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Abstract 

Spatial association rule mining is a kind of 

spatial data mining to carry some interesting and 

implicit knowledge about spatial associations 

from spatial databases. Moreover, many 

excellent studies on Remote Sensed Image (RSI) 

have been conducted for potential relationships 

of crop yield. Lee and Chen [13] proposed a 

two-phase algorithm by creating Histogram 

Generators for fast generating coarse-grained 

spatial association rules, and further mining the 

fine-grained spatial association rules w.r.t the 

coarse-grained frequently patterns obtained in 

the first phase. However during the image 

processing, partitioning the image into parts can 

improve its efficiency; to this point, the concept 

of image blocking is incorporated onto the 

coarse-grained two-phase data mining of spatial 

association rules.  Therefore, an adaptive 

two-phase spatial association rules mining 

method is proposed in this paper to improve 

two-phase method in terms of efficiency.  The 

proposed adaptive method conducts the idea of 

partition on an image for efficiently quantizing 

out non-frequent patterns and thus facilitate 

two-phase process. Such adaptive two-phase 

approache saves much computations and will be 

shown by lots of experimental results in the 

paper. 
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1. Introduction 
Those spatial data, from satellite photos or 

automated data gathering tool, such as remotely 

sensed images, local population, and what not 

have many widely-used sides of application, in 

many of today’ research fields. When storing 

large amount of either spatial or non-spatial data 

in the spatial database, the past data gathering 

tool always emphasizes on how to improve on 

searching spatial data as well as storage system. 

However, there is very likely some knowledge 

or expertise potentially resided in this large 

amount of acquired data that is not discovered. 

In this case, it’s very important at this moment to 

find an effective method to acquire this 

undiscovered knowledge or expertise from such 

large amount of spatial data and to further 

analyze for it to be applied on decisions of 

spatial applications. With the help of spatial data 

mining, more interesting and useful information 

are discovered [2][3][4][5][6][7][8] [9][11][12] 

[13][14][15]. This has, in turn, brought up a new, 



very popular field for research today.       

The methods in [3][4][5][13][15] for data 

mining on Remotely Sensed Images (RSI).  In [3], 

the method is  to take advantage of the 

association between reflectance intensities on 

RSI and crop yield through association rule. But 

if applying data mining simply on discovering 

this knowledge from large amount of remotely 

sensed images, it does not sound very 

economical considering the time spent and 

efforts put in. So, designing an effective data 

mining method is very worthwhile for in-depth 

research.  

More details on methods will be discussed 

in Section 2. Section 3 presents a method for 

adaptive two-phase spatial association rules 

mining. Section 4 verifies the validity of our 

proposed method through experimentation and 

discussion. Last section is our conclusion. 

 
2. Literature Reviews   
2.1 Association Rules 

An association rule [1] is “ )c,s(,YX → ” 

where X  and Y  are itemsets with X  

being the antecedent and Y  being the 

consequent of association rules. In example of 

the association between population and crop 

yield, s  denotes the degree of support in which 

it represents the probability that X  and Y  

occurs simultaneously, and c  denotes the 

degree of confidence in which it represents the 

probability of Y  occurrence when X  occurs. 

Therefore, 
)X(support

)YXsupport(
c

∪= . In some 

reference, support count = Ds × , where D  

is the count in data table. Throughout our paper, 

the support count (count ) will be taken as the 

count of frequent itemsets . Decision makers can 

pre-define a minimum support count and 

minimum confidence in order for the elimination 

of infrequent itemsets  and the creation of 

association rules through frequent itemsets .  

 
2.2 Spatial Data Mining on RSI 

Images on RSI can be parted into a couple 

of different types such as TM, SPOT, AVHRR, 

and TIFF. Take TM image on RSI as example, 

TM consists of seven bands which are B for 

Blue, G for Green, R for Red, RIR for 

Reflective-Infrared, MIR for Mid -Infrared, TIR 

for Therma l-Infrared, and MIR2 for 

Mid-Infrared2 [3][4][5][13][15]. Each band 

contains a relative reflectance intensity value in 

the range 0 to 255 for each pixel. One remotely 

sensed image is associated with yield, in the way 

which that one yield image is a map that defines 

agricultural yield standards. It is often shown in 

color or gray-scaled image. Shown in Figure 1 (a) 

is a remotely sensed image and Figure 1 (b) is a 

yield image. Incorporating the association 

between remotely sensed image and yield, data 

mining is to excavate the useful expertise that 

may help the experts or agribusiness people to 

improve crop cultivation.   

 
(a)             (b) 

Figure 1: Remotely sensed image and Yield 

map 

 
2.3 Two-Phase Spatial Association 
Rules Mining Method 



Two-phase association rule architecture 

for RSI data mining is proposed by Lee and 

Chen [13]. First, an image from RSI database is 

acquired. Do a color count and analysis of 

variance on this image. According to the analysis 

of image from RSI database, the Histogram 

Generator (HG) from the user-predefined 

intervals  is generated. HG looks for the most 

representative characteristic value in an image to 

quickly find the coarse-grained association rules. 

From these coarse-grained association rules, 

fine-grained association rules are found. This 

method is primarily divided into four steps. First 

step is color count and analysis of variance on 

remotely sensed images. Second step is to 

generate Histogram Generator according to 

user-predefined intervals. Third step is to mine 

out the coarse-grained association rules 

according the user generated HG through 

algorithm of association rules. Fourth step is to 

mine out the fine-grained association rules 

according to the coarse-grained association 

rules.  

 
3. Adaptive Two -Phase Spatial 

Association Rules Mining Method 
The two-phase data mining of spatial 

association rules in Section 2.2 can improve the 

Apriori method in terms of its efficiency. 

However during the image processing, 

partitioning the image into parts can improve its 

efficiency; to this point, the concept of image 

blocking is incorporated onto the coarse-grained 

two-phase data mining of spatial association 

rules. Image blocking performs the mining on 

each of the disjoining blocks partitioned from an 

image. The motive of taking on the image 

blocking is due to the inter-pixel redundancy in 

image data [16]. That means, the occurrences of 

neighboring image points redundancy is quite 

high; in other words, there is a higher possibility 

of more frequent itemsets. Therefore, the 

adaptive two-phase data mining of spatial 

association rules is to eliminate the blocks which 

do not produce frequent itemsets to improve its 

efficiency through image blocking. 

 
3.1. Flowchart of the Adaptive Two-phase 

Data Mining of Spatial Association Rules 

Figure 2 is the flowchart of adaptive 

two-phase spatial association rules for RSI data 

mining. Exploration of the frequent itemsets in 

coarse-grained association rules is made in four 

main steps. First step is to partition an image. 

Second step is to produce local frequent itemsets 

and record local non-frequent itemsets at the 

same time. Third step is to group each local 

frequent itemsets into global candidate itemsets. 

Fourth step is to add together the support count 

in global candidate itemsets as well as in 

non-frequent itemsets to be the final support 

count in global candidate itemsets. When bigger 

than the minimum support count, a global 

frequent itemsets is produced. Next sub-section 

will put more emphasis on each of the four 

steps. 

 



Figure 2. Adaptive two-phase association rule 

flowchart for RSI data mining 

 

3.2 Procedures of the adaptive  two-phase 

data mining of spatial association rules 

Step 1: Partition the image 

According to the mined coarse-grained 

association rules by Histogram Generator 

proposed by Lee and Chen [5], THG is the data 

table through HGs quantization of originT , 

which incorporates the RSI and yield images 

into one data table based on their positions of 

coordinates . Perform data mining on THG to 

explore the coarse-grained association rules. 

First is to partition into n number of disjoining 

blocks { nPPP ,,, 21 K }. Divide the minimum 

support count by the count in data table THG. 

Multiply what’s left in the previous calculation 

by the count in Pi to obtain the minimum support 

count in each block (
c
ps =

HG

c

T
s

× P
i

), where 

c
ps  is the minimum support count in the block, 

HGT  is the count of data table THG, sc is the 

minimum support count and P
i

 is the count 

in the block. 

 

Example 3.1: Table 1 is an image of 8×2 pixels, 

after which the data table THG is made from 

quantization by four HGs on bands R, G, B and 

Yield, respectively. The image is partitioned into 

four small blocks (n=4) in which block 1P  

consists of {1, 2, 3, 4}, block 2P of {5, 6, 7, 8}, 

block  3P of {9, 10, 11, 12}, and block 4P  of 

{13, 14, 15, 16}. Whereas minimum support 

count (
cs ) is 10, the minimum support count in 

each block is  
c
ps  = 

HG

c

T
s

× 1P  = 

HG

c

T
s

× 2P  = 
HG

c

T
s

× 3P  = 
HG

c

T
s

× 4P  = 

4
16
10

× =2.5. 

 

Table 1. Four partitioned blocks 8×2 image 

data table 

Partition Id coordinate R G B Yield 

1P  1 0,0 3 3 3 3 

 2 0,1 0 0 0 3 

 3 1,0 3 3 3 3 

 4 1,1 3 3 3 3 

2P  5 2,0 3 3 3 3 

 6 2,1 0 0 0 3 

 7 3,0 0 0 0 3 

 8 3,1 1 1 1 3 

3P  9 4,0 3 3 3 3 



 10 4,1 3 3 3 3 

 11 5,0 3 3 3 3 

 12 5,1 3 3 3 3 

4P  13 6,0 3 3 3 3 

 14 6,1 3 3 3 3 

 15 7,0 3 3 3 3 

 16 7,1 3 3 3 3 

 

Step 2: Exploration of local frequent itemsets 

in each block 

Step2.1: Calculate local frequent 1-itemsets 

(
iF1 ) for each iP . And each item in local 

frequent 1-itemsets is represented as I( αS
jband , 

'αSYield , count) because the itemsets in iF1  

can be represented as an association rule that 

consists of a antecedent and a consequent. For 

the association rule by the itemsets I, its 

antecedent is represented as I. αS
jband  and 

consequent as I. 'αSYield . I.count is the support 

count of the itemset. For example, I( 10 ,YieldR , 

5) represents the color value of R as 0, the color 

value of Yield as 1 and the support count equals 

to 5. 

On the other hand, record all the local 

non-frequent 1-itemsets that are smaller than the 

minimum support count in the block onto iNF1 . 

Similarly, the format of local non-frequent 

1-itemsets is I( αS
jband , 'αSYield , count) , 

where I. αS
jband  is represented as the 

antecedent, I. 'αSYield  as the consequent and 

I.count as the support count of the itemsets. 

Step2.2: Assume θ1∈
iF

1−l
 and θ2∈

iF
1−l

 where 

θ1≠θ2. To produce local frequent l -itemsets 

(
iFl ), first step has to consider whether or not 

θ1. 'αSYield  equals to θ2. 'αSYield . And if they 

equal to each other, they are joined together to 

produce local candidate l -itemsets (
iCl ). In 

local candidate l -itemsets, each format of the 

items ets is I( 1
1

αSband , 2
2

αSband , … ,  

2
2

−
−

l
l

αSband , βSband 1−l , γSbandl , 'αSYield , 

count), of which I( 1
1

αSband , 2
2

αSband , … , 

2
2

−
−

l
l

αSband , βSband 1−l , γSbandl , 'αSYield , 

count) is the antecedent, I. 'αSYield  is the 

consequent and count is the support count. The 

support count. is defined as min(θ1.count, 

θ2.count) of these established association rules in 

the local candidate itemsets. When the support 

count is larger than the minimum support count 

in the block, local frequent l -itemsets (
iFl ) 

will be produced. local frequent l -itemsets are 

formatted as I( αSband1 , 

αSband2 , … ,
αS

bandl , 'αSYield , count). 

Similarly, I. αSband1 , I. αSband 2 , … , 

I.
αS

bandl  is represented as the antecedent, 

I. 'αSYield  as the consequent and I.count as the 

support count of the itemsets. For example, 

θ1=( 0R , 0G , 1Yield ,4) ∈ iF2 ，

θ2=( 0R , 0B , 1Yield , 3) ∈ iF2 . When 

θ1. 1Yield =θ2.
1Yield , I( 0R , 0G , 0B , 1Yield , 

3) will be produced and support count=min(4, 3);  

again when the support count is larger than the 



minimum support count in the block, the global 

frequent itemsets of I( 0R , 0G , 0B , 1Yield , 3) 

will be produced. The color value of R is 0, of G 

is 0, of B is 0, of Yield is 1, and the support 

count is equal to 3.  

On the other hand, record all the local 

non-frequent l -itemsets that are smaller than 

the minimum support count in the block onto 
iNF1 . Similarly, the format of local 

non-frequent l -itemsets is I( αSband1 , 

αSband2 , … ,
αS

bandl , 'αSYield ,count), where 

I.( αSband1 , αSband 2 , … ,
αS

bandl ) is 

represented as the antecedent, I. 'αSYield  as the 

consequent and I.count as the support count of 

the itemsets. 

 

Example3.2 : Take Table 1 for example, the 

block 3P  in which local frequent 1-itemsets 

are produced, (R3, Yield3, 4), (G3 , Yield3, 4) and 

(B3, Yield3, 4) are also produced. Furthermore, 

the local frequent 2- itemsets are (R3, G3, Yield3, 

4) where count=4 obtained from min(4, 4). 

On the other hand, no local frequent 

itemsets are produced in the block 2P  because 

the support count of the itemsets is smaller than 

the minimum support count in the block. Our 

method records the itemsets onto the local 

non-frequent itemsets so as to produce the local 

non-frequent itemsets such as (R3, Yield3, 1), (G3, 

Yield3, 1), and (R3, G3, Yield3, 1). 

  

Step 3: Composition of a global candidate 

itemsets from each local frequent 

itemsets 

First step is to incorporate the local frequent 

l -itemsets nFFF lll K ,,, 21  in each block into 

a global candidate l -itemsets ( lC ). Second is 

to calculate the support count in lC ; that is, 

lC .count= 1
lF .count+ 2

lF .count+… + 

nFl .count.  

 

Example 3.3: In Table 1, the local frequent 

3-itemsets in 1P  are (R3, G3, B3, Yield3, 3), 

and the local frequent 3-itemsets in 3P  and 
4P  are (R3, G3 , B3, Yield3, 4). Incorporation of 

both comes the global candidate 3-itemsets 

which are (R3, G3, B3, Yield3, 11), where 

count=(3+4+4)=11. 

 

Step 4: Calculation of the final support counts 

in global candidate itemsets for 

establishing the global frequent 

itemsets 

 Adding together the established global 

candidate itemsets lK CCC ,,, 21  in Step 3 

and the support count in each local non-frequent 

itemsets ( iNFl ) yields 

lC .count= lC .count+ iNFl .count, and the final 

support count in the global candidate itemsets 

can be produced. If the support count is larger 

than the minimum support count (sc), then they 

are the global frequent itemsets. 

 

Example 3.4: Again take Table 1 as an example, 

the global candidate itemsets (R3, G3, B3, Yield3, 

11) are produced in Step 3. There are local 

non-frequent itemsets such as (R3, G3, B3, Yield3, 

1) in the 2P . Thus the final global candidate 

itemsets that are produced are (R3, G3 , B3, Yield3, 



12), where count=(11+1)=12 that is larger than 

the minimum support count 10. So the global 

frequent itemsets (R3, G3,  B3, Yield3, 12) are 

produced. 

 

4. Experimental results of adaptive 
two-phase data mining of spatial 
association rules 

The experiments  conduct on the 

time-related ratio between the adaptive 

two-phase data mining, the two-phase data 

mining of spatial association rules and the 

Apriori. 

Figure 3 shows the time-related ratio 

between the adaptive two-phase data mining 

which incorporates the Histogram Generator 

count that is 128 as well as blocking and the 

Apriori on five 50,000 pixels images under 

different color counts. Figure 3  also shows the 

time ratio between the two-phase data mining 

which incorporates the Histogram Generator 

count that is 128 but excludes the blocking and 

the Apriori. When the time ratio is less than 1, it 

implies that both the two-phase data mining and 

the adaptive two-phase data mining are effective. 

From the Figure 3, the adaptive two-phase data 

mining yields the time ratio that is significantly 

less than the two-phase data mining; in other 

words, the adaptive two-phase data mining can 

improve the two-phase data mining of spatial 

association rules on its effectiveness.  

Figure 4 is the time-related ratio between 

the adaptive two-phase data mining which 

incorporates the Histogram Generator count that 

is 128 as well as blocking and the Apriori. It also 

shows the time ratio between the two-phase data 

mining which incorporates the Histogram 

Generator count that is 128 but excludes the 

blocking and the Apriori. When the time ratio is 

less than 1, it implies that the adaptive two-phase 

data mining is very effective. From the Figure 4, 

the adaptive two-phase data mining requires 

significantly less amount of time; in other words, 

image blocking in the first and coarse-grained 

association rules in the later are able to enhance 

the two-phase data mining in its effectiveness
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Figure 3. Execution time comparison between 128 HGs w.r.t. Partition (adaptive two-phase data 

mining) and 128 HGs (two-phase data mining) for some color count 
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Figure 4. Executi on time comparison between 128 HGs w.r.t. Partition (adaptive two-phase data 

mining) and 128 HGs  (two-phase data mining) for some variation 

 
5.  Conclusions  

Our proposed two-phase data mining method 

in this paper is essentially effective for the 

applications of data mining on remotely sensed 

images. Adaptive two-phase spatial association 

rules mining method conducts the idea of 

partition on an image for efficiently quantizing 

out non-frequent patterns and thus facilitate 

two-phase process. 
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