
Association for Information Systems Association for Information Systems 

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL) 

WHICEB 2019 Proceedings Wuhan International Conference on e-Business 

Summer 6-26-2019 

Using Fine-grained Emotion Computing Model to Analyze the Using Fine-grained Emotion Computing Model to Analyze the 

Interactions between Netizens’ Sentiments and Stock Returns Interactions between Netizens’ Sentiments and Stock Returns 

Meng-xuan Zhu 
School of Information, Central University of Finance and Economics, Beijing, 100081, China, 
18222076336@163.com 

Wei Zhang 
School of Information, Central University of Finance and Economics, Beijing, 100081, China, 
kddzw@163.com 

Meng Wang 
School of Information, Central University of Finance and Economics, Beijing, 100081, China, 
financewm@163.com 

Sui-xi Kong 
School of Information, Central University of Finance and Economics, Beijing, 100081, China, 
ksx_cufe@163.com 

Jian Wang 
School of Information, Central University of Finance and Economics, Beijing, 100081, China, 
wanderingful@126.com 

Follow this and additional works at: https://aisel.aisnet.org/whiceb2019 

Recommended Citation Recommended Citation 
Zhu, Meng-xuan; Zhang, Wei; Wang, Meng; Kong, Sui-xi; and Wang, Jian, "Using Fine-grained Emotion 
Computing Model to Analyze the Interactions between Netizens’ Sentiments and Stock Returns" (2019). 
WHICEB 2019 Proceedings. 20. 
https://aisel.aisnet.org/whiceb2019/20 

This material is brought to you by the Wuhan International Conference on e-Business at AIS Electronic Library (AISeL). 
It has been accepted for inclusion in WHICEB 2019 Proceedings by an authorized administrator of AIS Electronic 
Library (AISeL). For more information, please contact elibrary@aisnet.org. 

https://aisel.aisnet.org/
https://aisel.aisnet.org/whiceb2019
https://aisel.aisnet.org/whiceb
https://aisel.aisnet.org/whiceb2019?utm_source=aisel.aisnet.org%2Fwhiceb2019%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/whiceb2019/20?utm_source=aisel.aisnet.org%2Fwhiceb2019%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


The Eighteenth Wuhan International Conference on E- E-business Strategy & Online Marketing             199 

Using Fine-grained Emotion Computing Model to Analyze the 

Interactions between Netizens’ Sentiments and Stock Returns 

Meng-xuan Zhu, Wei Zhang
*
, Meng Wang, Sui-xi Kong, Jian Wang 

School of Information, Central University of Finance and Economics, Beijing, 100081, China 

 

Abstract: From the perspective of behavioural finance, this paper combines the fine-grained sentiment calculation with the 

stock market econometric model to explore the interactions between netizens’ sentiments and stock returns, analyze the 

differences in the influences of various emotions expressed by netizens on the stock market. First, it constructs a sentiment 

dictionary for the financial field; then, it calculates the emotion values contained in the text corpus, and constructs a textual 

sentiment classifier based on the recurrent neural network, calculates the emotion value and establishes the daily netizen 

sentiment index; and finally, it builds an econometric model to study the interactions between the netizen sentiment index 

and the stock returns. The results show that this model improves the accuracy of sentiment classification, reduces the number 

of iterations and saves computing resources; and that the netizen sentiment index, especially, “disgust” and “like”, has 

significant effects on the stock price changes and transaction volumes, while on the other hand, the listed company’s stock 

returns data has no reverse effect on the netizen sentiment index. 

 

Keywords: Lexicon construction, Sentiment analysis, Emotion computing, Stock returns, Big data  

 

1. INTRODUCTION  

In the Web 2.0 era, social platforms such as Weibo and WeChat have become the main channels through 

which people express their opinions and exchange feelings. The short remarks on these platforms contain the 

comments and viewpoints of numerous Internet users, including their different sentiments towards the stock 

market, which show their personal mentalities, emotions, and subjective tendencies. To explore potential 

information containing emotional tendencies from these massive textual data has important theoretical and 

practical values for stock market forecasting
[1]

, investment decision making
[2]

. Therefore, it has become a hot 

topic for researchers to explore the interactions between the netizens’ sentiments and stock returns based on 

sentiment analysis. 

At present, researches on the interactions between netizens’ sentiments and stock returns all support the 

hypothesis that sentiment can affect the stock market. Based on a variety of sentiment proxy variables, the 

researchers divided the text sentiments into positive, negative and neutral ones, and analyzed the impacts of 

netizens’ sentiments on stock market indices and abnormal rates of returns, etc. They believed that netizens’ 

sentiments had significant effects on the stock returns, and that in turn, the stock returns also had reverse 

impacts on the netizens’ sentiments, but how much is the reverse effect is still under theoretical discussion. Do 

netizens’ sentiments affect the stock returns of a listed company? Does the stock returns have a reverse impact 

on netizens’ sentiments? Are there any differences in the impacts of various sentiments on the stock returns? 

This series of questions remain to be studied. 

Therefore, this paper attempts to collect the real stock data, measure the netizen sentiment index on the 

basis of the sentiment lexical ontology, construct a sentiment dictionary for the financial sector. We propose a 

new method to calculate emotion classification by using LTP platform. First, we classify the text corpus from 

the stock forum into fine-grained sentiment manually, and build a fine-grained sentiment classifier with the aid 
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of long- and short-term memory network technologies, then compare the results of the two cases; and establish a 

statistical model containing the netizen sentiment index and stock market data to study the relationships between 

fine-grained sentiments and stock returns, so as to provide advice for the stock market investors . 

 

2. RELATED WORK  

 

2.1 The interaction between the netizens’ sentiments and stock returns 

Scholars studied the relationships between netizens’ sentiments and stock price changes based on a variety 

of existing indices from different research perspectives, and found the impacts of netizens’ sentiments on the 

stock returns, trading volume and non-systematic risks, etc. in the market
[3]

. 

Nardo et al. (2016) studied the predictive abilities of both Twitter and Google regarding the stock markets 

of various countries based on the discussion and search volumes and found that the Twitter indicator is ahead of 

the stock market returns in the U.S., U.K. and Canada while it is not quite predictive regarding the stock returns 

in Chinese market, but that there is a strong positive linear relationship between the Google indicator and the 

Chinese stock market
[4]

; Zhang and Yuan (2017) constructed an investor sentiment proxy indicator, which used 

the “Weibo index”, and found the significant correlation between Weibo sentiments and the performance of the 

stock market through neural networks and other methods 
[5]

.Wang et al. (2017) believed there was a two-way 

causal relationship between netizens’ sentiments and stock market returns and that the long-term impact was 

more significant 
[6]

; Zhang et al. (2017), through the quantitative analysis of the fund comments in Sina Finance, 

proved that the investors’ sentiments will affect the fund market yield, market volatility and trading volume 
[7]

. 

Deng et al. (2017) studied the relationships between positive, negative and neutral sentiments and the Dow 

Jones Industrial Average, and found that negative sentiment has a certain impact on the hourly returns of stocks, 

but no impact on the daily returns 
[8]

. 

From the existing research, it can be seen that both theory and practice support the hypothesis that 

sentiments affect the stock market. Researchers divided the textual sentiments into positive, negative and neutral 

ones based on a variety of different sentiment proxy variables, analyzed the impacts of netizens’ sentiments on 

stock market indices and abnormal returns, etc., and believed that netizens’ sentiments had significant effects on 

stock returns, and that stock returns also had a reverse impact on the changes in netizens’ sentiments. However, 

such reverse impacts are still under theoretical discussion and lack empirical research. 

 

2.2 The netizen’s emotion value computing 

The sentiment analysis of texts has been fully developed in the financial field and is mainly conducted 

through supervised learning and unsupervised learning. The traditional supervised classifier method is affected 

by many factors, and depends largely on a good corpus, and some algorithms require setting of a large number 

of parameters, which is not convenient for modelling. For this reason, scholars proposed an unsupervised 

method based on sentiment dictionary. For example, Jiang et al. (2015) built a social sentiment dictionary for 

Weibo based on the Weibo corpora contained in a multitude of social hot topics and compared the results of two 

different sentiment analysis methods to verify the effectiveness of the sentiment dictionary and the SVM 

sentiment analysis method
[9]

. Montejo-Ráez et al. (2014) proposed a sentiment analysis method combining 

sentiment calculation and random walk based on the graph structure of the dictionary WordNet. The 

experimental results showed that this method has better classification precision and recall than those of the 

traditional SVM method
[10]

. Dictionary-based methods are limited by dictionary coverage, and require 

large-scale corpora and heavy computation
[11]

. When dealing with large-scale short and unordered Weibo texts 

and extracting text features, they often face the problem of sparse features
[12]

; in addition, the existing sentiment 
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classification focuses more on the three polarities (positive, negative and neutral) of sentiments, which are not 

fine-grained enough to fully characterize the overall evolution of Weibo sentiments 
[13]

. 

 

3. RESEARCH DESIGN  

Step1. Data preparation 

We collect the data, including the reviews text corpus from the stock forum and stock returns data. 

Step2. Sentiment dictionary construction 

By referring to the method proposed by [9], this paper adopts the method based on the emotional lexical 

ontology and the deep learning algorithm Word2Vec. First, select the benchmark sentiment word so as to form a 

benchmark sentiment dictionary; then use Word2Vec to vectorize the words; adopt the incremental iterative 

process to achieve the extension of sentiment words; use the HowNet dictionary to filter out the words with high 

similarity, and then conduct manual screening, so as to obtain the benchmark sentiment dictionary. 

Step3. Calculation of the textual emotion value 

By reference to the method proposed by[14], use the “Language Technology Platform (LTP) ” to calculate 

the emotion value of the text; use the corpus data as the input to the LTP platform; according to the result of the 

LTP dependency syntax analysis and financial sentiment dictionary, the emotion value is calculated according to 

different rules; then calculate the category of textual sentiment. For each piece of textual data, there will be 

scores of seven emotion categories. 

Step4. Classification of fine-grained sentiments 

 RNN classification: RNN (Recurrent Neural Network) is a kind of neural network with fixed weights, 

external input and internal state. In this paper, the LSTM network (Long- and Short-Term Memory network) is 

selected as a classifier of textual sentiments. 

 ANN classification: In order to use emotion value as an input value for the classification, ANN 

(Artificial Neural Network) classifier is constructed. The ANN used in this experiment uses a fully connected 

layer to connect adjacent layers. The output of the output layers (including the hidden layer and the final output 

layer of the mode I) is shown in Formula (1). 

1

, 1..100, 1..100
I

j i ij

i

o x w i j


   
                               

(1) 

In Formula (1),    is the output of the model,    is the input of the mode I, and      is the weight 

between the ith node of the input layer and the jth node of the output layer. In this experiment,    is a vector 

composed of the emotion value of certain text and the RNN output, and    represents the corresponding 

emotion category of the text. 

 Comparison of classification results: the classification results of the two classifiers are compared in 

terms of classification precision (iteration times and utilization rate of computing resources).  

Step5. Netizen sentiment index calcualtion 

The netizen sentiment index is divided into two categories – the weighted sum index of netizen emotion 

value and the average index of netizen emotion value, with a prefix of sum and avg, respectively. In order to 

better study the sentiments, the netizen sentiment index is subjected to three-day, five-day moving average 

processing, and 6 proxy variables of netizens’ sentiments are obtained. 

Step6. Modelling 

Establish multiple models to determine the causal relationship between the netizen sentiment index 

constructed in this paper and the stock returns of the listed company, and analyze the specific form of impact of 

the netizen sentiment index on the stock returns of the listed company. 
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4. EXPERIMENTAL PROCESS AND RESULTS ANALYSIS 

 

4.1 Experimental data 

This paper selected four representative companies, namely FangDaTanSu, GuiZhouMaoTai, 

ZhongGuoPingAn, and KeDaXunFei (here in after referred to as their respective stock codes). The text corpus 

and stock returns of the four listed companies are obtained from the stock forum (www.eastmoney.com) and 

WIND database, respectively. The basic information of the listed companies and the text data volume of the 

stock forum are shown in Table 1. 

 

Table 1.  Data of the listed companies 

Company Name GuiZhouMaoTai FangDaTanSu ZhongGuoPingAn KeDaXunFei 

Listing Date 2001/8/27 2002/8/30 2007/3/1 2008/5/12 

Stock Code 600519 600516 601318 2230 

Review start date 2010/5/6 2010/5/7 2010/5/6 2014/11/6 

Total number of texts 601506 683565 497083 364601 

Number of crawled texts 321713 547211 165362 311846 

Note: the statistics in this table are as of February 15, 2018. 

 

For the four listed companies mentioned above, the data from October 8, 2015 to February 15, 2018 are 

captured, which contain a total of 1,346,132 pieces of textual data and 581 pieces of trading day data. For 

research needs, the sample data which contain textual data and trading day data are divided into two parts: 

training dataset, to construct the netizen sentiment index and the statistical model; and the test dataset, to test the 

validity and robustness of the index construction and the statistical model (shown in Table 2). 

 

Table 2.  Different kinds of dataset used in the experiment 

Data description Start date End date Total days Trading days Amount 

Total data 2015/10/8 2018/2/15 862 581 1346132 

Training dataset 2015/10/8 2017/5/31 602 402 312668 

Test dataset 2017/6/1 2018/2/15 260 179 1033464 

 

4.2 Experimental process 

4.2.1 Financial sentiment dictionary 

With the help of the sentiment lexical ontology
[15]

, the text is divided into seven emotion categories. The 

specific numbers of the emotion words are listed in Table 3. We can see that the number of words contained in 

each emotion category differs greatly after extension. 

Table 3.  Number of words in each emotion category 

Emotion category Anger Disgust Fear Happiness Like Sadness Surprise Total 

Emotion lexicon   388 10282 1179 1967 11108 2314 228 27466 

Ontology Corpus 98 2867 319 637 2994 522 71 7508 

Benchmark dictionary 90 2301 278 463 2572 529 53 6286 

Financial 182 2636 354 489 2689 661 64 7075 
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For simplicity, by reference to the method adopted by [15,16], the emotion value in this paper is defined as 

the product of the sentiment intensity and the sentiment polarity, as shown in Formula (2): 

 emotion intensity polarity 
                               

(2) 

Where intensity means the emotion strength of the word, and its value is an integer from 1 to 9. Polarity is 

the polarity of word emotion. There are four sentiment polarities, namely 0 (neutral), 1 (positive), 2 (negative) 

and 3 (ambiguous). Emotion is the emotion value of a word, whose value is an integer from -9 to 9. 

4.2.2 Netizen sentiment index 

After the emotion value of each piece of text is obtained, the indices of the textual emotion value are 

collected every day, including the accumulated value, the average value, and the three-day and five-day moving 

average of the two. The symbols, calculation formulas and meanings are shown in Table 4. 

 

Table 4.  Statistical indices of the emotion value 

Name Formula Implication 

sum 
,

0

I

t i t

i

sum sent


  Summary of each day emotion 

sum_ma3 2

_

0

3 ( ) / 3t t j

j

sum ma sumt 



 
 3-day moving average of ‘sum’ 

sum_ma5 4

_

0

5 ( ) / 5t t j

j

sum ma sumt 



   5-day moving average of ‘sum’ 

avg 
,

0

( ) /
I

t i t

i

avg sent I


   Average of each day emotion 

avg_ma3 2

_

0

3 ( ) / 3t t j

j

avg ma avgt 



 
 3-day moving average of ‘avg’ 

avg_ma5 4

_

0

5 ( ) / 5t t j

j

avg ma avgt 



 
 5-day moving average of ‘avg’ 

 

The correlation coefficients between the sentiment indices and the stock market index of KeDaXunFei 

(002230) show that the average emotion value indices and the stock market indices are not significantly 

correlated; On the other hand, the weighted sum indices of sentiment (sum, sum_ma3 and sum_ma5) and the 

market indices of the companies are significantly correlated. Therefore, this paper retains the weighted sum 

indices of sentiment as the sentiment indices for the subsequent establishment of the econometric model, and 

abandons the average indices of sentiment. For the dependent variable used in the following study, this paper 

selects the closing price (Cprice) and transaction volume (Volume) of the company as the proxy variables of the 

stock returns. 

4.2.3 Establishment of the econometric model 

 Stationarity test 

Before modelling, the variables studied in this paper needs to be tested for stationarity. The method used in 

this paper is the unit root test – the ADF test. The current day’s closing price (Cprice), transaction volume 

(Volume) and netizen sentiment index (sum_ma5) of the listed company undergo the ADF test and the test 

results are shown in Table 5. It can be found that Cpriceis not stationary at the significance level of 10%, while 

Volume and sum_ma5 remain stationary at the significance level of 1%. Therefore, the ADF test is performed 

on the first-order differential variable DCprice of the closing price Cprice, whose results are shown in Table 6. 

After the first-order difference, Cprice rejects the original hypothesis at the significance level of 1%, that is, the 

sequence is stationary. Therefore, when the current day’s closing price is a single-order integrated sequence, the 

transaction volume and netizen sentiment index will be stationary sequences, and econometric models can be 

established for the variables DCprice, Volume and sum_ma5 to verify their influence relationships (as shown in 
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Table 7 ). 

Table 5.  ADF test results of the original variables 

Variable t-value p-value 
Critical Value 

Conclu. 
1% 5% 10% 

Cprice -2.425 0.1355 

-3.449 -2.87 -2.571 

Non-stationary 

Volume -4.603*** 0.0002 Stationary 

sum_ma5 -4.021*** 0.0015 Stationary 

Note: in the table, *** indicates p<0.01; ** indicates p<0.05; and * indicates p<0.5 

Table 6.  First-order differential ADF test results 

Variable t-value p-value 
Critical Value 

Conclu. 
1% 5% 10% 

DCprice -19.905*** 0 -3.449 -2.87 -2.571 Stationary 

Note: in the table, *** indicates p<0.01; ** indicates p<0.05; and * indicates p<0.5 

 Granger causality test 

The Granger causality test is used to study the relationship between the netizen sentiment index and the 

stock returns of the listed company. The results of the Granger causality test on the variables of 002230 are 

shown in Table 7. The row variables in Table 7 are the causes of the Granger causality, and the column 

variables are effects of the Granger causality. For example, the original hypothesis in the first row and the 

second column is: DCprice is not the Granger cause of Volume. 

Table 7.  Granger causality test results 

p-value DCprice Volume sum_ma5 

DCprice - 0.7403 0.6607 

Volume 0.0406 - 0.3721 

sum_ma5 0.0941 0.0119 - 

According to Table 7 at the significance level of 0.1, sum_ma5 is the Granger cause of DCprice; at the 

significance level of 0.05, sum_ma5 is the Granger cause of Volume, and Volume is the Granger cause of 

DCprice. The rest of Granger causality test results are not significant. 

 Simultaneous Formulas model 

From the results of stationarity test and Granger causality test, it can be found that two Formulas need to be 

established: Formula(3) describes the impacts of Volume and sum_ma5 on DCprice, and Formula(4) describes 

the impact of sum_ma5 on Volume. 

0 1 2 5t t t tDCprice Volume sum ma                             (3) 

0 1= + 5t t tVolume sum ma                                 (4) 

Then, regression is performed on the experimental data, and the resulting model is shown as the 

econometric model I in Table 8. It can be seen that α2 in Formula(3) is significant at the significance level of 0.1, 

and that the other constant terms and coefficients are significant at the significance level of 0.01. It is not 

difficult to see that the coefficient α1 in Formula(3) is too small; in other words, Volume has little impact on 

DCprice. So now we remove Volume from the Formula(3) and build a new simultaneous Formulas model. The 

result is shown as the econometric model II in Table 8. The coefficient of α1 becomes insignificant, indicating 

that Volume should not be removed from the model. 
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Table 8.  Simultaneous Formulas model results 

Coeff. Model I Model II 

α0 27.936*** 30.789*** 

α1 0.0001*** - 

α2 -0.00496* 0.004802 

1 22609.13*** 22609.13*** 

2 77.37366*** 77.37366*** 

Note: in the table, *** indicates p<0.01; ** indicates p<0.05; and * indicates p<0.5 

Regarding the experimental data set, the goodness of fit R
2
 of Formula(3) in the econometric model I is 

0.320, and the adjusted R
2
 is 0.316; the goodness of fit R

2
 in the econometric model II is 0.006, and the adjusted 

R
2
 is 0.004. In both models, R

2
 of Formula(4) is 0.078 and the adjusted R

2
 is 0.076. 

 Fine-grained emotion model 

According to the results of the Granger causality test on various sentiment indices and stock returns data, 

ang_ma5, dis_ma5 and lik_ma5 are the Granger causes of DCprice, while hap_ma5 is not Granger causes of 

DCprice, nor is DCprice the Granger cause of each sentiment index. Therefore, an econometric model is 

established for the DCprice and sentiment indices ang_ma5, dis_ma5 and lik_ma5, as shown in Formula(5). The 

influence coefficient of ang_ma5, dis_ma5 is significant at the confidence level of 5%, while that of lik_ma5 is 

significant at the confidence level of 1%. 

=38.405 0.0382 _ 5 0.062 _ 5 0.035 _ 5DCprice ang ma dis ma lik ma  
                   

(5) 

                       (1.144)   (0.020)*               (0.036)*         (0.014)** 

The goodness of fit R
2
 of the above model is 0.556 and the adjusted R

2
 is 0.548. As can be seen, the 

sentiment indices ang_ma5, dis_ma5 and lik_ma5 have significant effects on the stock price. 

 

4.3 Experiment analysis 

According to the correlation analysis of the sentiment indices and the stock returns indices, the correlations 

between the weighted sum indices of sentiment and the stock returns are significant at different levels, while the 

correlations between the average indices of sentiment and the stock returns are not significant, mainly due to the 

following two reasons: on the one hand, the weighted sum indices of sentiment takes all textual emotion values 

into account - the better the stock returns is, the more sentiments the netizens will express; on the other hand, 

regarding the average indices of sentiment, the denominator is the total amount of all the text published on the 

day, of which a large portion does not contain sentiments. Such text is only noise to the average indices. 

In the selection of the sentiment proxy indices, after screening, it is found that the correlation coefficients 

between the weighted sum of emotion values, three-day moving average of the weighted sum of emotion values 

and five-day moving average of the weighted sum of emotion values and the current day’s closing price of the 

company are 0.790, 0.839 and 0.875, respectively, and that the correlation coefficients with respect to the 

transaction volume are 0.765, 0.736 and 0.746, respectively. It can be seen that the five-day moving average of 

the weighted sum of emotion values well fits the current day’s closing price and transaction volume of the 

company, as the moving average of emotion values reduces the interferences caused by short-term fluctuations, 

For this reason, this paper selects the five-day moving average of the weighted sum of emotion values as the 

proxy variable of the netizen sentiment index. 

On the basis of correlation analysis, Granger causality test and econometric analysis are performed on the 

relationship between the netizen sentiment index and the stock returns. The Granger causality test results show 

that the transaction volume and the netizen sentiment index have significant impacts on the current day’s closing 

price, and the netizen sentiment index also has a significant impact on the transaction volume. The coefficient of 
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the Volume is 0.0001, when we remove Volume from the Formula(3) and build a new model, The coefficient of 

α1 becomes insignificant, indicating that Volume should not be removed from the model. The coefficient of the 

netizen sentiment index is -0.00496, which is significant at the confidence level of 10%. 

The correlations between the fine-grained emotion values and the stock returns are significant. Except that 

the amount of price increase/decrease, the correlation coefficients of other indices are all significant at the 

confidence of 0.05, with the maximum one being up to 0.903. The Granger causality test results show that only 

dis_ma5 and lik_ma5 in the fine-grained sentiment variables are the Granger causes of DCprice, while DCprice 

is not the Granger cause of any fine-grained sentiment index. The econometric model for the DCprice and the 

sentiment indices dis_ma5 and lik_ma5 shows that the coefficients are both significant at the confidence level of 

1%, 0.1127 for dis_ma5 and 0.1318 for lik_ma5, which means that the expression of disgust will have a 

negative effect on the stock price, while “like” will help increase the stock price. 

 

5. CONCLUSIONS 

Based on the large amount of stock text data, we build a sentiment dictionary for the financial field, 

calculate emotion values, and apply it in the fine-grained sentiment classification. Then an econometric model is 

proposed to explore the relationship between the netizens’ sentiment and the stock returns. The results show that: 

(1) by using the deep learning-based fine-grained sentiment classifier, the model has higher classification 

precision and reduced iteration times, which saves computing resources; (2) the weighted sum indices of 

emotion values are significantly correlated with the stock returns, while the average indices of emotion values 

are not significantly correlated with the stock returns; (3) the netizen sentiment index has significant effects on 

the stock price changes and transaction volumes of the listed company, while on the other hand, the listed 

company’s stock returns has no reverse effect on the netizen sentiment index; (4) each fine-grained sentiment 

index has a significantly different impact on the stock price. The emotion, “disgust” and “like”, have significant 

impacts on stock price changes, while others do not, nor do stock price changes affect the fine-grained 

sentiment. 

Based on the results of this study, future research should focus on further improving the financial sentiment 

dictionary, building the multi-grain sentiment classifier and optimizing classifier parameters. 
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