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Abstract 

The purpose of this paper is two-fold: The first is to develop an agent-based simulation 
model for simulating alliance formation processes of the business world, and to analyze 
stability of alliance structures generated by it. The second purpose is to apply the simulation 
model to the civil aviation industry for validating it as well as for obtaining insightful and 
unique findings about the industry. As the results, we find the alliances in the industry are 
basically formed for network connectivity rather than management complementarities. 
Wealso suggest possibility that American Airlines and British Airways may may get 
separated.  
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1 Introduction 
 

We can observe alliance formations very commonly everywhere in the world and 
anytime in the history. On the present international political scene, for example, the US is 
eager to increase its alliance members for managing the Iraqi problem through formal and 
informal negotiations.  

The industrial world is not exception, of course. In particular, in the industries like 
banks, life insurance and chemical companies as well as the civil aviation industry, alliance 
formations are often drastic due to many and interacted factors such as business globalization, 
R&D cost management and changes of product life cycle. 

In most situations we can find not only traditional pairwise (company-to- company) 
coalitions but also alliances of a variety of sizes. The purpose of this paper is two-fold: The 
first is to develop an agent-based simulation model for simulating alliance formation 
processes of the business world, and to analyze stability of the                 



generated alliance structures. An alliance structure is a collection of alliances and simply a partition

of the set of agents or decision makers. In the former our focus is on how each agent forms alliances

and/or coalitions by seeking ”good partners” from a short-term viewpoint. The basic ideas of the

algorithm come from Landscape Theory originally proposed by R.Axelrod [1]. It provides a well-

known agent based simulation model for analyzing and predicting alliance formation processes and

has been applied to several actual problems to obtain interesting insights [1][4]. However, though its

fundamental assumptions seem reasonable, the basic algorithm depends on rather strong and limited

premises, as discussed in the next section. We will generalize it by relaxing some of them to propose

a generalized Landscape Theory.

In the latter, on the other hand, we are interested in long term decisions of each agent on whether

it will keep to stay in its present alliance or leave it. Since the Landscape Theory, either original or

generalized, is mainly interested in alliance formation process, whether or not an alliance structure

generated is stable is out of its main concern. In this sense arguments here on stability of alliance

structures should complement the Landscape Theory.

The second purpose is to apply the simulation model to the civil aviation industry for validat-

ing it as well as for obtaining insightful and unique findings about the industry. Indeed, since the

Congress of the United States passed the Airline Deregulation Act in 1978, this industry has formed

and dissolved quite a plenty of comprehensive alliances. That is why we choose the aviation industry

as a target of our application. In early 1990s, the airlines in the United States were very concerned

with comprehensive alliances to protect their rights and interests of the international flights, so that

as of 2000 we have the four major alliances: Star Alliance, One World, Sky Team and NWA + KLM

Alliance. E ach of them includes airlines in the United States, Europe and Asia [3][6].

The structure of paper is as follows: In Section Two we will generalize the Landscape Theory to

develop our algorithm for simulating alliance formation processes. Then, Section Three introduces

indices to measure stability of an alliance structure. Finally, in Section Four we apply it to the civil

aviation industry and discuss the results.

2 Generalized Landscape Theory for Simulating Alliance For-
mation Process

The original Landscape Theory [1] makes two basic assumptions. The first assumption is that an

agent is myopic in its assessments. In other words, an agent evaluates how well it gets along with any

other agent independent of all the other members in the system. By making only pairwise evaluations,



the agent avoids the difficult problem of assessing all combinations of agents at once.

The second is that adjustments to alliances take place by incremental movement of individual

agent. This rules out the possibility that a coalition will form within an alliance and then switch the

alliance as a block. This strong assumption is appropriate when information regarding payoffs is

uncertain, resulting in causal ambiguity between alliance actions and payoffs.

Under these assumptions, the theory simulates an alliance formation process by supposing that

each agent behaves in such a way that it tries to minimize its frustration, based on the following two

key premises. The first is that each pair of agents, i and j in N , has propensity, pij , −1 ≤ pij ≤ 1,

to work together, where N = {1, 2, . . . , n} denotes a set of agents. It is a measure of how willing

the two agents are to be in the same alliance together. The propensity is positive and large if the two

agents get along well together and negative if they have many sources of conflict. To make the theory

operational, it is critical that propensity is assumed symmetric, that is, pij = p ji for every i and j in

N .

The second is that each agent belongs to one and only one grouping and that the number of

alliances is restricted to two, i.e.,, at any moment N is partitioned into two parties.

Though the two basic premises underpinning the theory make the model simple and operational,

they do not always reflect alliance formation processes in real situations. Our generalized Landscape

Theory relaxes the two premises as follows:

• Each agent i is associated with propensity pij but it may be asymmetric.

• Each agent identifies another agent only as either a partner or non-partner, but the number of

alliances may be more than two.

Without the two basic premises, we need, instead, to add the following third assumption to the

two basic assumptions (i.e., myopic agents and incremental movement) to make our algorithm work.

That is,

• Each agent cannot identify all propensities between any pair of agents, but can estimate how it

is seen by the other agents and knows their propensities toward it.

It implies that an agent is not able to see the whole world due to its bounded rationality but can

estimate ”reputation” about itself.

Under those settings, we formulate our model as follows: Let N be a set of agents. Given an

alliance structure X , a partition of N , we define distance dij (X) between i and j ∈ N by

dij (X) =

{
0, if i and j are in the the same alliance
1, otherwise



It is because we suppose that for any i and j ∈ N i does care whether j belongs to the same

alliance or not, but does not care which alliance j belongs to [2].

Using distance and propensity, we first define a measure of frustration of i caused by X by

Fi(X ) =
∑

j 6=i

s j pij dij (X)

where s j is the size of j , pij is the propensity of i to be close to j , and dij (X) is the distance from i

to j in X . The summation is taken over all agents except j = i .

Note that the definition of frustration weights propensities to work with or against another agent

by the size of the other agents. This takes account of the fact that a source of conflict with a ”small”

agent is not as important for determining alliances as an equivalent source of conflict with a ”large”

agent. We can also observe that the myopic assumption is built into the definition of frustration,

because a given agent’s evaluation of an alliance depends on its pair wise propensities with each of

the other agents and does not take into account any higher-order interactions among groups of agents.

When we run algorithm, we use weighted frustration Ei(X) of agent i in X defined by

Ei(X) = si Fi (X) = si

∑

j 6=i

s j pij dij (X).

On the other hand, since, due to the third assumption, agent i can identify every p ji , j ∈ N , we

define weighted frustration E−i(X) of the other agents toward i caused by X by:

E−i(X) = si

∑

j 6=i

s j p ji d ji (X).

An basic idea of our algorithm is that each agent is not so selfish and cares about the other agents

in the world to some extent; formally, each agent i tries to shift its alliance in order to decrease Ei(X)

as much as possible, as far as the shift does not increase E−i(X) toward i . The idea is implemented

as follows:

1. The first step creates a list of initial alliance structures. The initial alliance structures cover all

alliance structures, or all possible partitions of N .

2. The second step selects an alliance structure, say X , from the list.

3. At the third step each agent i generates a set of adjacent alliance structures to X . An adjacent

alliance structure to X for i is an alliance structure in the list generated from X by a move of i .



4. At the fourth step i selects its optimal adjacent alliance structure X∗
i by solving the problem

min
X ′:adjucent alliance of X

Ei (X ′) − Ei (X) s.t. E−i(X ′) − E−i (X) ≤ 0.

X∗
i is such an alliance structure that attains the lowest value among all the adjacent alliance

structures to X under the condition that E−i(X ′) − E−i (X) is not positive. This formulation

explicitly implements a kind of group-minded behavior of agents described above. X∗
i is an

alliance structure expected to occur next to X .

5. The fifth step randomly selects an agent, say k, from N by employing a roulette selection rule

and associates k with the optimal alliance structure X∗
k obtained at the previous step. The

random selection is carried out according to the rule: To each i we assign probability P(i) =

(1/si )
1/(6 j (1/s j ))

, based on the idea that the smaller the agent is, the easier it can move between the

alliances.

6. At the sixth step, if X∗
k = X holds, the algorithm records X∗

k = X as an equilibrium alliance

structure and returns to the second step to try another initial alliance structure. Otherwise, we

go back to the fifth step to try another k.

7. The seventh step checks whether all the initial alliance structures have been examined at the

second step or not. If not, the flow goes back to the second step. If all the initial alliance

structures have examined, we have created a list of the equilibrium alliance structures and the

algorithm stops.

3 Stability of Alliance Structures

In the generalized Landscape Theory developed in the previous section, each agent is, based on short-

term rationality, assumed to try to seek good partners and to exclude ”opponent” agents from its

alliance as much as possible when making its alliance. That is, it cares only about frustration to

agents outside its alliance and ignores that to agents inside its alliance.

Once a alliance structure has settled, however, it is natural for each agent to worry about frustration

from the members in the same alliance because of the long-term ”comfortability”. In this section we

define such an index as to measure frustration within an alliance.

Let X be an alliance structure and Ak (k = 1, 2, · · · , m) be an alliance in X , i.e., X = {Ak |k =

1, 2, · · · , m}. Let us suppose the number of agents in alliance Ak is nk , where
∑m

k=1 nk = n. First we



define discontent of agent i against j by qij = (1 − pij )/2, where 0 ≤ qij ≤ 1 and qii = 0. It is clear

that it takes the highest value if the propensity is −1 while the lowest value if the propensity is 1.

Next, let us define total-discontent Qi of agent i ∈ Ak as a weighted sum of its discontent to other

agents in the same alliance by Qi(X) =
∑

j∈Ak
(si/s j )qij . The weight is set such that discontent qij

is more discounted for a relatively more important j , following the same principle of the Landscape

Theory that the larger the size of an agent is, the more important the agent is. We do not necessarily

mean that an agent with high value of total-discontent immediately withdraws from its alliance; rather

the total-discontent indicates possibility of withdrawal of the agent in the near future.

Under these preparations we define stability of an alliance in terms of the average and uniformity

of the total-discontent of all the agents in it. It seems intuitively appropriate that the lower the average

of total-discontent of the agents in the alliance is and the more uniform total-discontent is located

among the agents in it, the more stable the alliance is from the long-term viewpoint.

This intuition induces stability index S(Ak) of Ak , (k = 1, 2, . . . , m) defined by

S(Ak) =
C(Ak)

R(Ak)

where C(Ak) is an index for measuring the uniformity while R(Ak) is one for measuring the average.

If R(Ak) = 0, then we define S(Ak) = ∞. We adopt the entropy function, a well-known measure

of uniformity [5], as C(Ak); C(Ak) = −
∑

i∈Ak
Q̃i lognk

Q̃i , where Q̃i = Qi/(
∑

i∈Ak
Qi ) is the

normalized total-discontent. The average of the total-discontent in Ak is simply defined as R(Ak) =

(1/nk)
∑

i∈Ak
Qi .

By employing S(Ak), k = 1, 2, . . . , m, we now measure stability of alliance structure X itself by

S(X ) = min
Ak∈X

S(Ak).

We claim that the higher the value of S(X) is, the more stable the alliance structure X is.

4 Application to the Civil Aviation Industry

Now we will return to the initial problem: First we will simulate alliance formation processes in the

civil aviation industry by our generalized Landscape Theory and, then, we will analyze long term

stability of the resulting alliance structures.

4.1 Data Preparations

We will examine twelve airlines; four each from the United States, Europe and Asia, all of which

have given great influence on the formation of comprehensive alliances in the aviation industry (refer



Table 1: Selected twelve airlines

United States Europe Asia
American Airlines (AA) Air France (AF) Japan Airlines (JL)

Delta Air Lines (DL) British Airways (BA) Korean Air (KE)
Northwest Airlines (NA) KLM Royal Dutch Airlines (KL) All Nippon Airways (NH)

United Airlines (UA) Lufthansa German Airlines (LH) Cathay Pacific Airways (CX)

to Table 1). Hereafter, however, we will treat KLM and North West as one because of their extremely

strong connection [7].

It is critical how to define the size and propensities of each airline when applying our model. As

far as the sizes of airlines are concerned, we prepare Revenue Passengers (RP) and Revenue Passenger

Kilometers (RPK) as of 2000 (Refer to Table 2).

Table 2 also shows two types of the normalized sizes within the range of 0 ≤ s1
i , s2

i ≤ 10, where

s1
i is the size of airline i measured by RP and s2

i is by RPK while R(s1
i ) is the ranking of airline i

measured by RP and R(s2
i ) is by RPK.

Table 2: The values of RP and RPK of all the agents

No. Airline RP RPK s1
i s2

i R(s1
i ) R(s2

i )

i (million) (million) normalized RP normalized RPK

1 AA 86.0 186550 7.2 9.2 2 2
2 DL 119.9 180797 10.0 8.9 1 3
3 UA 85.0 203093 7.1 10.0 3 1
4 NA + KL 74.9 139459 6.2 6.9 4 4
5 AF 40.0 93334 3.3 4.6 8 6
6 BA 44.5 123197 3.7 6.1 6 5
7 LH 47.0 92200 3.9 4.5 5 7
8 NH 43.7 58817 3.6 2.9 7 9
9 CX 11.8 47097 1.0 2.3 11 10

10 JL 33.9 90492 2.8 4.5 9 8
11 KE 22.1 40606 1.8 2.0 10 11

On the other hand, we use six criteria, Ir , 1 ≤ r ≤ 6, to establish propensities of airline i to j ,

where 1 ≤ i, j ≤ 11. I1 is concerned with whether or not i understands j is alliance-oriented. I2 is

related with whether or not j has code-share agreements with i . Those are the most crucial factors

for alliance formation according to [3]. I3 is concerned with whether or not the mileage is credited to



FFP1 of i when passengers of i travel on flights of j . Although this looks similar to I2, it is not the

case. Code-share agreements are set up for improving network connectivity, while FFP agreementa

are not.

I4 shows whether or not the ranking of j is higher than that of i by six in the two types of sizes:

R(s1
i ) − R(s1

j ) ≥ 6 and R(s2
i ) − R(s2

j ) ≥ 6. I5 expresses whether or not the ranking of j is lower

than that of i by six in the two kinds of sizes: R(s1
j ) − R(s1

i ) ≥ 6 and R(s2
j ) − R(s2

j ) ≥ 6. I4 and

I5 are concerned with difference of the sizes between the airlines. The present paper supposes that an

airline is much larger/smaller than another if the rankings of the sizes of the two are different by six

in both RP and RPK. Six means just a half of the size of the industry. A smaller airline may tend to

be a follower of a bigger one.

I6 expresses the ”regionality”, since it is concerned with whether or not the home ground of j is

different from that of i . This is the criterion which has been important considering alliance formation

historically [3].

Based on them, for each i let us define mi
jr = 1 if Ir is satisfied, and mi

jr = 0 otherwise, where

1 ≤ i, j ≤ 11 and 1 ≤ r ≤ 6. We assume mi
ir = 1 for every i and r . Then, we can obtain a vector

mi
j = (mi

jr )r . Let us illustrate it by taking the case of American Airlines (AA) (i = 1). Since AA

has code-share agreements with JL (i = 10), we set m1
10 2 = 1. By repeating similar procedures, we

can obtain m1
10 = (0, 1, 1, 0, 1, 1).

Finally, we define propensity pij by pij = 6rwr m jr , where each weight wr , 1 ≤ r ≤ 6, is

set such as (0.10, 0.35, 0.10, 0.05, 0.05, 0.35). The setting here emphasizes I2 and I6 by assuming

that the airlines are basically interested in enhancement of network connectivity and extension of

flight networks. According to the definition, for example, propensity of AA to JL is calculated by

p1 10 = 0.35 + 0.10 + 0.05 + 0.35 = 0.85. We later will argue how appropriate the weight setting is.

4.2 Simulation Results and their Findings

Because we believe the alliances are formed under initiative of the airlines in the United States and

Europe, this paper focuses on the behavior of seven airlines in the United States and Europe, i.e.,

i = 1, 2, . . . , 7 in Table 2. We limit the number of the agents to seven due to limitation of our

computer ability as well. The present actual alliance structure is expressed by [1, 2, 3, 4, 2, 1, 3],

which means that i = 1 and 6 are in one alliance while i = 2 and 5 are in another and so on.

First we use RP as the size of each airline and iterate the simulation 5000 times, then we generate

1FFP stands for Frequent Flyers Program.



fifteen equilibrium alliance structures, among which the followings are the five most stable. The last

number of each row shows stability of the alliance structure.

[[1, 2, 3, 4, 2, 5, 3], 2.75737624072494340]

[[1, 2, 3, 4, 2, 1, 3], 1.3359484417440877]

[[1, 2, 3, 4, 2, 1, 5], 1.3359484417440877]

[[1, 2, 3, 4, 5, 1, 3], 1.3359484417440877]

[[1, 2, 3, 1, 2, 4, 3], 1.3071635691998946]

Next, we employ RPK, instead of RP, as the size of each airline and iterate the simulation 5000

times. Then we generate thirteen equilibrium alliance structures. The followings are the five most

stable equilibrium alliance structures.

[[1, 2, 3, 4, 2, 5, 3], 4.895024181860576]

[[1, 2, 3, 4, 2, 1, 3], 1.8172162143436539]

[[1, 2, 3, 4, 2, 1, 5], 1.8172162143436539]

[[1, 2, 3, 4, 5, 1, 3], 1.8172162143436539]

[[1, 2, 3, 1, 2, 4, 3], 1.2827955420320083]

The followings are some of our findings by analyzing the simulation results:

1. As far as the most stable five equilibrium alliance structures are concerned, there is no difference

between the two cases. It implies whether we use ARK or RPK does not affect the stability. It

also shows robustness of our simulations.

2. In the both cases we can see that the second ranked equilibrium alliance structure corresponds

to the present actual one. However, the equilibrium alliance structure where BA (i = 6) is

independent has the highest stability. It suggests that the present One World may be fragile and

it may be possible that AA and BA will get separated in the near future.

3. We can clearly see that in most equilibrium alliance structures the four US-based airlines are

independent of each other and never get together. It implies that they take strong initiative to

make alliances while the others follow them.

4. The weighting vector adopted so far emphasizes w2, code-share agreements and w6, the re-

gionality. Since the effect of the regionality on alliance formation is clear, we now examine

influence by w2. We set w6 = 0.3 in order to fix the influence of the regionality, while we



change w2 within the interval [0.3, 0.35] by 0.01. The other weights are determined such that

any of them do not have outstanding effects. Then, the results for w2 ≥ 0.32 is the same as the

case of w2 = 0.35.

5. We also have a try with a weighting vector (0.30, 0.05, 0.05, 0.15, 0.15, 0.30), which empha-

sizes I1, I4, I5 and I6 by assuming that the airlines form alliances for seeking management

complementarities. Then, our simulations generate stable equilibrium alliances relatively in-

consistent with the real situation, compared with the case of (0.10, 0.35, 0.10, 0.05, 0.05, 0.35).

It implies that the alliance formations in the aviation industry seem to be mainly motivated by

network connectivity rather than by management complimentarities.

5 Conclusions

One of main methodological contributions of this paper is that we investigate alliance formation

processes from two complementary viewpoints; a short-term one and long-term one. By using our

generalized Landscape Theory we could simulate how each agent behave to avoid cooperating with

opponent agents from a short-term viewpoint under some mild conditions. We next explored which

alliance structures are the most stable from a long-term viewpoint by introducing stability indices.

For practical implications from the model, the paper applied it to the aviation industry by defining

sets of parameters in several ways. With the data as of 2000, we illustrated the alliance formations

in the industry are basically motivated by network connectivity rather than management complimen-

tarities. The findings were shown quite robust by conducting sensitivity analysis. We also compared

the present situation with the results derived from the simulation in terms of stability, we suggested

possibility that American Airlines and British Airways, though they behave as coalition members of

One World, may get separated in the near future.
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