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ABSTRACT 

In order to reduce dimensionality of high-dimensional data, a series of feature selection algorithms have been proposed. But these 
algorithms have the following disadvantages: (1) they do not fully consider the nonlinear relationship between data features (2) 
they do not consider the similarity between data features. To solve the above two problems, we propose an unsupervised feature 
selection algorithm based on local structure learning and kernel function. First, through the kernel function, we map each feature of 
the data to the kernel space, so that the nonlinear relationship of the data features can be fully exploited. Secondly, we apply the 
theory of local structure learning to the features of data, so that the similarity of data features is considered. Then we added a low 
rank constraint to consider the global information of the data. Finally, we add sparse learning to make feature selection. The 
experimental results show that the proposed algorithm has better results than the comparison methods.  
 
Keywords:  Feature selection · Kernel function · Sparse learning · Local structure learning  
_____________________ 
*Corresponding author 

 
 INTRODUCTION 

With the development of computer science and technology, the information age is coming. At the same time, a large number of 
high-dimensional data are brought (Zhu et al., 2014). Artificial intelligence, data mining and other fields are also booming (Zhang 
et al., 2018). It is very difficult for people to deal with thousands of data, sometimes it will bring problems of dimensional disaster 
(Zhu et al., 2013; Zhu et al., 2010). For these high-dimensional data, people must preprocess it. The feature selection is one of the 
most effective ways (Bolón-Canedo et al., 2016). It is necessary to preprocess the data through feature selection to narrow the data 
dimension (Ling et al., 2004).  
 
Feature selection (Zhu et al., 2013) includes linear feature selection and nonlinear feature selection (Zhang et al., 2007). Their 
fundamental purpose is to find a relatively small and representative subset of features (Qin et al., 2007; Sheeja et al., 2018). There 
are many commonly used feature selection methods (Zhang et al., 2011), but they cannot unearth the nonlinear relationship 
between data features. The local structure learning is applied to the sample at the beginning, and the structure between the samples 
is fully embodied by constructing the similarity matrix between the samples (Nie et al., 2016), so as to achieve better experimental 
results. But it does not fully embody the structural relationship between features. To this end, we maps each feature of the data to a 
high-dimensional space by a kernel function, so that the nonlinear relationship between them is linearly separable in the high-
dimensional space. At the same time, the local structure learning is applied to the data features. To better represent the local 
structural relationship of data features in low-dimensional space. A more efficient feature selection algorithm is proposed, which is 
called Unsupervised Feature Selection Algorithm via Local Structure Learning and Kernel Function (LSK FS).  
 
This paper firstly processes the data through the kernel function to obtain the kernel matrix, which solves the limitation that the 
linear feature selection can be only performed. Secondly, it constructs the similarity matrix for the data feature to perform the local 
structure learning, it can improve the classification accuracy. Low rank constraints can eliminate noise interference. Finally we use 

1l − norm of a vector for feature selection. Because this paper considers the nonlinear relationship and similarity between data 
features at the same time, it has better effect than the single linear feature selection method. The experimental results show that the 
algorithm can achieve better results in classification accuracy. 
 
The algorithm proposed in this paper has the following advantages:  
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(1) Since the general feature selection algorithm can only find the linear relationship between data features, it cannot find the 
nonlinear relationship between data features. Therefore, the algorithm maps each feature of the data matrix to a kernel matrix 
through the kernel function, so as to fully exploit the complex nonlinear relationship between the data features in the kernel space. 
Furthermore, the relationship between data features is more thoroughly explored.  
 
(2) Different from ordinary local structure learning, it only calculates the optimal result of the similarity relationship between 
samples. Our algorithm is aimed at data features, and the similar matrix learning and low-dimensional space learning are alternated 
to achieve the optimal feature selection effect.  
 
(3) Low rank constraints can significantly reduce the amount of computation, while low rank characterizes the degree of data 
redundancy. Noise samples increase the rank of the coefficient matrix, and low rank constraints can reduce noise interference, 
while low rank is a consideration of the global structure of the data. It can improve the operating efficiency and classification 
accuracy of the algorithm.  

 
OUR METHOD 

In this section, we first introduce the symbols used in this article and then explain our proposed LSK FS algorithm, in Sections 2.1 
and 2.2, respectively, and then elaborate the proposed optimization method in Section 2.3. 
 
2.1 Notations  
For the data matrix n d×∈X R , the i-th row and the j-th column are denoted as iX and jX  respectively, and the elements of the i-th row 
and the j-th column are denoted as ,i jx . The trace of the matrix X is denoted by ( )tr X , TX denotes the transpose of the matrix X, and 

1−X represents the inverse of the matrix X. 
 
2.2 LSK FS Algorithm  
Suppose a given sample data set n d×∈Χ R , where n and d represent the number of samples and the number of attributes, respectively. 
This paper first breaks the data set n d×∈Χ R  into d column vectors, each vector 1, 1,...,n

ix R i d×∈ = . Then it treats each element in each ix  
as an independent feature value ijx R, j = 1,...,n∈ . And projects them into the kernel space to get the kernel matrix ( )i n n×∈K R , namely: 

1 1 1 2 1

2 1 2 2 2( )

1 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( , ) ( , )

i i i i i in

i i i i i ini

in i in i in in

k x x k x x k x x
k x x k x x k x x

k x x k x x k x x

 
 
 =
 
 
 

K

…
…

… … … …
…                                                                                                 

(1) 

Thus the original n d×∈X R  becomes d kernel matrix. 
 
The unsupervised feature selection algorithm mainly mines more representative features in the data. In the absence of the class 
label Y, using the data matrix X as a response matrix, the internal structure of the original features of the data can be better 
preserved (Almusallam et al., 2018; Xue et al., 2016). In order to fully exploit the nonlinear relationship of data features. Get the 
following expression: 

( )

1

d
i

i
i
α

=

=Χ K W
                                                                                                                

(2) 

Where: n d×∈W R  represents the kernel coefficient matrix; 1d×∈α R is used to perform feature selection, which is equivalent to the 
weight vector of the feature; iα  is an element of the vector α ; ( )i n n×∈Κ R  is the kernel matrix. 
 
Predecessors have proved that the local structure between data can be used to reduce the dimension (Liu et al., 2017), so this paper 
makes local structure learning by establishing a similarity matrix between data features in low-dimensional space. The following 
formula is obtained through local structure learning: 

2

,, 2
min d T T

i j i ji j
x x s−Z
W W                                                                                                          (3) 

Where 1n
ix R ×∈  represents i-th feature. n d×∈W R  is the conversion matrix of high-dimensional data in low-dimensional space, ,i js  is 

an element of matrix S, indicating the similarity between feature ix and feature jx . If the feature ix  is the k-th nearest neighbor of the 
feature jx , then the value ,i js is obtained by the Gaussian kernel function; otherwise =0. In order to make X get a better fitting effect, 
and consider the structural relationship between data features in low-dimensional space, we get the following formula: 

2
2( )

1 ,, 2, , 1
min

d
di T T

i i j i ji j
i F

α λ x x s
=

− + − S W α
X K W W W                                                                                       (4) 
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Since the similarity matrix S is particularly affected by the influence of parameters σ . In order to reduce the number of adjustment 
parameters, a more efficient similarity matrix is learned. In this paper, structural learning and low-dimensional space learning are 
alternated to achieve their optimal results. Specifically get the following formula: 

2
2 2( )

1 , 2 2, 2, , 1

, ,

min

. ., , = 1,s 0, 0, if  Ν( ),  0

d
di T T

i i j i j ii j
i F

T
i i i i j

α λ x x s λ s

s t i s s j i otherwise
=

− + − +

∀ = ≥ ∈

 S W α
X K W W W

1
                                                                               (5) 

Among them, 1λ , 2λ  is the tuning parameter, is  is the i-th column of the similar matrix S, and 2

2is  is used to avoid unimportant 
results. 1 represents a vector with all elements of 1. Ν( )i  represents a set of neighbors the i-th feature. In order to maintain rotation 
invariance, we set = 1T

is 1 . Therefore, the above formula can make the value ,i js  corresponding to the feature closer to the distance 
larger, and the value ,i js  corresponding to the feature whose distance is farther is smaller. 
 
In order to eliminate the interference of the outliers, the noise samples are removed at the same time (Wan et al., 2018). This paper 
adds a low rank constraint to the matrix W (Li et al., 2017), namely: 

=W AB                                                                                                                    (6) 
Among them, n r×∈A R , r d×∈B R , min( , )r n d≤ , we also orthogonally limit the matrix A, in order to fully consider the correlation 
between the output variables. We add a 1l − norm of α  for sparse learning and feature selection (Tsagris et al., 2018). Finally we 
get our final objective function as follows: 

2
2( )

1 ,, 2, , , 1

2
2 32 1

,

,

min

. ., , = 1,s 0,

0, if  Ν( ),  0,

d
di T T

i i j i ji j
i F

i

T
i i i

T
i j

α λ x x s

λ s λ

s t i s

s j i otherwise

=

− + −

+ +

∀ =

≥ ∈ =

 S A B α
X K AB AB AB

α

A A I

1

                                                                                 (7) 

 
Among them, T r r×= ∈A A I R , 1λ , 2λ  and 3λ  are the tuning parameter. The kernel matrix K is calculated by the Gaussian kernel 
function, and its main function is to map the data to the kernel space, thereby mining the nonlinear relationship between the data 
features. The 1l − norm of the last item α  is used to sparse the features for feature selection. If the value of the element 
corresponding to the vector α  is zero, it means that the feature is not selected. 
 
2.3 Optimization  
Since the objective function is not co-convex, the closed solution cannot be directly obtained. Therefore, this paper proposes an 
alternate iterative optimization method to solve the problem, which is divided into the following four steps: 
 
Update A by fixing S, α  and B: 
When S, α  and B are fixed, the optimization (7) problem becomes:  

2
2( )

1 ,, 2
1

min  

                                  . .,

d
di T T

i i j i ji j
i F

T

α λ x x s

s t
=

− + −

=

 A
X K AB AB AB

A A I

                                                                        (8) 

We make ( )

1
=

d
i

i
i
α

=
Ρ K , then the (8) formula can be transformed into:  

22
1 ,, 2

min  

                                  . .,

d T T
i j i jF i j

T

λ x x s

s t

− + −

=

A
X PAB AB AB

A A I
                                                                                    (9) 

We simplify the (9), we have:  

1

min ( )

( ), . .,

T T T T T T T T

T T T T

tr

λ tr s t

− − +

+ =
A

X X X PAB B A P X B A P PAB

B A XLX AB A A I
                                                                        (10) 

Where tr( )⋅  represents the trace of matrix, = - d d×∈L Q S R  is a Laplace matrix, Q is a diagonal matrix, and the elements of each 
column are , ,1

d
i i i jj

q s
=

= . Deriving for A, we have: 

12 2 2T T T T T Tλ − +XLX ABB P XB P PABB                                                                                           (11) 
Due to the orthogonality of A, we can optimize it by the method in (Zhao H et al., 2016). 
Update B by fixing S, α  and A  
By fixing S, α  and A, the objective function (7) can be simplified as follows:  
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2
2( )

1 ,, 2
1

min  
d

di T T
i i j i ji j

i F

α λ x x s
=

− + − B
X K AB AB AB                                                                          (12) 

It is easy to get (12) is equivalent to the following formula: 

1

min ( )

( )

T T T T T T T T

T T T

tr

λ tr

− − +

+
B

X X X PAB B A P X B A P PAB

B A XLX AB
                                                                            (13) 

When we ask for B and let its derivative be zero, we can get: 
1

1( )T T T T T Tλ −= +B A P PA A XLX A A P X                                                                                                 (14) 
Update S by fixing A, α  and B  
After fixing A, α  and B, the objective function (7) becomes:  

2 2
1 , 2 2, 2

,

,

min

. ., , = 1,s 0,
0, if  Ν( ),  0

d T T
i j i j ii j

T
i i i

i j

λ x x s λ s

s t i s
s j i otherwise

− +

∀ =
≥ ∈

S
AB AB

1                                                                                                 (15) 

We first calculate the Euclidean distance between every two data features to construct the neighbors of all the features. If the j-th 
feature does not belong to the nearest neighbor of the i-th feature, then the value of ,i js  is zero; otherwise, the value of ,i js  is solved 
by equation (18). 
 
At the same time, optimizing S is equivalent to optimizing each ( 1,..., )is i d=  individually, so we further translate the optimization 
problem into the following equation: 

, ,

2 2
1 , 2 ,, 21 1, 0, 0

min ( )
T
i i i i j

d T T
i j i j i ji js s s

λ x x s λ s
= = ≥

− + AB AB                                                                                        (16) 

Here, d d×∈Z R , in which 2

, 1 2
T T

i j i jλ x x= −Z AB AB , such (16) further becomes: 

, ,

2

1

1 1, 0, 0
2 2

min
2T

i i i i j
i is s s

λs
λ= = ≥

+ Z                                                                                                                (17) 

Under KKT conditions, we can get the following: 
1

, ,
2

( )
2i j i j
λs Z τ
λ += − +                                                                                                                 (18) 

Since each data feature has a neighbor, we sort each ( 1,... )iZ i d= in descending order, that is ˆ ˆ ˆ{ ,..., }i i,1 i,dZ Z Z= , we know: , 1 0i ks + = , , 0i ks > . 
We have: 

1
, 1

2

ˆ 0
2 i k
λ Z τ
λ +− + ≤                                                                                                                     (19) 

Under the conditions = 1T
is 1 , we can get: 

1 1
, ,1 1

2 2

1ˆ ˆ( ) 1
2 2

k k
i k i kj j

λ λZ τ τ Z
λ k kλ= =

+ =  = +                                                                                              (20) 

 
Update α  by fixing A, B and S  
After fixing A, B and S, the objective function (7) becomes:  

2
( )

3 1
1

min
d

i
i

i F

α λ
=

− +α
X K AB α                                                                                                          (21) 

In order to optimize the next step, here is the simplification of the above formula, namely: 

( ) ( )

(1) ( )

2(1) ( )
1 3 1

2(1) ( )
1 3 1

2

1 ,. ,. 3 121

min  ( ... )

min  ( ... )

min  ( ... )

i i n d

d

d
d F

d
d F

n

i i d i
i

q q

×= ∈

=

⇔ − α + + α + λ

⇔ − α + + α + λ

⇔ − α + + α + λ

α

Q K ΑΒ R

α

α

Χ K ΑΒ K ΑΒ α

Χ Q Q α

Χ α

                                                                                     (22) 

We set 

(1) (1)

( ) ( )

,1 ,
( )

,1 ,
d d

i i d
i d d

i i d

q q

q q

×

 
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= ∈ 
  
 

M R  and have:  



Li, Zhu, Gan, Zhang, Zhang & Zhang 
 

The 18th International Conference on Electronic Business, Guilin, China, December 2-6, 2018 
725 

2( )
3 12

1

2( )
3 12

1

( )

1 1

( ) ( )
3 1

1

min  

min  ( )

min  2

( ( ) )

i

i

n
T i

i
i
n

T i T

i
n n
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The above simplification is only for the convenience of the following gradient descent (Wang et al., 2016). We make: 
2

( )

1

3 1

( )

( ) ( )

d
i

i
i F

f α

F f λ
=

= −

= +

α X K AB

α α α
                                                                                               (24) 

Note that
1α  is convex but not smooth. So using approximate gradient to optimize α , we can update iterations α  by the following 

rules. 
1 arg min ( , )t ηt tG+ =

α
α α α

                                                                                                      
(25) 

( ) ( ) ( ) 2
3 1, ,

2
t

ηt t t t t t
ηG f f λ= + < ∇ − > + − +α α α α α α α α α

                                                                           
(26) 

In the above formula, ( ) ( ) ( )

1 1
( )=2 ( ( ) ) 2 ( )

n n
T i i T i T

t t i
i i

f
= =

∇ − α α M M X M , tη  is a tuning parameter, tα  is the value of α in the t-th iteration. 

By ignoring the independence in equation (26), we can get: 
2 3

1 1

1( ) arg min
2tt η t t Fα

t

λπ
η+ = = − +α α α U α

                                                                                      
(27) 

Among them 1 ( )t t t
t

f
η

= − ∇U α α , ( )
tη tπ α is the Euclidean projection on the convex set tη , because 

1
α  has a separable form, the formula 

(27) can be written as follows: 
2 3

1 2

1arg min
2i

i i i i
t tα

t

λα α U α
η+ = − +

                                                                                            
(28) 

Where iα  and 1
i
tα +  are the i-th elements of α  and 1t+α  respectively, then according to formula (28), 1

i
tα + can obtain the following 

closed solution: 
3 3

* ( ), if

0, otherwise.

i i i
t t ti

t t

λ λu sign u u
η ηα

 − × >= 
                                                                                              

(29) 

To speed up the approximate gradient algorithm in equation (26), we have added auxiliary variables: 

+1 1
+1

1 ( )t
t t t t

t

β
β +

−= + −V α α α
                                                                                                     (30)

 

Where 
2

1
1 1 4

2
t

t

β
β +

+ +
=

.
 

 
EXPERIMENTS 

In this part, we arrange the proposed algorithm and the comparison algorithm in the same environment for experiment, and classify 
the data after the algorithm is reduced by SVM. Finally, the validity and performance of the feature selection algorithm are 
measured according to the classification accuracy. 
 
3.1 Experiment Settings  
We tested our proposed unsupervised feature selection algorithm on four binary data sets and eight multi-class data sets. They are 
Yale, Colon, Lung_discrete, Glass, SPECTF, Sonar, Clean, Arrhythmia, Movements, Ecoli, Urban_land and Forest, where the first 
three data sets are from feature selection data, and the last nine data sets are from the UCI data set. The details of the data set are 
shown in Table 1: 

Table1: The information of the data sets 
Datasets Samples Dimensions Classes 

Glass 214 9 6 
Movements 360 90 15 

SPECTF 267 44 2 
Ecoli 336 343 8 
Sonar 208 60 2 
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Urban_land 168 147 9 
Clean 476 167 2 
Forest 325 27 4 

Arrhythmia 452 279 13 
Colon 62 2000 2 
Yale 165 1024 15 

Lungdiscrete 73 325 7 
 
At the same time, we found eight representative feature selection comparison algorithms to compare with our proposed algorithm. 
The main introduction of the algorithm is as follows: 
 
EUFS (Wang et al., 2015): It directly embeds the unsupervised feature selection algorithm into the clustering algorithm through 
sparse learning, which is an embedded feature selection algorithm. It applies the 2,1l − norm to the cost function to reduce the impact 
of reconstructed data matrices and feature selection on V. 
 
FSASL (Du L and Shen Y D, 2015): By classifying the previous unsupervised feature selection algorithm, a novel learning 
framework is proposed, which is an unsupervised feature selection algorithm for adaptive structure learning, which combines 
structure learning and feature learning. Finally, the experiment also shows that the algorithm is very effective. 
 
NDFS (Li et al., 2012): The algorithm makes the algorithm select more representative features through the cluster learning and 
feature selection matrix of the class label. In order to learn more accurate clustering labels, it performs non-negative constraints. 
The 2,1l − norm is also added to remove the effects of redundant features and noise. 
 
NetFS (Li et al., 2016): Embedding a principle method into the representation learning from network structure learning to feature 
selection is a robust unsupervised feature selection algorithm. The algorithm uses an alternate optimization algorithm to optimize 
itself and validate its performance through realistic data representation. 
 
RLSR (Chen et al., 2017): The algorithm is a novel semi-supervised feature selection algorithm that evaluates the importance of 
features by performing a least squares regression by re-adjusting the regression coefficients with a set of scale factors. At the same 
time, the 2,1l − norm was added. The model not only performs global learning, but also performs sparse learning. 
 
RFS (Nie et al., 2010): The algorithm is an efficient and robust feature selection algorithm that applies the 2,1l − norm to both the 
loss function and the regularization term. It can regularize sparsely all data to select more representative features. The algorithm 
performs better in genomic and proteomic biology and can perform good biological information learning tasks. 
 
RSR (Zhu et al., 2015): The algorithm is an unsupervised feature selection algorithm for self-characterization learning. Each 
feature is linearly combined by other features, and the 2,1l − norm is applied to the coefficient matrix and the residual matrix. It 
effectively selects features and ensures robustness to outliers. If a feature is important, it will participate in the representation of 
most other features, resulting in a series of important representation coefficients, and vice versa. 
 
K_OFSD (Zhou et al., 2017): This article defines the online stream feature selection problem of class imbalance data, and 
proposes an online feature selection framework. The algorithm is based on the dependency between conditional features and 
decision-making classes, while refining the neighborhood rough set theory and using a fixed number of nearest neighbors of the 
selected features to solve the class imbalance problem. 
 
In our proposed model, we set 4 8

1 2{ , } {10 ,...,10 }λ λ −∈ , the rank of the kernel coefficient matrix {1,...,min( , )}r n d∈ , and the parameter of 

2, pl − norm {0.1,...,1.9}p ∈ . The parameters 5 5{2 ,..., 2 }c −∈  and 5 5{2 ,..., 2 }g −∈  are used to select the best SVM for classification. Through 
10-fold cross-validation, we divide the data set into a training set and a test set. In order to minimize the experimental error, we 
perform 10 times and 10 folds, and finally find the average of the classification accuracy. 
 
Since the experiment uses the classification accuracy rate to measure the performance of the algorithm, we define the classification 
accuracy as follows: 

/correctacc X X=                                                                                                          (31) 
Where X represents the total number of samples and correctX  represents the correct number of samples for classification. At the same 
time we define the standard deviation to measure the stability of our algorithm, as follows: 
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2

1

1 ( )
N

i
i

std acc μ
N =

= −                                                                                                      (32) 

Where N represents the number of experiments, iacc  represents the classification accuracy of the i-th experiment, μ  represents the 
average classification accuracy, and the smaller the std, the more stable the representative algorithm. 
 
3.2 Experiment Results and Analysis  
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Fig 1 : Average classification accuracy of all methods for all datasets 
 

In Figure 1, we can clearly see the classification accuracy of the 10 experiments. The algorithm we proposed is not the highest 
every time, but most of the cases are the highest. In Table 2, we can see the average classification accuracy of each algorithm on 12 
data sets. The algorithm proposed by us is obviously superior to other comparison algorithms. Specifically, it is 4.78% higher than 
EUFS in average classification accuracy and 5.05% higher than FSASL, which indicates that our algorithm is better than the 
general feature selection algorithm. Compared with K_OFSD, NDFS, NetFS, RLSR, RFS, and RSR. LSK_FS increased 13.63%, 
8.55%, 6.69%, 7.88%, 6.68%, and 3.59%, respectively. In particular, our algorithm is particularly effective on the dataset SPECTF. 
 

Table2: Average classification accuracy (acc(%)) 
Datasets EUFS FSASL K_OFSD NDFS NetFS RLSR RFS RSR LSK_FS

Arrhythmia 60.52 66.71 60.74 65.57 54.20 70.53 64..02 66.33 70.96 
Clean 84.61 84.83 86.53 77.82 95.78 91.53 84.64 84.77 96.13 
Colon 82.88 77.07 64.60 64.43 64.38 64.42 82.48 83.17 84.14 
Ecoli 84.97 86.01 69.28 82.81 84.47 78.31 85.74 85.81 86.19 
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Forest 85.23 86.06 74.23 76.31 86.43 85.78 83.50 86.55 88.50 
Glass 68.90 70.17 52.09 67.86 70.20 69.36 64.17 70.42 71.38 

Lungdiscrete 86.11 86.07 75.45 82.77 73.41 84.43 85.88 85.55 86.41 
Movements 81.36 81.61 71.19 86.61 81.42 73.58 72.08 88.61 88.92 

Sonar 83.81 78.67 79.11 85.43 86.66 77.26 83.91 83.91 88.48 
SPECTF 79.54 79.70 79.40 78.48 83.95 79.22 78.04 79.54 92.94 

Urban_land 61.78 62.05 53.25 51.27 56.96 60.20 58.82 61.72 63.56 
Yale 75.27 73.69 63.78 71.22 65.04 64.05 69.76 73.81 75.63 

Average value 77.92 77.72 69.14 74.22 76.08 74.89 76.09 79.18 82.77 
 
In Table 3, we can see the average standard deviation of each algorithm on 12 data sets. The standard deviation of the proposed 
LSK_FS algorithm is the smallest, indicating that our algorithm has the best stability. 
 

Table3: Standard deviation of classification accuracy (std(%)) 
Datasets EUFS FSASL K_OFSD NDFS NetFS RLSR RFS RSR LSK_FS

Arrhythmia 0.88 0.85 1.04 0.89 0.02 0.85 1.29 1.09 0.79 
Clean 0.54 0.94 0.03 1.29 1.32 0.03 0.97 0.74 0.49
Colon 1.88 2.99 0.38 1.31 0.29 0.59 2.08 0.93 1.5 
Ecoli 1.18 0.47 0.30 1.59 1.78 0.55 0.40 0.82 0.69
Forest 1.05 1.05 0.93 1.05 1.06 1.29 1.16 0.99 0.54 
Glass 1.05 1.02 1.37 2.07 1.15 0.70 1.00 1.29 1.01

Lungdiscrete 1.92 2.52 4.07 3.03 3.43 1.82 1.67 1.21 1.60 
Movements 1.04 1.31 1.33 1.76 1.06 1.65 1.44 0.80 0.72

Sonar 1.18 1.81 1.62 1.85 1.45 1.19 1.28 1.28 1.38 
SPECTF 1.01 1.24 0.03 1.20 2.08 1.10 1.11 1.01 0.04

Urban_land 0.77 1.38 1.01 1.44 0.88 1.69 2.74 0.83 1.41 
Yale 1.44 0.95 1.4 1.71 2.28 3.16 1.74 0.99 1.08

Average value 1.16 1.38 1.13 1.60 1.40 1.22 1.41 1.00 0.94 
 
The LSK_FS algorithm can achieve such good results, mainly for the following two reasons: 1. Consider the similarity between 
data features. 2. Fully consider the nonlinear relationship between data features. 

 
 CONCLUSION 

In this paper, a new unsupervised nonlinear feature selection algorithm is proposed by considering the similarity and nonlinear 
relationship between data features. That is, the local structure learning is used to find the similarity between the features, then the 
kernel method is used to find the nonlinear relationship between the data features, and finally the feature selection is performed by 
the sparse regularization factor. Low rank constraints have also been added to the model to better refine the proposed model. More 
significant mining results than the general feature selection algorithm. The experimental results show that the proposed algorithm 
has achieved great improvement in classification accuracy and stability. In the future work, we attempt to combine more advanced 
theoretical improvement algorithms. 
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