter between 0 and 1 (default is 0.7). The δ*nb nonbasic variables with

the largest magnitude of their reduced costs dj are fixed to the corresponding lower or upper

bound depending on the sign of dj.

We define two rounding intervals [0,rl] and [ru,1] where 0 ≤ rl < ru ≤ 1. The default values are

rl = 0.1 and ru = 0.9. For a basic integer variable j∈JI with a value ⎣ ⎦ jjj fxx += , fj specifies its

fractional part, where 0≤ fj<1. Variable xj is rounded to ⎣ ⎦jx if fj∈[0,rl] and to x
fff

j

6 7

 if fj∈[ru,1].

In other words “quasi integer” basic variables are rounded to the next integer value. The LP

relaxation is solved after rounding all quasi integer variables. Several rounding iterations can be

done as long as the LP solution is feasible, not integer and variables are rounded. In case of

infeasibility the last rounding step is undone. The rounding intervals can be enlarged if no

variable can be fixed in the first pass of rounding and reduced, if the LP-relaxation is infeasible

in the first rounding pass or the LP-relaxation is integer.

439

Basic Algorithm of rounding process
1 For i=1 to number of rounding iterations do
2 For j=1 to number of all variable do
3 If variable is fixed or continuous cycle
4 []jjj xxf −=
5 If fj ≤ rl then
6 Fix variable to ⎣ ⎦jx
7 Else if fj ≥ ru then
8 Fix variable to x

ffff
j

6 7

9 End if
10 Perform bound reduction on all variables
11 If problem is infeasible then
12 Clear settings of last rounding pass
13 If first rounding pass then reduce rounding intervals
14 Exit
15 End if
16 End for
17 If problem is infeasible then
18 If first rounding pass then
19 Cycle
20 Else
21 Exit
22 End if
23 End if
24 If no variables are rounded in this pass then
25 If first rounding pass then
26 Enlarge rounding interval
27 Cycle
28 Else
29 Exit
30 End if
31 End if
32 Solve LP
33 If problem is infeasible then
34 Clear settings of last rounding pass
35 If first rounding pass then
36 Reduce rounding intervals
37 Cycle
38 End if
39 Exit
40 Else if problem is integer then
41 Clear all settings
42 Reduce rounding intervals
43 End if
44 End for

440

The branch-and-bound engine of MOPS is called after rounding. If the search in the restricted
search space is ended before one of the termination criteria (see below) is satisfied, the
rounding intervals are reduced and the rounding procedure is repeated. The RSS heuristic is
terminated if

• a given node limit is reached (default 50 nodes)

• the relative gap between the value of an integer solution found in the heuristic

and the value of the LP relaxation after IP-Preprocessing is less than a threshold

(default is 5%, i.e. 0.05)

• a time limit is reached (default is model size dependant).

Basic Algorithm of RSS heuristic prior to the branch-and-bound-algorithm
1 Solve LP after IP-Preprocessing
2 Fix the δ*nb variables with the maximum magnitude of reduced costs to the

corresponding lower or upper bound
3 Do
4 Perform Basic Algorithm of rounding process
5 Use branch-and-bound algorithm until node limit, time limit or gap is reached
6 Clear settings
7 If termination criterion is reached Exit
8 Reduce size of rounding intervals
9 Enddo

5 Numerical results on real life models

Table 5 summarizes the computational results of the test problems presented in Table 1. Since

the heuristic is also a specialized branch-and-bound-algorithm where the main work is to solve

an LP at given node the nodes are not distinguished between heuristic and branch-and-bound

algorithm. The heuristic is executed at most 50 nodes. The branch-and-bound algorithm is used

thereafter to prove optimality.

Name initial LP time (sec) Nodes in heuristic + b&b Total time (sec)
Halle1 33.19 0 33.77
Halle2 73.06 0 73.19
Halle3 108.81 0 115.81
Mun1 1527.81 0 1665.34
Mun2 798.24 10 879.13
Mun3 3490.20 0 3586.45

Table 5: Solution times on a 64 Bit Windows workstation with MOPS64

441

With the proposed modeling approach in [KlMS06] we were able to solve quite large problems

in an acceptable amount of time. This required the selection of the: proper LP-engine, ordering

heuristic for the Cholesky factorization, starting heuristic, branching and node selection

strategies.

One remark on “acceptable” solution times is in order. Running times of a couple of hours do

not seem ideal. However, the MDVSP-models are not solved on a daily basis. It is therefore

acceptable to run such models over night.

6 Conclusion

MDVSP models from real life applications as modeled by time-space network flow models

[MelKl02, GiKS05, KlMS06] can now be solved efficiently by a customized version of the

optimizer MOPS. Customization requires only the setting of a few parameters. The progress in

solution times is based on several improvements of the computational engines, an improved

heuristic and the use of 64 bit platforms (Windows XP x64). Many of these instances were not

solvable with the existing approaches or the running time was too long. It should be mentioned

that the improvements in algorithms and implementation are also beneficial to many other

applications based on linear mixed-integer programming models.

442

References

[Ande99] Andersen, E.D.: On exploiting problem structure in a basis identification

procedure for linear programming, In: INFORMS Journal on Computing 11

(1999) 1, S. 95-103.

[AsLi98] Ashcraft, C. and Liu, J.W.: Robust Ordering of Sparse Matrices using

Multisection, In: SIAM Journal on Matrix Analysis and Applications 19 (1998)

3, S. 816 – 832.

[BeCG87] Bertossi, I., Carraresi, P., Gallo, G.: On some matching problems arising in

vehicle scheduling models, In: Networks 17 (1987), S. 271-281.

[Bixb02] Bixby, R. E.: Solving real-world linear programs: a decade and more of progress,

In: Operations Research 50 (2002) 1, S. 3-15.

[CDFT89] Carpaneto, G., Dell’Amico, M., Fischetti, M., Toth, P.: A branch and bound

algorithm for the multiple depot vehicle scheduling problem, In: Networks 19

(1989), S. 531-548.

[Dant63] Dantzig, G.: Linear Programming and Extensions, Princeton University Press,

Princeton (1963).

[FoHW94] Forbes, M. A., Holt, J. N., Watts, A. M.: An exact algorithm for multi-depot bus

scheduling, In: European Journal of Operational Research 72 (1994), S. 115-

124.

[GeLi81] George, A. and Liu, J.W.: Computer Solution of Large Sparse Positive Definite

Systems, Prentince-Hall Inc. (1981).

[GiKS05] Gintner V., Kliewer N. and Suhl L.: Solving large multiple-depot multiple-

vehicle-type bus scheduling problems in practice, In: OR Spektrum 27 (2005), S.

507-523.

443

[HBJM95] Hane, C., Barnhart, C., Johnson, E.L., Marsten, R.E., Nemhauser, G.L.,

Sigismondi, G., The Fleet Assignment Problem: Solving A Large Integer

Program, In: Mathematical Programming, 70 (1995) 2, S. 211-232.

[ILOG06] ILOG homepage: http://www.ilog.com/

[Karm84] Karmakar, N.: A new polynomial time algorithm for linear programming, In:

Combinatorica 4 (1984), S. 373-395.

[Kliw05] Kliewer, N.: Optimierung des Fahrzeugeinsatzes im öffentlichen

Personennahverkehr, PhD-Thesis at the University of Paderborn, II - Fakultät für

Wirtschaftswissenschaften / Department Wirtschaftsinformatik, (2005)

[KlMS06] Kliewer, N.; Mellouli T. and Suhl L.: A time-space network based exact

optimization model for multi-depot bus scheduling, In: European Journal of

Operational Research 175 (2006), S. 1616-1627

[Kobe05] Koberstein, A.: The Dual Simplex Method: Techniques for a fast and stable

implementation, PhD-Thesis at the University of Paderborn, II - Fakultät für

Wirtschaftswissenschaften / Department Wirtschaftsinformatik, (2005)

[KoSu07] Koberstein, A. and Suhl U.H.: Progress in the Dual Simplex Algorithm for

solving large scale LP problems: Practical dual phase 1 algorithms, to appear

2007 in Computational Optimization and Applications

[Lemk54] Lemke, C.E.: The Dual Method of Solving the Linear Programming Problem, In:

Naval Research Logistics Quarterly 1 (1954), S. 36-47.

[Löbe99] Löbel, A.: Solving Large-Scale Multiple-Depot Vehicle Scheduling Problems,

In: Computer-Aided Transit Schedulin 471 (1999), S. 193-220.

[Mehr92] Mehrotra, S.: On the implementation of a primal-dual interior point method, In:

SIAM Journal on Optimization 2 (1992) 4, S. 575-601.

[MelKl02] Mellouli, T. und Kliewer, N.: Umlaufplanung im öffentlichen Verkehr mit

mehreren Depots und Fahrzeugtypen: Neue Lösungsmodelle und praktische

444

Aspekte, In: Tagungsbericht der HEUREKA'02 (Optimierung in Verkehr und

Transport), FGSV-Verlag, Köln (2002), S. 63-76.

[Mell03] Mellouli T.: Scheduling and Routing Systems in Public Transport Systems:

Modeling, Optimization, and Decision Support, Habilitationsschrift, Universität

Paderborn (2003).

[Mész96] Mészáros, Cs.: Fast Cholesky Factorization for Interior Point Methods of Linear

Programming, In: Computers & Mathematics with Applications 31 (1996), S.

49-51.

[Mész98] Mészáros, Cs.: Ordering heuristics in interior point LP methods, In: New Trends

in Mathematical Programming, (Eds.: F Gianessi, S. Komlósi und T. Rapcsák),

Kluwer Academic Publishers (1998), S. 203-221.

[MOPS06] MOPS - Mathematical Optimization System homepage: http://www.mops-

optimizer.com.

[RiSo94] Ribeiro, C., Soumis, F.: A column generation approach to the multiple-depot

vehicle scheduling problem, In: Operations research 42 (1994) 1, S. 41-52.

[Suhl94] Suhl, U.H.: MOPS - Mathematical OPtimization System, In: European Journal

of Operational Research 72 (1994), S. 312-322.

[SuSz94] Suhl, U.H. and Szymanski R.: Supernode Processing of Mixed-Integer Models,

In: Computational Optimization and Applications 3 (1994), S. 317-331.

[SuWa04] Suhl, U.H. und Waue V.: Fortschritte bei der Lösung gemischt-ganzzahliger

Optimierungsmodelle, In: Quantitative Methoden in ERP und SCM, (Eds.: L.

Suhl und S. Voss), DSOR Beiträge zur Wirtschaftsinformatik (2004), S. 35-53.

445

446

Victor Pankratius
Rechteck

	Association for Information Systems
	AIS Electronic Library (AISeL)
	February 2007

	Progress in solving large scale multi-depot multi-vehicle-type bus scheduling problems with integer programming
	Uwe H. Suhl
	Swantje Friedrich
	Veronika Waue
	Recommended Citation

	WI2007

