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Abstract. Increasing availability of large-scale datasets for automatic vehicle lo-

cation (AVL) in public transportation (PT) encouraged researchers to investigate 

data-driven punctuality prediction models (PPMs). PPMs promise to accelerate 

the mobility transition through more accurate prediction delays, increased cus-

tomer service levels, and more efficient and forward-looking planning by mobil-

ity providers. While several PPMs show promising results for buses and long-

distance trains, a comprehensive study on external factors' effect on tram services 

is missing. Therefore, we implement four machine learning (ML) models to pre-

dict departure delays and elaborate on the performance increase by adding real-

world weather and holiday data for three consecutive years. For our best model 

(XGBoost) the average MAE performance increased by 17.33 % compared to the 

average model performance when only trained on AVL data enriched by timeta-

ble characteristics. The results provide strong evidence that adding information-

bearing features improve the forecast quality of PPMs. 

Keywords: Punctuality Prediction, Public transportation, Machine Learning, 

Automatic Vehicle Location 

1 Introduction 

While research on human movement in time and space has already been around for 

several decades (Weiner 1997), disruptive technologies and new mobility concepts in 

smart cities usher the need to leverage large amounts of data for providing cleaner, 

safer, and more efficient urban transportation (Mehmood et al. 2017). Especially local 

public transportation can be a factor in reducing emissions, preventing accidents, and 

democratizing mobility (Torre‐Bastida et al. 2018; Yang et al. 2015). Previous research 

highlights the impact of punctuality and arrival predictions as a significant factor for 

potential passengers to switch to public transportation (Olsson and Haugland 2004; Ib-

rahim and Borhan 2020), thereby leveraging artificial intelligence (AI) to solve societal 

challenges and provide more sustainable mobility. To this end, data-driven punctuality 



prediction models (PPMs) can significantly improve prediction performance (Shi et al. 

2021) and amplify the reliability of public transportation when forecasting potential 

delays. Furthermore, data-driven PPMs allow local transportation companies to refine 

driving schedules, predict high volumes of passengers, and plan supporting trips.  

Data-driven PPMs use historic train movements (HTM) consisting of AVL and time-

table data as well as external factors to predict future transportation punctuality by ab-

stracting rules and dependencies from previous disturbances such as labor strikes or 

severe snowfall and their effect on the mobility services (Ge et al. 2022; Zakeri and 

Olsson 2018). Although previous research has exemplarily shown that extreme weather 

conditions adversely affect punctuality in PT (Oneto et al. 2016; Tao et al. 2018) it has 

not yet investigated the potential increase in prediction performance by combining fea-

tures from versatile data sources (Wang and Work 2015; Pongnumkul et al. 2014) and 

quantify the resulting impact. Therefore, it remains to be seen to what extent additional 

factors improve the PPMs overall performance over a long time period when compared 

to models solemnly built on HTM. Against this backdrop, we formulate the following 

research question (RQ): 

How does enriching historical datasets with external factors influence the perfor-

mance quality of punctuality predictions in public tram transportation? 

We address the RQ by implementing and training four state-of-the-art ML models 

on different combinations of features aggregated from HTM, weather, and holiday data 

to predict the expected departure delay with a time horizon of a few days in advance 

ahead as the limit for small-scale weather projections is between hours and days (Bauer 

et al. 2015; Jung et al. 2010). We compare their performance in an empirical case study 

to evaluate the effect of enriching HTM data with additional features. The historical 

punctuality dataset contains real-world AVL data of a medium-sized German city over 

three consecutive years resulting in 1.4 million Trips at 222 stations.  

We contribute to existing research by quantifying the increase in prediction accu-

racy when adding exogenous features to a large HTM dataset. Compared to existing 

research, we increase the amount of exogenous data sources and refine their granularity 

with respect to time (hourly) and events (public holidays, vacations) for weather and 

holiday data, respectively. Then we utilize four different state-of-the-art ML models 

proposed by the literature as PPMs to test our RQ. We could not only confirm extant 

research on the impact of weather and holidays but could further extend the findings to 

a higher granularity and for a complete tram network over multiple years. Understand-

ing the interplay between different data streams for additional prediction performance 

potential is essential for policymakers, mobility companies, and passengers alike to in-

crease the service level in PT (Olsson and Haugland 2004; Ibrahim and Borhan 2020). 

2 Problem Context and Theoretical Background 

Research on punctuality prediction in PT has grown significantly over the last few years 

(Ghofrani et al. 2018; Spanninger et al. 2020) and has been addressed in various studies 



(Bešinović 2020; Ge et al. 2021). This development is strengthened by extended com-

puting power and increased availability of larger datasets (Ghofrani et al. 2018). Fol-

lowing Ge et al. (2021), they can be comprised of endogenous data such as AVL, auto-

matic fare collection (AFC), automatic passenger counting (APC), or rail network pa-

rameters (RNP) and exogenous data sources like weather, traffic, surveys, or social 

media. As a result, ML models have been developed to complement statistical ap-

proaches quantifying influencing factors on rail-based mobility (Hagenauer and Hel-

bich 2017; Zúñiga et al. 2021).  

The different approaches to predicting punctuality in public transportation can be 

classified by multiple aspects. One recent approach by Spanninger et al. (2020) distin-

guished research papers by categorizing them based on four characteristics. (I) First, 

which mathematical models are used for the analysis, e.g., time series analysis, artificial 

neural network. (II) Second, which input datasets are used to predict the delay. (III) 

Third, which type of output is considered, e.g., deterministic, single value prediction 

vs. stochastic, probability predictions. (IV) Fourth, based on the distinction between 

dynamic, based on real values at previous stations, and static forecasts, several hours 

or days in advance. As discussed in the introduction, this paper focuses on approaches 

that predict tram departure delays with a time horizon of a few days before the travel 

itinerary. Building on preliminary works by Ghofrani et al. (2018) and Spanninger et 

al. (2020), we focus on the theoretical background in characteristics (I) and (II) as they 

represent the focus of this research. 

Spanninger et al. (2021) differentiate punctuality prediction models (PPM) as data-

driven (based on historical punctuality records) or event-driven approaches (modeling 

the dependencies of sequential events). Due to the higher availability of data in the 

public transportation sector, data-driven approaches are increasingly the focus of ongo-

ing research (Mesbah et al. 2015; Barabino et al. 2017; Shoman et al. 2020). Spanninger 

et al. (2021) further partition previous studies by their use of data sources, namely His-

toric Train Movements (HTM), Actual Delays (AD), Infrastructure Indicators (II), 

Timetable Properties (TP), and External Factors (EF) thereby differentiating between 

endogenous and exogenous factors as proposed by (Ge et al. 2021). Therefore, the key 

differences between data-driven PPMs in current research stem from different model 

selections or different datasets (Spanninger et al. 2020). Table 1 summarizes the most 

relevant publications with respect to this study, focusing on application area, data 

scope, selected features, implemented PPMs, and their evaluation metrics. 

HTM datasets consisting of AVL and time table data are the basis for a wide range 

of data-driven approaches in the research field of punctuality predictions in public 

transportation (Wang and Work 2015; Shi et al. 2021; Spanninger et al. 2021; Ge et al. 

2021). We can further differentiate these papers by comparing the different modes. 

Multiple research projects base their mobility predictions on HTM datasets for busses 

within urban regions (Pałys et al. 09.04.2022; Mandelzys and Hellinga 2010) or trains 

covering larger distances (Yaghini et al. 2013; Pongnumkul et al. 2014; Shi et al. 2021; 

Marković et al. 2015). However, less attention is paid to PPMs for highly intertwined 

rail-based transportation (i.e. trams) within urban environments that show higher sta-



tion frequencies and shorter distances (Rößler et al. 2021; Mesbah et al. 2015). Zy-

chowski et al. (2018) predicted the travel time between two stations using a neural net-

work. 

Table 1. Overview of data-driven punctuality prediction models in current literature. 

Literature Vehicle Scope Features Models Metric 

Wang and 

Work (2015) 

Train 2 years, 

100k trips 

HTM, AD 
Regression  

RMSE 

Mesbah et al. 

(2015) 

Tram 5 years 

- 

HTM, AD, 

EF 
Regression  

R2 

Laifa et al. 

(2021) 
Train 

1 year 

12k trips 

HTM, AD, 

EF 
LigthGBM 

RME, 

RMSE, 

R2 

Shi et al. (2021) Train 
6 months 

30k trips 
HTM, AD 

XGB, 

Bayesian 
RMSE 

Arshad and Ah-

med (2021) 
Train 

2 months 

1k trips 

HTM, AD, 

EF 
RF 

MAE, 

RMSE, 

R2,  

Accuracy 

Zychowski et 

al. (2018) 
Tram 

- 

20k trips 
HTM ANN Accuracy 

Zhong et al. 

(2022) 
Bus 

7 days 

10k trips 
HTM, AD 

RF, KNN, 

ANN 

MAE, 

MAPE 

Nimpa-

nomprasert et 

al. (2022) 

Bus 
1 year 

- 
HTM, AD 

ANN, 

LSTM 
RMSE 

(Pałys et al. 

2022) 
Bus 

30 days 

- 
HTM, AD 

KNN, 

Regression 

MAE, 

STD 

This study Tram 
3 years 

1,4m trips 

HTM, AD, 

EF 

LightGBM 

XGBoost, 

RF, 

KNN 

MAE, 

RMSE 

 

The network was trained to conduct dynamic predictions using HTM features and 

information about the previous stop (Zychowski et al. 2018). In comparison, Mesbah 

et al. (2015) use weather and HTM features to predict travel time reliability. They lev-

eraged an ordinary least square regression and limited the used HTM data to the morn-

ing peak timeframe (7 am - 9 am). The weather features were designed by calculating 

the average for the morning period as a stationary value (Mesbah et al. 2015). Many 

other studies extended their HTM data with weather events to test its effect on punctu-

ality within PT on a time scale from several days to weeks (Ge et al. 2021). While the 

focus on weather impacts remains identical across all papers, the types of results vary. 



Among others, Zakeri and Olsson (2018) focus on the effects of serve weather condi-

tions on the punctuality of trains in Norway. Oneto et al. (2016) followed a similar 

approach by dynamically predicting the delay of trains in Italy. Compared to Zakeri 

and Olsson (2018), Oneto et al. (2016) focused on the influence of regular weather 

conditions and compare multiple models. Besides weather, (Laifa et al. 2021; Mesbah 

et al. 2015) use holidays as an additional factor. However, evaluating the impact of 

holiday variables on the overall prediction quality is rare.  

While the effects of external factors such as weather and holidays on public trans-

portation have already been the focus of several studies (Oneto et al. 2016; Zakeri and 

Olsson 2018; Wei et al. 2018; Liu et al. 2017) it remains unclear to what extent these 

findings are applicable for tram-based mobility. Mesbah et al. (2015) and Zychowski 

et al. (2018) provide the first evidence but focus on either small sample data sets or 

limited time frames. Thus, an analysis of a complete tram network for multiple 

timeframes and years has – to the best of our knowledge – not been investigated before. 

Furthermore, we increase the granularity as compared to daily or weekly weather ag-

gregations for weather features (Zakeri and Olsson 2018; Chen et al. 2004). In addition, 

this study contributes to the literature by answering the call for further research regard-

ing the effect of holidays (Laifa et al. 2021). Lastly, the aforementioned results are 

verified by implementing four different PPMs, whichave seen promising results in pre-

vious works  (Shi et al. 2021; Nimpanomprasert et al. 2022).  

3 Methodology 

This work builds on the Cross-Industry Standard Process for Data Mining (CRISP-

DM), commonly applied in empirical studies, to quantify the effect of external factors 

on punctuality prediction in public transportation. The proposed method increases un-

derstanding and cross-project comparability by avoiding mistakes through a standard-

ized and structured research approach (Wirth and Hipp 2000). We slightly modified the 

proposed method by omitting the deployment step, as it is not within the scope of this 

study, and extending the evaluation step with a comprehensive comparison. The mod-

ified CRISP-DM process consists of five different steps, namely "Business Understand-

ing", "Data Understanding", "Data Preparation", "Modelling" and "Evaluation & Com-

parison" (Wirth and Hipp 2000).  

 

 
Figure 1. Derived five-step process for the quantification of external punctuality factors. 



"Business Understanding": First, CRISP-DM starts by covering business under-

standing to identify specific challenges and strategic barriers. For our study, business 

understanding was primarily used to identify that weather and holiday events as features 

to be considered in improving the prediction of punctuality in public transportation 

(Laifa et al. 2021; Zakeri and Olsson 2018; Oneto et al. 2016) and to better understand 

the impact of delays in public transportation services for mobility providers and their 

passengers (Ge et al. 2021). Furthermore, this step includes general knowledge of the 

punctuality predictions in public transportation which has been displayed in Section 2. 

"Data Understanding": Second, CRISP-DM ensures a profound understanding of 

the collected data, tightly linking it to the subsequent data preparation. We collected 

our combined dataset from three different sources. Subsequently, we implemented cor-

relation scrutiny and descriptive analysis. Section 4 introduces both the dataset and the 

preprocessing steps. 

"Data Preparation": Third, CRISP-DM provides a framework to fulfill the quality 

requirements of the underlying data. We cleansed the data from outliers and invalid, 

false data points during this process.  

"Model Selection": Fourth, CRISP-DM provides a standardized guideline for the 

modeling and selection process detailed in Section 5. This study utilizes four PPMs to 

quantify the effect of external features on punctuality performance in public transpor-

tation. 

"Evaluation & Comparison": Fifth, CRISP-DM assists in evaluating and compar-

ing derived results. In this study, we assess two different error measures to substantiate 

our findings and underline the robustness of our results since single error measurements 

may not provide a holistic picture (Botchkarev 2019). For better comparison to the lit-

erature, we use the mean absolute error (MAE) as the primary evaluation metric when 

presenting the results and derived our own metric to ensure comparability with the ex-

isting research in Section 6. Afterward, Section 7 critically reviews specific results and 

derives implications, limitations, and prospects for further research. 

4 Data Understanding and Preparation  

As formulated in our research question, we aim to quantify the impact of additional 

features on the punctuality prediction of intra-urban public transportation. Therefore, 

we integrated data from different sources to cover the various aspects that influence the 

punctuality of tramways. In a second consecutive step, we processed the aggregated 

datasets. Finally, we derived the features for the machine learning algorithms.  

Data Aggregation   

In Section 2, we discussed which features were used in the existing literature to predict 

the delay of public transportation. Based on this research, we identified three available 

datasets for our region of interest. The primary dataset provided by Stadtwerke Augs-

burg GmbH includes parts of AVL data of the tramline network of Augsburg from May 

2019 until August 2022. It comprises over 25 million records for five tram lines, each 

detailing a tram stop, including the arrival and departure times. The weather dataset 

provided by Meteostat contains weather information for each station and hour within 



the historic train movements. Finally, the holiday dataset, provided by the German Min-

isterial Culture Conference, includes information about holidays, public holidays and 

long weekends during the same timeframe. The latter two are publicly accessible.  

Preprocessing of data 

During the preprocessing steps, we excluded tram runs that had either transmission er-

rors (e.g., wrong line number, no actual departure time) or corrupt data points (e.g., 

significant outliers). This procedure had several implications for our results. Foremost, 

our prediction focuses on tram delays and excludes tram breakdowns since they are 

indistinguishable from corrupted data points. Furthermore, our preprocessing methods 

reduced the number of records from 25 million to 14 million.  

Figure 2 shows an excerpt from the final dataset. The plot on the left-hand side il-

lustrates the distribution of the departure delay across the considered data points. Most 

data records exhibit low and positive departure delays, indicating that trams tend to 

leave stations belated rather than too early, which aligns with the policy of tram pro-

viders. The remaining plots highlight increased departure delays during usual working 

times compared to evening hours and the effect of different geolocations of tram sta-

tions concerning departure delay.   

 

Figure 2. Summary plots for the historic train movements. 

Data transformation & Feature selection 

After the preprocessing steps, our final dataset contains 14 million punctuality records. 

Based on the literature review conducted in Section 2 and multiple explorative data 

analysis, we focused on 16 features divided into three feature sets. The first set contains 

features describing the historic tram movements and time data. The remaining two sets 

of features describe external influences on the tram movements, namely weather and 

holidays. Table 2 displays the variables and their respective specifications. As intro-

duced in Section 1, this study forecasts the delay from multiple hours to days afront. 

The delay can be expressed in various formats reaching from different categories such 

as arrival delay (AD), dwell delay (DWD), driving time delay (DTD), and departure 

delay (DED) to different calculation methods, i.e., cumulative versus relative 



Table 2. Description of all features used in this study. 

Variables Values 

Historic Tram Movements (HTM) 

Daily number of departures at a station Numeric 

Line number Categorical 

Direction Binary 

Weekday Categorical 

Hour Categorical 

One week rolling mean departure delay by stop Numeric (s) 

One year rolling mean departure delay by stop Numeric (s) 

One week rolling mean departure delay by line number Numeric (s) 

One year rolling mean departure delay by line number Numeric (s) 

Weather (W) 

Temperature Categorical 

Snow height Numeric (mm) 

Windspeed Categorical 

Precipitation Categorical 

Holiday (H) 

School holidays Binary 

Public holidays Binary 

Long weekend (bank holiday + extra day) Binary 

*The categories for the weather features are based on Baumgarte et al. (2022). 

This study focuses on the DED, which is calculated as follows: 

𝐷𝐸𝐷𝑖 = 𝐴𝐷𝑖 + 𝐷𝑊𝐷𝑖 , 𝑖 ∈ {1, … , 𝑁}, (1) 

where the arrival delay at station i is determined by 

𝐴𝐷𝑖 = 𝐴𝐷𝑖−1 + 𝐷𝑊𝐷𝑖−1 + 𝐷𝑇𝐷𝑖−1,𝑖 (2) 

and 𝑁 ∈ ℕ is the number of stations within the transportation network. Altogether the 

DED combines potential arrival delays at station i-1 (previous station), driving time 

delays between station i and i-1, and unscheduled waiting times at stations i-1 and i and 

takes positive values in case of a departure delay and negative values in case of an early 

departure. 

5 Model Selection, Fitting & Evaluation 

After the data preprocessing, we conducted an intensive literature review to identify 

various ML models suited for DED prediction with reasonable optimization runtime 

and scalability for our datasets. We evaluated the selected models based on perfor-

mance, accuracy, interpretability, and runtime. 

Model selection  

The ensemble models XGBoost, LightGBM, and the stand-alone KNN model im-

proved the punctuality predictions or outperformed other comparable models' accuracy 



or runtime (Shi et al. 2021; Laifa et al. 2021; Pongnumkul et al. 2014). These studies 

were all based on HTM data. In addition, we chose a Random Forest Regressor (RF) as 

a fourth model since its implementation by Arshad and Ahmed (2021) has already 

achieved good prediction results for the combination of HTM and weather data consid-

ering different error measures. 

Model fitting 

Recent studies underline that tuned hyperparameters outperform the default settings 

of machine learning libraries. Therefore, searching for the best hyperparameter config-

uration has become increasingly important (Truong et al. 2019). However, tuning a 

model to find the best combination is costly. Besides higher costs, manual hyperparam-

eter tuning leads to reduced reproducibility. Since this problem is widely acknowl-

edged, several publications and libraries provide possible solutions (Hutter et al. 2019). 

Automated Machine Learning (AutoML) summarizes these solutions aiming to im-

prove the availability of ML functionalities, reduce training costs, and improve repro-

ducibility while maintaining high accuracy (Truong et al. 2019). Therefore, we leverage 

a recent AutoML library called FLAML. Researchers at Microsoft developed FLAML 

to balance the tradeoff between trial costs (i.e., CPU costs for training) and trial error 

(i.e., accuracy of the model) (Wang et al. 2021b). The framework uses Blendsearch for 

hyperparameter tuning, combining global and local search (Wang et al. 2021a).  Over-

all, the first benchmarking results of FLAML suggest that it outperforms existing Au-

toML frameworks for shorter (1h) and longer runs (4h) (Wang et al. 2021b; Gijsbers et 

al. 2019).  

We fitted every model separately using the provided learners and their correspond-

ing hyperparameter spaces of the FLAML library to answer our RQ, leading to the best 

possible configurations within the selected time budget. We trained each model to min-

imize the mean absolute error using a holdout validation set containing 25 % of the 

data, a 5-fold cross-validation on the test set containing the remaining 75 % of the entire 

dataset and no additional preprocessing. Considering the call for more comprehensible 

AI research, we provide an in-depth description of the hyperparameter tuning according 

to the specifications of Kühl et al., along with corresponding results upon request (Kühl 

et al. 2021). 

Model evaluation 

A common problem in punctuality prediction is that historic punctuality data underlies 

strict regulations in terms of publishing. The dependencies of the ML evaluation func-

tions (e.g., MAE and RMSE) on the volatility of the test data set make them directly 

connected. This results in the fact that the MAEs per research project are not directly 

comparable, limiting the comparability between different studies. Based on prior works 

by Wang and Work (2015), we introduce an error metric that compares the mean of the 

differences between the planned departure times according to the timetable and the his-

toric departure times (𝐷𝐸𝐷𝑡𝑖𝑚𝑒𝑡𝑎𝑏𝑙𝑒) and the mean of the predicted departure delay of 

the model (𝐷𝐸𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑). The ratio between these two mean absolute errors, as defined 

in Equation 3, acts as a quality metric for the result that is independent of the granularity 

of the baseline values. By reporting the quality metric and the model characteristics, 

such as mean absolute error (MAE), and root mean squared error (RMSE), we guaran-

tee the comparability of our results.  



 

𝑄𝑀 = 1 −
𝑀𝐴𝐸(𝐷𝐸𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝑀𝐴𝐸(𝐷𝐸𝐷𝑡𝑖𝑚𝑒𝑡𝑎𝑏𝑙𝑒)
=  1 −

𝑀𝐴𝐸𝑚𝑜𝑑𝑒𝑙

𝑀𝐴𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 (3) 

6 Results 

This section presents the prediction performance results of our large-scale data-driven 

PPMs, focusing on the differences between historical and enriched feature sets. We 

evaluate our models using a 5-fold cross-validation on the training dataset and summa-

rize the resulting error metrics. To this end, our PPMs are presented on the x-axis. In 

contrast, the y-axis shows the previously introduced quality metric (3) (left-hand side) 

and the improvements compared to the baseline RMSE, which is calculated by using 

the RMSE instead of the MAE in Equation 3 (right-hand side). Figure 3 illustrates our 

results. The y-axis of the RMSE figure is scaled to ensure better readability of the re-

sults. 

  
Figure 3. Performance evaluation for PPMs benchmarked against the deviations in the train 

schedule. 

Considering both evaluation metrics, all models tend to improve performance when 

trained on enriched datasets. XGBoost exhibits the most significant relative improve-

ments of 17.33 % comparing historical data and the complete feature set. While the 

relative percentage might vary between the models, the overall tendency prevails - the 

larger the set of uncorrelated features, the better the quality metric. Overall, the RF 

model and the KNN improved gradually over each feature extension. Table 3 addition-

ally provides an overview of the two-error metrics and our quality metric for each of 

the four data-driven PPMs grouped by the underlying dataset, HTM, HTM + W, HTM 

+ H, and HTM + W + H, to increase understandability and comparability. We notice 

that all PPMs trained on the enriched dataset outperform the models trained exclusively 

on HTM data. 



Table 3. Error metrics and standard deviation for all PPMs. 

Data-

set 

Model MAE RMSE QM Relative 

Improve-

ment 

HTM 

KNN 57.75 81.70 36.33 - 

LightGBM 59.95 84.91 33.90 - 

RF 61.38 86.55 32.33 - 

XGBoost 64.26 99.37 29.15 - 

HTM 

+ H 

KNN 56.54 79.94 37.66 2.11 % 

LightGBM 52.13 72.78 42.52 13.04 % 

RF 60.49 85.25 33.30 1.45 % 

XGBoost 64.22 99.47 29.19 0.06 % 

HTM 

+ W 

KNN 56.27 79.94 37.96 2.56 % 

LightGBM 53.19 74.11 41.36 11.28 % 

RF 58.89 82.57 35.07 4.06 % 

XGBoost 62.21 92.61 31.41 3.20 % 

HTM 

+ W + 

H 

KNN 54.79 70.91 39.59 5.13 % 

LightGBM 51.08 71.54 43.68 14.81 % 

RF 58.55 82.70 35.44 4.61 % 

XGBoost 53.12 74.18 41.43 17.33 % 

 

Moreover, they exhibit greater robustness and generalization abilities than their coun-

terparts trained on singular aggregated data.  

We benchmarked each feature against the results of the HTM data to link the improved 

model performance to the selected features. We achieved this by implementing four 

ML models for each feature set and comparing the tuple (model and feature set) to the 

HTM result of the same model while ruling out secondary effects since they are inherent 

in both training sets. Table 4 shows the average improvement for selected categorical 

features. 

Table 4. XGBoost MAE comparison for selected exogenous features. 

Exogenous event XGBoost (HTM) 
XGBoost 

(HTM+W/HTM+H) 

Temperature below -10 °C 58.61 55.68 (-5.0%) 

Precipitation over 50 
𝑚𝑚

𝑐𝑚2 59.18 56.39 (-4.7%) 

Fresh snow (30 – 60 cm) 56.50 53.89 (-4.6%) 

Evening hours of public holidays 58.53 58.37 (-0.3%) 



7 Discussion and Implications 

This study quantifies the effect of exogenous factors on tram punctuality predictions 

building on the work of  Mesbah et al. (2015). We implement four different ML models 

derived from relevant literature and analyze prediction performance by adding seven 

exogenous features to the HTM baseline dataset. We train all models on permutations 

of the large-scale exogenous datasets to study performance for each category as well as 

individual features to rule out secondary effects. The best overall model, LightGBM, 

yields an MAE of 51.08s or 43.76 % QM when trained on HTM enriched with four 

weather and three holiday features.  

Our results have various managerial and academic implications. First, we provided 

academia with a method to quantify punctuality prediction results based on a quality 

metric that allows researchers to compare their findings across different datasets. Sec-

ond, we show that AutoML methods can be used in the field of punctuality prediction 

to train profound PPMs with reasonable computational time. Third, we verify previous 

findings for urban tram networks and quantify the effect of enriching HTM data with 

exogenous factors while ruling out secondary effects. Fourth, we confirm our results 

on an entire transportation network containing multiple stations and lines compared to 

previous research, mainly focusing on single lines or single stations. Fifth, we study the 

effects of more exogenous data (holidays and weather) for a longer time period with 

finer granularity compared to relevant literature. 

Although, to our knowledge, this is the first study to investigate an entire tram network, 

our findings are limited to one transportation network within one city. Furthermore, the 

number of weather stations could be increased to more precisely depict hyperlocal 

weather development. While we see a performance increase when adding more exoge-

nous factors, further research should investigate its impact on computational power as 

well as financial and ecological costs. Finally, we encourage the research community 

to study both the influence of endogenous and exogenous factors based on explainable 

ML models and broaden the scope by adding more transportation networks to foster 

well-informed managerial decision-making within the PT sector. 

8 Conclusion 

In this study, we address the RQ of whether and to what extent exogenous factors in-

fluence the performance of PPMs in PT after adequate training and tuning efforts. We 

derive four state-of-the-art ML models from relevant literature presented in Section 2 

and implement them on a large-scale mobility dataset with over 14 million real-world 

punctuality records of a medium-sized German city. Our results suggest a fundamental 

link between PPM performance improvement and enriched HTM data for tram mobil-

ity. By answering our research question, we contribute to investigating the correlation 

between external features and data-driven punctuality prediction models in public rail-

based transport. We confirm extant research that weather and holiday features posi-

tively influence the overall model performance. We further extended the existing dis-

course by proving fine granular weather and holiday features influence the prediction 

quality and, therefore, the delay of trams within a whole tram network.  
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