Privacy-Preserving Decision Tree Classification over Horizontally Partitioned Data

Justin Zhan
Stan Matwin
LiWu Chang

Follow this and additional works at: https://aisel.aisnet.org/iceb2005
Abstract: Protection of privacy is one of important problems in data mining. The unwillingness to share their data frequently results in failure of collaborative data mining. This paper studies how to build a decision tree classifier under the following scenario: a database is horizontally partitioned into multiple pieces, with each piece owned by a particular party. All the parties want to build a decision tree classifier based on such a database, but due to the privacy constraints, neither of them wants to disclose their private pieces. We build a privacy-preserving system, including a set of secure protocols, that allows the parties to construct such a classifier. We guarantee that the private data are securely protected.

Keywords: Privacy, decision tree, classification.

I. Introduction

Business success often relies on collaboration. The collaboration is even more critical in the modern business world, not only because of mutual benefit it brings but also because the coalition of multiple partners will be more competitive than each individual. Assuming they trust each other to a degree that they can share their private data, the collaboration becomes straightforward. However, in many scenarios, sharing data are impossible because of privacy concerns. Thus, collaboration without sharing private data becomes extremely important.

In this paper, we study a prevalent collaboration scenario, the collaboration involving a data mining task: multiple parties, each having a private data set, want to conduct data mining on the joint data set that is the union of all individual data sets; however, because of the privacy constraints, no party wants to disclose its private data set to each other. The objective of this paper is to develop efficient methods that enable this type of computation while minimizing the amount of the private information that each party has to disclose.

II. Privacy-Preserving Decision-Tree Classification

Classification is an important problem in the field of data mining. In classification, we are given a set of example records, called the training data set, with each record consisting of several attributes. One of the categorical attributes, called the class label, indicates the class to which each record belongs. The objective of classification is to use the training data set to build a model of the class label such that it can be used to classify new data whose class labels are unknown.

Many types of models have been built for classification, such as neural networks, statistical models, genetic models, and decision tree models. The decision tree models are found to be the most useful in the domain of data.
mining since they obtain reasonable accuracy and they are relatively inexpensive to compute. We define our problem as follows:

Problem 1 We consider the scenario where \(n \) parties, each having a private data set (denoted by \(S_1, S_2, \ldots, \) and \(S_n \) respectively), want to collaboratively conduct decision tree classification on the union of their data sets. The data sets are assumed to be horizontally partitioned. Because they are concerned about the data privacy, neither party is willing to disclose its raw data set to others.

Next, we give the notations that we will follow.

II.1 Notations

- **e**: public key.
- **d**: private key.
- **\(P_i \)**: the \(i \)-th party.
- **\(n \)**: the total number of parties. Assuming \(n > 2 \).
- **\(m \)**: the total number of class.
- **\(\alpha \)**: is the number of bits for each transmitted element in the privacy-preserving protocols.
- **\(N \)**: the total number of records.

II.2 Decision Tree Classification Algorithm

Classification is one of the forms for data analysis that can be used to extract models describing important data classes or to predict future data. It has been studied extensively by the community in machine learning, expert system, and statistics as a possible solution to knowledge discovery problems. The decision tree is one of the classification methods. A decision tree is a class discriminator that recursively partitions the training set until each partition entirely or dominantly consists of examples from one class. A well known algorithm for building decision tree classifiers is ID3 [13]. We describe the algorithm below where \(S \) represents the training samples and \(AL \) represents the attribute list:

\[
\text{ID3}(S, \ AL)
\]

1. Create a node \(V \).
2. If \(S \) consists of samples with all the same class \(C \) then return \(V \) as a leaf node labelled with class \(C \).
3. If \(AL \) is empty, then return \(V \) as a leaf-node with the majority class in \(S \).
4. Select test attribute (\(TA \)) among the \(AL \) with the highest information gain.
5. Label node \(V \) with \(TA \).

6. For each known value \(a_i \) of \(TA \)

 (a) Grow a branch from node \(V \) for the condition \(TA = a_i \).

 (b) Let \(s_i \) be the set of samples in \(S \) for which \(TA = a_i \).

 (c) If \(s_i \) is empty then attach a leaf labelled with the majority class in \(S \).

 (d) Else attach the node returned by \(\text{ID3}(s_i, \ AL - TA) \).

According to ID3 algorithm, each non-leaf node of the tree contains a splitting point, and the main task for building a decision tree is to identify an attribute for the splitting point based on the information gain. Information gain can be computed using entropy. In the following, we assume there are \(m \) classes in the whole training data set. \(\text{Entropy}(S) \) is defined as follows:

\[
\text{Entropy}(S) = -\sum_{j=1}^{m} Q_j \log Q_j, \quad (1)
\]

where \(Q_j \) is the relative frequency of class \(j \) in \(S \). Based on the entropy, we can compute the information gain for any candidate attribute \(A \) if it is used to partition \(S \):

\[
\text{Gain}(S, A) = \text{Entropy}(S) - \sum_{v \in A} \left(\frac{|S_v|}{|S|} \text{Entropy}(S_v) \right), \quad (2)
\]

where \(v \) represents any possible values of attribute \(A \); \(S_v \) is the subset of \(S \) for which attribute \(A \) has value \(v \); \(|S_v| \) is the number of elements in \(S_v \); \(|S| \) is the number of elements in \(S \). To find the best split for a tree node, we compute information gain for each attribute. We then use the attribute with the largest information gain to split the node.

II.3 Cryptography Tools

In this paper, we use the concept of homomorphic encryption which was originally proposed in [18]. Since then, many such systems have been proposed [3, 15, 16, 17]. We observe that some homomorphic encryption schemes, such as [4], are not robust against chosen cleartext attacks. However, we base our secure protocols on [17], which is semantically secure [9].

In our secure protocols, we use additive homomorphism offered by [17]. In particular, we utilize the following characteristic of the homomorphic encryption functions: \(e(a_1) \times e(a_2) = e(a_1 + a_2) \) where \(e \) is an encryption function; \(a_1 \) and \(a_2 \) are the data to be encrypted. Because of the property of associativity, \(e(a_1 + a_2 + \cdots + a_n) \) can be computed as \(e(a_1) \times e(a_2) \times \cdot \cdot \cdot \times e(a_n) \) where \(e(a_i) \neq 0 \). That is

\[
d(e(a_1 + a_2 + \cdots + a_n)) = d(e(a_1) \times e(a_2) \times \cdot \cdot \cdot \times e(a_n)) \quad (3)
\]

\[
d(e(a_1)^{a_2}) = d(e(a_1a_2)) \quad (4)
\]
II.4 Privacy-Preserving Decision Tree Classification System

The privacy-preserving classification system contains several secure protocols that multiple parties need follow. There are five major steps:

• To compute $\text{Entropy}(S_v)$.
• To compute $\frac{|S_v|}{|S|}$.
• To compute $\frac{|S_v|}{|S|} \text{Entropy}(S_v)$.
• To compute information gain for each candidate attribute.
• To compute the attribute with the largest information gain.

The goal of our privacy-preserving classification system is to disclose no private data in every step. We firstly select a key generator who produces the encryption and decryption key pairs. The computation of the whole system is under encryption. For the purpose of illustration, let’s assume that P_n is the key generator who generates a homomorphic encryption key pair (e, d). Next, we will show how to conduct each step.

II.4.1 Computation of $e(\text{Entropy}(S_v))$

Protocol 1 To compute $e(Q_j)$

1. Each party computes their own share of $|S_v|$. Assuming P_1 gets c_1, P_2 gets c_2, \cdots, P_n gets c_n.
2. P_n sends $e(c_n)$ to P_1.
3. P_1 computes $e(c_n) \times e(c_1) = e(c_1 + c_n)$ and sends it to P_2.
4. Repeat until P_{n-1} obtains $e(c_1 + c_2 + \cdots + c_n)$.
5. P_{n-1} computes $e(\sum_{i=1}^{n} c_i) \overset{\Delta}{=} e(Q_j)$.

Protocol 2 To compute $e(Q_j \log(Q_j))$

1. P_{n-1} generates a set of random numbers r_1, r_2, \cdots, r_t.
2. P_{n-1} sends the sequence of $e(Q_j), e(r_1), e(r_2), \cdots, e(r_t)$ to P_n in a random order.
3. P_n decrypts each element in the sequence, and sends $\log(Q_j), \log(r_1), \log(r_2), \cdots, \log(r_t)$ to P_1 in the same order as P_{n-1} did.
4. P_1 adds a random number R to each of the elements, then sends them to P_{n-1}.
5. P_{n-1} obtains $\log(Q_j) + R$ and computes $e(Q_j)(\log(Q_j)+R) = e(Q_j \log(Q_j) + RQ_j)$.
6. P_{n-1} sends $e(Q_j)$ to P_1.
7. P_1 computes $e(Q_j)^{-R} = e(-RQ_j)$ and sends it to P_{n-1}.
8. P_{n-1} computes $e(Q_j \log(Q_j) + RQ_j) = e(Q_j \log(Q_j) - RQ_j)$.

Protocol 3 To compute $e(\text{Entropy}(S_v))$

1. Repeat protocol 1-2 to compute $e(Q_j \log(Q_j))$ for all j’s.
2. P_{n-1} computes $e(\text{Entropy}(S_v)) = \prod_j e(Q_j \log(Q_j)) = e(\sum_j Q_j \log(Q_j))$.

Theorem 1 (Correctness). Protocol 1-3 correctly compute Entropy.

Proof In protocol 1, P_{n-1} obtains $e(Q_j)$. In protocol 2, P_{n-1} gets $e(Q_j \log(Q_j))$. These two protocols are repeatedly used until P_{n-1} obtains $e(Q_j \log(Q_j))$ for all j’s. In protocol 3, P_{n-1} computes the entropy by all the terms previously obtained. Notice that although we use $\text{Entropy}(S_v)$ to illustrate, $\text{Entropy}(S)$ can be computed following the above protocols with different input attributes.

Theorem 2 (Privacy-Preserving). Assuming the parties follow the protocol, the private data are securely protected.

Proof In protocol 1, all the data transmission are hidden under encryption. The parties who are not the key generator can’t see other parties’ private data. On the other hand, the key generator doesn’t obtain the encryption of other parties’ private data. Therefore, protocol 1 discloses no private data. In protocol 2, although P_{n-1} sends $e(Q_j)$ to P_n, Q_j is hidden by a set of random numbers known only by P_{n-1}. Thus private data are not revealed. In protocol 3, the computations are still under encryption, no private data are disclosed either.

Theorem 3 (Efficiency). The computation of Entropy is efficient from both computation and communication point of view.

Proof To prove the efficiency, we need conduct complexity analysis of the protocol. The bit-wise communication cost of protocol 1 is $\alpha(n - 1)$, of protocol 2 is $\alpha(3t + 5)$. The total communication cost has the upper bound of $\alpha m(n + 3t + 4)$. The computation cost of protocol 1 is nN, of protocol 2 is $5t + 3$. The total computation cost is upper bounded by $mnN + 5mt + 4m$. Therefore, the protocols are sufficient fast.
II.4.2 The Computation of $\frac{|S_v|}{|S|}$ Entropy(S_v)

Protocol 4 To Compute $\frac{|S_v|}{|S|}$ Entropy(S_v)

1. P_{n-1} sends $e(|S_v|)$ to P_1.
2. P_{n-1} generates a set of random numbers: r_1, r_2, \ldots, r_n.
3. P_{n-1} sends $e(|S|), e(r_1), \ldots, e(r_n)$ to P_n in a random order. Note that $e(|S|)$ can be computed following the first four steps of protocol 1.
4. P_n decrypts each element, then sends the sequence of $\frac{1}{|S|}, \frac{1}{r_1}, \ldots, \frac{1}{r_n}$ to P_1 in the same order as P_{n-1} did.
5. P_1 computes $e(|S_v|)\times$ where \times denotes for each decrypted element, then sends the sequence to P_{n-1} in the same order as P_n did.
6. P_{n-1} obtains $e\left(\frac{|S_v|}{|S|}\right)$ since he knows the original permutations.

Up to now, P_{n-1} has obtained $e\left(\frac{|S_v|}{|S|}\right)$ and $e(\text{Entropy}(S_v))$. Next, we discuss how to compute $\frac{|S_v|}{|S|}$ Entropy(S_v).

Protocol 5 To Compute $\frac{|S_v|}{|S|}$ Entropy(S_v)

1. P_{n-1} sends $e\left(\frac{|S_v|}{|S|}\right)$ to P_1.
2. P_1 computes $e\left(\frac{|S_v|}{|S|}\right) \times e(R') = e\left(\frac{|S_v|}{|S|} + R'\right)$ where R' is a random number only known by P_1, then sends $e\left(\frac{|S_v|}{|S|} + R'\right)$ to P_n.
3. P_n decrypts it and sends $\frac{|S_v|}{|S|} + R'$ to P_{n-1}.
4. P_{n-1} computes $e(\text{Entropy}(S_v))\left(\frac{|S_v|}{|S|} + R'\right) = e\left(\frac{|S_v|}{|S|}\text{Entropy}(S_v) + R'\text{Entropy}(S_v)\right)$.
5. P_{n-1} sends $e(\text{Entropy}(S_v))$ to P_1.
6. P_1 computes $e(\text{Entropy}(S_v))^{-1} = e(-R'\text{Entropy}(S_v))$, and sends it to P_{n-1}.
7. P_{n-1} computes $e\left(\frac{|S_v|}{|S|}\text{Entropy}(S_v) + R'\text{Entropy}(S_v)\right) \times e\left(-R'\text{Entropy}(S_v)\right) = e\left(\frac{|S_v|}{|S|}\text{Entropy}(S_v)\right)$.

Theorem 4 (Correctness). Protocol 4-5 correctly computes $\frac{|S_v|}{|S|}$ Entropy(S_v).

Proof. In protocol 4, P_{n-1} obtains $e\left(\frac{|S_v|}{|S|}\right)$. In protocol 5, P_{n-1} gets $\frac{|S_v|}{|S|}$ Entropy(S_v). The computation uses the both properties of homomorphic encryption.

Theorem 5 (Privacy-Preserving). Assuming the parties follow the protocol, the private data are securely protected.

Proof. In protocol 4, P_n sends $e(|S|)$ to P_n but it is hidden by a set of random numbers known only by P_{n-1}. Although P_1 receives a decrypted sequence, $\frac{1}{|S|}$ is also hidden by a set of random numbers. Thus, P_1 and P_n are prevented from knowing $|S|$. On the other hand, P_{n-1} is also hidden from knowing $|S|$ since all the terms he holds are under encryption. In protocol 5, although P_1 sends $e\left(\frac{|S_v|}{|S|} + R'\right)$ to P_n, $\frac{|S_v|}{|S|}$ is hidden by a random number known only by P_1. Therefore, private data are not revealed.

Theorem 6 (Efficiency). The computation of protocols 4 and 5 is efficient from both computation and communication point of view.

Proof. To prove the efficiency, we need conduct complexity analysis of the protocol. The total communication cost is $\alpha(3l + 4)$. The total computation cost is upper bounded by $6l$. Therefore, the protocols are very efficient.

II.4.3 The Computation of the Attribute With the Largest Information Gain

Following the above protocols, we can compute $e(\text{Entropy}(S_v)), \frac{|S_v|}{|S|}\text{Entropy}(S_v)$. What left is to compute information gain for each attribute and select the attribute with the largest information gain.

Protocol 6 To Compute Information Gain for An Attribute

1. P_{n-1} computes $\prod_{v \in A} e\left(\frac{|S_v|}{|S|}\text{Entropy}(S_v)\right) = \sum_{v \in A} e\left(\frac{|S_v|}{|S|}\text{Entropy}(S_v)\right)$.
2. P_1 computes $e\left(\sum_{v \in A} \frac{|S_v|}{|S|}\text{Entropy}(S_v)\right)^{-1} = e\left(-\sum_{v \in A} \frac{|S_v|}{|S|}\text{Entropy}(S_v)\right)$.
3. P_1 computes $e(Gain(S, A)) = e(\text{Entropy}(S)) \times e\left(-\sum_{v \in A} \frac{|S_v|}{|S|}\text{Entropy}(S_v)\right)$.

Once we compute the information gain for each candidate attribute, we then compute the attribute with the largest information gain. Without loss of generality, assuming there are k information gains: $e(g_1), e(g_2), \cdots, e(g_k)$, with each corresponding to a particular attribute.

Protocol 7 To Compute the Largest Information Gain
Proof Theorem 7 formation. We discuss the details as follows: one is the +1 if \(g \), \(e \) denotes \(q \) der. It means that if the \(\phi \), the permutation function that she used to permute \((\) the resultant sequence is denoted by \(P \), \(j \) elements. +1 checking the corresponding value in the \(i \). \(n \)−1 is able to remove permutation effects from \(\phi \) to \(P_n \) in a random order.

2. \(P_n \) decrypts each element in the sequence \(\phi \). He assigns the element +1 if the result of decryption is not less than 0, and -1, otherwise. Finally, he obtains a +1/−1 sequence denoted by \(\phi' \).

3. \(P_i \) sends +1/−1 sequence \(\phi' \) to \(P_{n−1} \) which computes the largest element.

Theorem 7 (Correctness). Protocol 6-7 correctly computes the attribute with the largest information gain.

Proof In protocol 6, \(P_{n−1} \) obtains \(e(Gain(S, A)) \). In protocol 7, \(P_{n−1} \) gets the attribute with the largest information. We discuss the details as follows:

\(P_{n−1} \) is able to remove permutation effects from \(\phi' \) (the resultant sequence is denoted by \(\phi'' \)) since she has the permutation function that she used to permute \(\phi \), so that the elements in \(\phi \) and \(\phi'' \) have the same order. It means that if the \(q \)th position in sequence \(\phi \) denotes \(e(g_i−g_j) \), then the \(q \)th position in sequence \(\phi'' \) denotes the evaluation results of \(g_i−g_j \). We encode it as +1 if \(g_i ≥ g_j \), and as -1 otherwise. \(P_{n−1} \) has two sequences: one is the \(\phi \), the sequence of \(e(g_i−g_j) \), for \(i, j \in [1, k] (i > j) \), and the other is \(\phi'' \), the sequence of +1/−1. The two sequences have the same number of elements. \(P_{n−1} \) knows whether or not \(g_i \) is larger than \(g_j \) by checking the corresponding value in the \(\phi'' \) sequence. For example, if the first element \(\phi'' \) is -1, \(P_{n−1} \) concludes \(g_i < g_j \). \(P_{n−1} \) examines the two sequences and constructs the index table (Table 1) to compute the largest element.

In Table 1, +1 in entry \(ij \) indicates that the information gain of the row (e.g., \(g_i \) of the \(i \)th row) is not less than the information gain of a column (e.g., \(g_j \) of the \(j \)th column); -1, otherwise. \(P_{n−1} \) sums the index values of each row and uses this number as the weight of the information gain in that row. She then selects the one that corresponds to the largest weight.

To make it clearer, let’s illustrate it by an example. Assume that: (1) there are 4 information gains with \(g_1 < g_4 < g_2 < g_3 \); (2) the sequence \(\phi \) is \([e(g_1−g_2), e(g_1−g_3), e(g_1−g_4), e(g_2−g_3), e(g_2−g_4), e(g_3−g_4)] \). The sequence \(\phi'' \) will be \([-1, -1, -1, +1, +1, +1] \). According to \(\phi \) and \(\phi'' \), \(P_{n−1} \) builds the Table 2. From the table, \(P_{n−1} \) knows \(g_3 \) is the largest element since its weight, which is +4, is the largest.

Theorem 8 (Privacy-Preserving). Assuming the parties follow the protocol, the private data are securely protected.

Proof In protocol 6, there is no data transmission. In protocol 7, we need prove it from two aspects: (1) \(P_{n−1} \) doesn’t get information gain (e.g., \(g_i−g_j \)) for each attribute. What \(P_{n−1} \) gets are \(e(g_i−g_j) \) for all \(i, j \in [1, k], i > j \) and +1/−1 sequence. By \(e(g_i−g_j) \), \(P_{n−1} \) cannot know each information gain since it is encrypted. By +1/−1 sequence, \(P_{n−1} \) can only know whether or not \(g_i \) is greater than \(P_j \). (2) \(P_n \) doesn’t obtain information gain for each attribute either. Since the sequence of \(e(g_i−g_j) \) is randomized before being send to \(P_n \) who can only know the sequence of \(g_i−g_j \), he can’t get each individual information gain. Thus private data are not revealed.

Theorem 9 (Efficiency). The computation of protocol 6 and protocol 7 is efficient from both computation and communication point of view.

Proof The total communication cost is upper bounded by \(om^2 \). The total computation cost is upper bounded by \(m^2 + m + 1 \). Therefore, the protocols are very fast.

III. Overall Discussion

Our privacy-preserving classification system contains several components. In Section , we show how to correctly compute \(e(Entropy(S_v)) \). In Section , we present protocols to compute \(\frac{S_v}{19} \) \(Entropy(S_v) \). In Section , we show how to compute information gain for each candidate attribute; we then describe how to obtain the attribute with the largest information gain. We discussed the correctness of the computation in each section. Overall correctness is also guaranteed.

As for the privacy protection, all the communications between the parties are encrypted, therefore, the parties who has no decryption key cannot gain anything out of the communication. On the other hand, there are some communication between the key generator and

<table>
<thead>
<tr>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(g_3)</th>
<th>(\cdots)</th>
<th>(g_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>(\cdots)</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>(\cdots)</td>
<td>-1</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>(\cdots)</td>
<td>+1</td>
</tr>
<tr>
<td>(\cdots)</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>(\cdots)</td>
<td>+1</td>
</tr>
</tbody>
</table>

Table 1:

<table>
<thead>
<tr>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+4</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2:

1. \(P_{n−1} \) computes \(e(g_i) \times e(g_j)^{-1} = e(g_i−g_j) \) for all \(i, j \in [1, k], i > j \), and sends the sequence denoted by \(\phi \) to \(P_n \) in a random order.

2. \(P_n \) decrypts each element in the sequence \(\phi \). He assigns the element +1 if the result of decryption is not less than 0, and -1, otherwise. Finally, he obtains a +1/−1 sequence denoted by \(\phi' \).

3. \(P_i \) sends +1/−1 sequence \(\phi' \) to \(P_{n−1} \) which computes the largest element.
other parties. Although the communications are still encrypted, the key generator may gain some useful information. However, we guarantee that the key generator cannot gain the private data by adding random numbers in the original encrypted data so that even if the key generator get the intermediate results, there is little possibility that he can know the intermediate results. Therefore, the private data are securely protected with overwhelming probability.

IV. Conclusion

Prior to conclude this paper. We describe the most related works. In early work on privacy-preserving data mining, Lindell and Pinkas [14] propose a solution to privacy-preserving classification problem using oblivious transfer protocol, a powerful tool developed by secure multi-party computation (SMC) research [22, 10]. The techniques based on SMC for efficiently dealing with large data sets have been addressed in [21]. Randomization approaches were firstly proposed by Agrawal and Srikant in [2] to solve privacy-preserving data mining problem. Researchers proposed more random perturbation-based techniques to tackle the problems (e.g., [5, 19, 7]). In addition to perturbation, aggregation of data values [20] provides another alternative to mask the actual data values. In [1], authors studied the problem of computing the k-th ranked element. Dwork and Nissim [6] showed how to learn certain types of boolean functions from statistical databases in terms of a measure of probability difference with respect to probabilistic implication, where data are perturbed with noise for the release of statistics.

The problem we are studying is actually a special case of a more general problem, the Secure Multi-party Computation (SMC) problem. Briefly, an SMC problem deals with computing any function on any input, in a distributed network where each participant holds one of the inputs, while ensuring that no more information is revealed to a participant in the computation than can be inferred from that participant’s input and output [12].

The SMC problem literature is extensive, having been introduced by Yao [22] and expanded by Goldreich, Micali, and Wigderson [11] and others [8]. It has been proved that for any function, there is a secure multi-party computation solution [10]. The approach used is as follows: the function F to be computed is first represented as a combinatorial circuit, and then the parties run a short protocol for every gate in the circuit. Every participant gets corresponding shares of the input wires and the output wires for every gate. This approach, though appealing in its generality and simplicity, means that the size of the protocol depends on the size of the circuit, which depends on the size of the input. This is highly inefficient for large inputs, as in data mining. It has been well accepted that for special cases of computations, special solutions should be developed for efficiency reasons.

In this paper, we provide a novel solution for decision tree classification over horizontally partitioned private data. Instead of using data transformation, we define a protocol using homomorphic encryption to exchange the data while keeping it private. Our classification system is quite efficient that can be envisioned by the communication and computation complexity. The total communication complexity is upper bounded by $\alpha(m^2 + nm + 3m + 4m + 3t + 4)$. The computation complexity is upper bounded by $mnN + m^2 + 5m + 5m + 6t + 1$.

References

