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Abstract 

Giveaway, the excess product being packed into orders, contributes to revenue loss that pre-packaged 
food manufacturers care about the most. In collaboration with an egg packaging company, this study 
aims to discover operation rules to mitigate the giveaway in egg orders. For that, two variables have been 
raised as potential controllable factors of the giveaway. One statistical model has been developed to 
better interpret the experimental results by understanding the underlying rules of the egg grading 
machine. The experiments have been accurately reproduced by a simulation using the estimated model 
parameters, indicating the model's success. Based on the experiment results, we claim that the number 
of accepted egg grades significantly influences the final giveaway ratio. Limitations and further 
potentials of the statistical model have also been discussed. 

Keywords Data Analytics, Statistical Modelling, Giveaway Control, Egg Packaging 
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1 Introduction 

Many efforts have been made to ensure conformity of pre-packaged goods. In Australia, trade 
measurement laws regulate the measurement of pre-packaged goods, including eggs, and restrict each 
package's deficiency (Egg Standards Australia 2010). Eggs sold in Australia are graded by individual 
weight, and eggs in the same grade are packed together in fixed quantities. For example, medium, large, 
extra-large, jumbo and super-jumbo belong to a standard grading scheme. A dozen (12) or a tray (30) of 
eggs are commonly packed together as a carton. By regulation, each egg in a carton must be equal to or 
heavier than the minimum weight. For example, an egg in an extra-large carton must weigh at least 58.3 
grams (Australian Eggs 2020). 

Egg producers commonly pack excessive-weight eggs into a carton because the extra weight can buffer 
water evaporation during eggs’ shelf life. However, too much giveaway weight will increase production 
costs because heavier eggs consume more feed (Hy-Line 2020). So, we work closely with a local egg 
packaging company to investigate this issue. The company’s grading floor has a proprietary grading 
machine (grader) that performs: weighing incoming eggs, assigning eggs to egg grades (weight 
categories), and dispatching eggs into orders. The egg giveaway occurs when eggs from a heavier grade 
are packed into cartons of a lower grade order (Figure 1 in Appendix 1). The grading floor operator inputs 
egg orders into the grading machine and allocate packaging lanes to each order. There are 16 packaging 
lanes, and each lane can only be assigned to one egg order at a time. The egg scheduling and dispatching 
algorithm used in the grading machine is unknown to the operator. So, we can only focus on the 
controllable machine configurations to mitigate the giveaway weight. One example is assigning which 
grade of eggs can be downgraded into an order demanding a lower egg grade. In this paper, we report a 
controlled experiment to analyze the impact of different machine configurations. 

The commercial egg grading machine used in our factory trials measures each incoming egg's weight 
and assigns it to a weight category. But it only retains the final aggregated statistics like the total egg 
number and weight in each category. These summary statistics are sufficient to calculate the overall level 
of the production giveaway. But we can neither assign confidence intervals to the giveaway estimations 
nor deduce the operational rules of the machine. The former issue prohibits us from applying rigorous 
statistical comparisons between different configurations. The latter drawback forces the end users to 
rely solely on the machine manufacturers to optimize their production. Therefore, we also report a 
parametric model to interpret the experiment and understand the underlying grading machine rules. 
The fitted model is also proven successful in reproducing the experiment in simulation. So, we can adapt 
it to a broader supply chain modelling in the future to further manage production costs. 

The egg packaging process is an information system as a whole. It collects egg order and weight data to 
fulfil orders efficiently. This study builds on top of the system with the goal of giveaway mitigation. 
Achieving this requires collecting data in the egg packaging process and fitting a model to describe the 
grading machine’s behaviour. Based on the acquired insights, we may predict and manage egg giveaways 
by optimizing the operational rules in the future. 

2 Literature Review 

Sarkar et al. (2022) discuss various optimization goals and algorithms used in food processing projects. 
These projects focus on high-level algorithms that coordinate multiple actuators in the processes to 
improve efficiency, which require full access to all the equipment. Multiple projects employ Neural 
Networks (NN) as one of the optimization tools. On the other hand, egg grading involves many discrete 
value variables, different from other food processes that receive and manipulate continuous variables 
such as temperature and processing time. Dewil et al. (2019) introduce fundamental knowledge of how 
egg scheduling and dispatching work inside the grading machine. Greedy Randomized Adaptive Search 
Procedure (GRASP) suggests that the machine actively searches for “optimum” solutions based on 
available eggs in production. Thus, access to the algorithm is required to predict the exact outcome. 
Alternatively, we may be able to walk around this with statistical modelling, which may provide a good 
enough prediction of the grader’s behaviour and allow us to tweak the process. Eiselt et al. (2022) 
provide in-depth information about modelling methods in Operations Research. It is handy to describe 
a black-box process mathematically and statistically without accessing its algorithms. While not much 
research has been done specifically for the egg packaging process, We find literature in other food fields 
to provide more perspectives and information. Defraeye et al. (2019) digitally reproduce how 
temperature changes mango quality with mathematical models and physical simulations. It is used in 
the digital twin of mango transportation. Koulouris et al. (2021) demonstrate a detailed brewery plant 
model consisting of chemical, scheduling, and labour factors. Both projects work with processes that 
have higher transparency and more control in actuators which is slightly different from our case. 
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However, they inspire us and allow us to foresee what may be required in the upcoming stages, and 
therefore being able to plan the model accordingly. 

Another aspect of solving the cost issue related to giveaway could be pricing the eggs by weight instead 
of by grade. Alexey Kavtarashvili (2021) provides a glimpse of the benefits of adopting this pricing 
strategy. This methodology removes giveaway from the manufacturer's side, as all weights of eggs are 
covered in the price. Potentially this could benefit all egg packaging companies in the market. It is an 
interesting point of view related to the giveaway problem we are attempting to solve. However, changing 
the market requires a lot of stakeholders, and in the scope of our study, we aim to mitigate the giveaway 
problem solely on the manufacturer’s side.  

3 Research Method 

3.1 Experiment design 

We aim to study the feasibility of giveaway reduction of two controllable operations — the number of 
accepted downgrade grades and packaging lanes. Three accepted egg-grade settings and two lane 
number configurations are designed. For the first operation, we configure the grading machine to 
control which egg grades to accept into an order. As presented in Table 1, an order can accept the order's 
egg grade or take one or two heavier egg grades. Because extra-large and large eggs are most in demand, 
we can change the ratio of their allocated lane numbers to achieve the second operation. As seen in Table 
3, we allocate six lanes to extra-large orders. But we can assign three (2:1 lane ratio) or four lanes (3:2 
lane ratio) to large orders.  

This experiment controls other variables, such as the supply egg distribution and the egg order profile. 
All six trials (Table 2) consist of large, extra-large, and jumbo orders. Because we only compare trials 
with the same egg supplier ID, we exclude trial 3 from the analysis. 

 

Order Type 
Large Order 

(L) 
Extra-Large 

Order (X) 
Jumbo 

Order (J) 

A
c

c
e

p
te

d
 E

g
g

 G
r
a

d
e

s
 One 

heavier 
egg grade 

L & X eggs X & J eggs J & S eggs 

Two 
heavier 

egg grades 

L, X, & J 
eggs 

X, J, & S 
eggs 

J & S eggs 

Two 
heavier 

egg grades 
except X 

L, X, & J 
eggs 

X eggs J & S eggs 

 

Trial 
Lane 
Ratio 

Accepted Egg Grade ID 

1 3:2 One heavier egg grade 1 

2 3:2 Two heavier egg grades 1 

3 3:2 
Two heavier egg grades 

except for Order X 
1 & 2 

4 2:1 
Two heavier egg grades 

except for Order X 
3 

5 2:1 Two heavier egg grades 3 

6 3:2 Two heavier egg grades 3 
 

Table 1 (left): Details of accepted egg grade settings. S, J, X, & L represent super-jumbo, jumbo, 
extra-large & large, respectively. Table 2 (right): Number of accepted downgrade grades and 

packaging lane ratios between X and L orders. 

 

Grader 
Outlet 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Lane Id 

S J X N/A L (L) Order Type 

Table 3: Lane allocation for orders. Eggs are transported from left to right. Orders with heavier egg 
grades are closer to the outlet of the grading machine. Due to the production schedule, lanes 1 and 2 

are reserved for a super jumbo order that is not part of the experiment. Lane 16 is on standby. 

3.2 Supply Modelling 

We approximate the egg weight of a single batch supply as a normal distribution 𝑓(𝑤; 𝜇, 𝜎2) = 𝑁(𝜇, 𝜎2) 
(Dewil et al., 2019), where 𝑤 is the weight of a single egg, 𝜇 is the mean and 𝜎2 is the variance. We model 
the egg grades on the demand side with a discrete distribution: 1. Medium eggs: 𝑝𝑀(𝑤), 𝑤 ∈
[41.7g, 50.0g). 2. Large eggs: 𝑝𝐿(𝑤), 𝑤 ∈ [50.0g, 58.3g). 3. Extra-large eggs: 𝑝𝑋(𝑤), 𝑤 ∈ [58.3g, 66.7g). 4. 
Jumbo eggs: 𝑝𝐽(𝑤), 𝑤 ∈ [66.7g, 74.0g) . 5. Super-jumbo eggs: 𝑝𝑆(𝑤), 𝑤 ∈ [74.0g, 79.0g) . The total 

probability of these demands is ∑ 𝑝𝐺 ≈ 1𝐺 , where 𝐺 ∈ {𝑀, 𝐿, 𝑋, 𝐽, 𝑆} denotes an egg grade. 
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Minimizing the average egg weight supplied to orders reduces production costs. The optimal case is to 
fill orders with the minimum egg weight, and we treat all the extra weight as giveaway. For a bundle of 
orders demanding egg grades 𝐺, we scale the weight and define the total giveaway ratio as: 

𝑔𝑖𝑣𝑒𝑎𝑤𝑎𝑦 𝑟𝑎𝑡𝑖𝑜 = 𝑅𝐺 =
∑ ∑ (𝑤̂𝐺

𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑤𝐺
0)𝑁𝐺

𝑖=0𝐺

∑ ∑ 𝑤𝐺
0𝑁𝐺

𝑖=0𝐺

  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

where 𝑁𝐺  is the egg number of an order demanding egg grade 𝐺 (we denote it as order 𝐺 for simplicity), 

𝑤𝐺
0 is the lower bound of egg grade 𝐺, and 𝑤̂𝐺

𝑎𝑐𝑡𝑢𝑎𝑙  is the average weight packed into order 𝐺. Because 
eggs from heavier egg grades can also downgrade to an order 𝐺, we define the total downgrade ratio as: 

𝑑𝑜𝑤𝑛𝑔𝑟𝑎𝑑𝑒 𝑟𝑎𝑡𝑖𝑜 = 𝑅𝐷 =
∑ ∑ (𝑤̂𝐺

𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑤̂𝐺)𝑁𝐺
𝑖=0𝐺

∑ ∑ 𝑤𝐺
0𝑁̃𝐺

𝑖=0𝐺

  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 

where 𝑤̂𝐺  is the mean of the supplied eggs in grade 𝐺. However, suppose we avoid egg downgrade, the 
continuous supply distribution still mismatches with the egg grades' lower bounds. We define the ratio 
of this contributor to egg giveaway as 𝑖𝑛𝑔𝑟𝑎𝑑𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 = 𝑔𝑖𝑣𝑒𝑎𝑤𝑎𝑦 𝑟𝑎𝑡𝑖𝑜 − 𝑑𝑜𝑤𝑛𝑔𝑟𝑎𝑑𝑒 𝑟𝑎𝑡𝑖𝑜.  

3.3 Trial Modelling 

Because there is a single egg transportation frame, only the first egg packing lane has access to the initial 
supply distribution. To model this scenario, we define four truncated normal distributions 
𝑓𝐺(𝑤; 𝜇, 𝜎2, 𝑎𝐺 , 𝑏𝐺) for four involved egg grades 𝐺 ∈ {𝐿, 𝑋, 𝐽, 𝑆}, where 𝑎𝐺 ≤ 𝑤 < 𝑏𝐺 . The initial mixture 
probabilities 𝑃𝐺

0 equal to the proportions under the initial distribution. After we pack some supplied eggs 
in the earlier lanes, the supply distribution will differ for the later lanes. So, we implicitly update the four 

mixture probabilities, 𝑃𝐺
𝑘 , after passing 𝑘  previous egg packing lanes. For simplicity, we define 𝑘 ∈

{0,1,2} to match the three orders (𝐽, 𝑋, and 𝐿) in the trials. The mixture distribution is 𝑓𝑚𝑖𝑥
𝑘 (𝑤) = ∑ 𝑃𝐺

𝑘𝑓𝐺𝐺 . 

The grading machine records the total egg number 𝑁𝐺  and the total weight 𝑊̃𝐺  packed into an order 𝐺. 

We can calculate the average weight 𝑤̂𝐺
𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑊̃𝐺/𝑁𝐺  of the packed eggs and claim that egg downgrade 

only exists if 𝑤̂𝐺
𝑎𝑐𝑡𝑢𝑎𝑙 > 𝑤̂𝐺 . Since one order accepts eggs from up to two heavier egg grades, the egg 

number allocation to an order 𝐺1 can be solved by the following linear equations: 

{

𝑛𝐺1 + 𝑛𝐺2
− + 𝑛𝐺3

− = 𝑁𝐺1

𝑛𝐺1𝑤̂𝐺1 + 𝑛𝐺2
− 𝑤̂𝐺2 + 𝑛𝐺3

− 𝑤̂𝐺3 = 𝑊̃𝐺1

𝑛𝐺2
− /𝑛𝐺3

− = 𝑟23

  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 

where 𝑛𝐺1  is the number of eggs in the grade 𝐺1  that are packed in order 𝐺1 , 𝑛𝐺2
−  and 𝑛𝐺3

−  are the 
downgradable egg number from the two heavier egg grades, and 𝑟23 is an unknown ratio. We define 
𝑛𝐺3

− = 𝑟23 = 0 if only one heavier grade is accepted and the linear equations have a simple analytical 
solution. However, if both heavier grades are accepted, we fit the ratio 𝑟̂23  by defining two more 
parameters: 

                                  𝑃𝐺2 𝑜𝑟 𝐺3→𝐺1 =
𝑛𝐺2 𝑜𝑟 𝐺3

−

𝑁𝐺2 𝑜𝑟 𝐺3
𝑘 ;  𝑃𝐺1→𝐺1 =

𝑛𝐺1

𝑁𝐺1
𝑘 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 𝑎𝑛𝑑 5 

where 𝑁𝐺
𝑘 is the remaining egg number of egg grade 𝐺 after passing the first 𝑘 packing lanes, 𝑃𝐺2 𝑜𝑟 𝐺3→𝐺1 

measures the probability of downgrading an egg from a heavier egg grade, and 𝑃𝐺1→𝐺1  measures the 

probability of an egg getting packed into an order of the same egg grade. We iteratively update 𝑁𝐺
𝑘  by 

subtracting 𝑛𝐺  or 𝑛𝐺
− for all 𝑘 ∈ {0,1,2}. 

To estimate the best 𝑟̂23 , we reproduce the factory trial using a grid of 𝑟23
(𝑖)

 values. The simulation 

generates random egg weights from a fitted normal distribution. Each “egg” will pass three packing lanes 

by turns for jumbo, extra-large and large orders. The simulated probabilities (𝑃̂𝐺1→𝐺1
(𝑖)

, 𝑃̂𝐺2→𝐺1
(𝑖)

 and 𝑃̂𝐺3→𝐺1
(𝑖)

) 

randomly decide whether to pack an egg into an order. Once all three orders are fulfilled, we calculate 

the simulated 𝑅𝐺
(𝑖)

 using allocated egg weights and Equation 1. Comparing it with the measured giveaway 

ratio 𝑅𝐺
∗ , we fit 𝑟̂23 using 𝑎𝑟𝑔𝑚𝑖𝑛

𝑟23
(𝑖){|𝑅𝐺(𝑟23

(𝑖)
) − 𝑅𝐺

∗ |}. We also acquire the final simulated probabilities 

(𝑃̂𝐺1→𝐺1, 𝑃̂𝐺2→𝐺1 and 𝑃̂𝐺3→𝐺1) for all orders, as well as the total simulated ratios (𝑅̂𝐷 and 𝑅̂𝐺) for the trial. 
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4 Current Results and Discussion 

4.1 Experiment Results 

We use Monta Carlo method to estimate the sampling distributions (expected values and errors) of all 
𝑤̂𝐺 ’s and 𝑁𝐺

0’s from the fitted supply normal distribution. Then, we chain multiple error propagations to 
estimate the errors of other subsequent results and model parameters. We first present the measured 

giveaway and downgrade ratios in Table 4. For each trial, we calculate the total ratios (𝑅𝐺
∗  and 𝑅𝐷

∗ ) using 
Equation 1 and 2. Because each trial consists of three individual orders, we also calculate the ratios of 
the large (𝐿), extra-large (𝑋), and jumbo ( 𝐽) orders by fixing a single egg grade 𝐺 in the two equations.  

We then present the estimated downgrade probabilities (𝑃̂𝐺2 𝑜𝑟 𝐺3→𝐺1) and the same-grade-packing 

probabilities (𝑃̂𝐺1→𝐺1) in Table 5. The subscript “S” in the table represents the super-jumbo egg grade. 
In some trials, it can be downgraded to orders demanding jumbo and extra-large grades (Order J and 
Order X). Afterwards, we use the estimated probabilities to control the destination of eggs generated 
from the fitted supply normal distribution (trial simulation mentioned in Section 3.3).  The results are 

then used to calculate the total simulated giveaway and downgrade ratios 𝑅̂𝐷 and 𝑅̂𝐺. 

We also find some interesting observations related to the grading machine configuration. For example, 
trial 2 and 4 are configured to accept two heavier grades. But we observe no downgrade in two extra-
large orders and the large order of trial 4. Hence, we conclude that accepting two downgradable grades 
does not necessarily mean two grades being downgraded in the actual production (it can be zero or one 
grade). This fact might hint at why specific configurations may cause counterintuitive ramifications. In 
trial 1 and 2, increasing from one to two accepted downgrade grades will implicitly prevent any 
downgrade to extra-Large order. In trial 4, explicitly avoiding a downgrade to extra-Large order will 
implicitly prevent any downgrade to large order. Therefore, it is clearer to interpret the packing 
procedures using the model parameters. 
 

Orders Measurements Trial 1  Trial 2  Trial 4  Trial 5  Trial 6  

Order J 
𝑅𝐺,𝐽

∗  3.65 ± 0.02 % 3.61 ± 0.02 % 3.5 ± 0.02 % 3.59 ± 0.02 % 3.54 ± 0.02 % 

𝑅𝐷,𝐽
∗  0.19 ± 0.02 % 0.15 ± 0.02 % 0.05 ± 0.01 % 0.15 ± 0.01 % 0.09 ± 0.01 % 

Order X 
𝑅𝐺,𝑋

∗  7.5 ± 0.02 % 7.31 ± 0.01 % 7.11 ± 0.01 % 7.42 ± 0.02 % 7.21 ± 0.02 % 

𝑅𝐷,𝑋
∗  0.19 ± 0.01 % 0 ± 0 % 0 ± 0 % 0.31 ± 0.01 % 0.1 ± 0.01 % 

Order L 
𝑅𝐺,𝐿

∗  18.9 ± 0.02 % 15.48 ± 0.02 % 11.32 ± 0.01 % 14.84 ± 0.02 % 15.62 ± 0.02 % 

𝑅𝐷,𝐿
∗  7.28 ± 0.02 % 3.85 ± 0.02 % 0 ± 0 % 3.52 ± 0.02 % 4.3 ± 0.02 % 

Total 
𝑅𝐺

∗  9.35 ± 0.01 % 8.44 ± 0.01 % 7.41 ± 0.01 % 8.39 ± 0.01 % 8.42 ± 0.01 % 

𝑅𝐷
∗  1.76 ± 0.01 % 0.86 ± 0.01 % 0.01 ± 0.01 % 0.99 ± 0.01 % 1.02 ± 0.01 % 

Table 4: Measured giveaway and downgrade ratios for each trial and order. “Total” means the 
overall ratios. J, X, & L represents jumbo, extra-large, and large orders. 

Orders Model Parameters Trial 1  Trial 2  Trial 4  Trial 5  Trial 6  

Order J 
𝑃̂𝑆→𝐽 40 ± 4% 34 ± 4% 12 ± 3% 37 ± 4% 21 ± 3% 

𝑃̂𝐽→𝐽 73.5 ± 0.7 % 78 ± 0.7 % 79.8 ± 0.7 % 89.9 ± 0.9 % 86.3 ± 0.8 % 

Order X 

𝑃̂𝑆→𝑋 (𝑡𝑜𝑝) 

𝑃̂𝐽→𝑋 (𝑠𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 𝑏𝑜𝑡𝑡𝑜𝑚) 19 ± 1% 0.0% 0 % 

0.0 ± 10% 0.0 ± 10% 

0.96 ± 0.09 0.23 ± 0.02 

𝑃̂𝑋→𝑋 80.8 ± 0.3 % 89.4 ± 0.3 % 80.8 ± 0.2 % 90.1 ± 0.3 % 88.1 ± 0.3 % 

Order L 

𝑃̂𝐽→𝐿  (𝑡𝑜𝑝 𝑐𝑒𝑙𝑙) 

𝑃̂𝑋→𝐿 (𝑠𝑖𝑛𝑔𝑙𝑒 𝑜𝑟 𝑏𝑜𝑡𝑡𝑜𝑚) 100 ± 2 % 

0 ± 2 % 

0 % 

30 ± 90 % 1 ± 2 % 

100 ± 3 %  101 ± 4 % 100 ± 3 % 

𝑃̂𝐿→𝐿 57.0 ± 0.5 % 94.7 ± 0.8 % 100.1 ± 0.7 % 85.2 ± 0.7 % 75 ± 0.5 % 

Total 
𝑅̂𝐺 9.36 ± 0.02 % 8.44 ± 0.02 % 7.41 ± 0.02 % 8.37 ± 0.02 % 8.42 ± 0.02 % 

𝑅̂𝐷 1.77 ± 0.03 % 0.85 ± 0.02 % 0.01 ± 0.02 % 0.98 ± 0.02 % 1.02 ± 0.02 % 

Table 5: Model parameters for three orders and the simulated total giveaway and downgrade ratios 

4.2 Model Validation 

Orders in trials 1 and 4 accept none or a single downgradable grade. So, we set 𝑛𝐺3
− = 𝑟23 = 0 in Equation 

3 to estimate egg numbers (𝑛̂𝐺1 and 𝑛̂−
𝐺2) packed into each order. We can estimate packing probabilities 

(𝑃̂𝐺1→𝐺1 and 𝑃̂𝐺2→𝐺1) using Equation 4 and 5 without fitting 𝑟̂23. Since the simulated total ratios 𝑅̂𝐷 and 

𝑅̂𝐺 in Table 5 matches the measured 𝑅𝐷
∗  and 𝑅𝐺

∗  in Table 4, our model is successful in trial reproduction.  

Orders in trials 2, 5 and 6 accept up to two downgradable grades. So, we need to fit 𝑟̂23 before estimating 
egg numbers (𝑛̂𝐺1, 𝑛̂−

𝐺2 and 𝑛̂−
𝐺3) packed into each order. Using trial 5 as an example, we test a grid of 
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21 different ratios (𝑟23.𝐿
(𝑖)

 and 𝑟23.𝑋
(𝑖)

) for large and extra-large orders — 441 ratio pairs in total. The 

simulated 𝑅̂𝐷 and 𝑅̂𝐺 overlap with the measured ratios in all cases, further assuring the model quality. 

4.3 Results Analysis 

All orders in trial 1 accept egg downgrades from one heavier grade. In contrast, we configure the extra-
large and large orders in trial 2 to accept eggs from two heavier grades. We observe in Table 4 that the 
measured 𝑅𝐺

∗  and 𝑅𝐷
∗  ratios are both around 1% smaller in trial 2. So, configuring more grades to 

downgrade can significantly reduce giveaways by depressing downgrades. This conclusion is 
counterintuitive. But the order-specific giveaway and downgrade ratios in Table 4 and the modelled egg 
packaging probabilities in Table 5 provide a possible interpretation. Because 𝑅𝐺,𝐿

∗  and 𝑅𝐷,𝐿
∗  are the only 

ratios much lower in trial 2, Order L contributes most of the giveaway and downgrade. We can explain 

this by a sharp decrease in the downgrade probability 𝑃̂𝐽→𝑋 and a universal increase in the probabilities 

𝑃̂𝐽→𝐽, 𝑃̂𝑋→𝑋, and 𝑃̂𝐿→𝐿. Therefore, configuring more egg grades to downgrade relieves the constraint of 

packaging eggs into orders with the same grade. So, fewer eggs are subject to downgrade. 

However, some conditions may overturn the effect of allowing more grades to downgrade. In trial 5, the 
egg-grade acceptance arrangement is the same as in trial 2. We compare it with trial 4, which has the 
same configuration except for forbidding downgrades into Order X. Although trial 5 configures more 
downgradable grades, the measured 𝑅𝐺

∗  and 𝑅𝐷
∗  ratios are both around 1% smaller in trial 4. Since we 

also observe a universal increase in the probabilities 𝑃̂𝐽→𝐽 and 𝑃̂𝑋→𝑋, our justifications in the previous 

paragraph are still valid. However, the differences here are the zero downgrade ratios 𝑅𝐷,𝐿
∗  and 𝑅𝐷,𝑋

∗  in 

trial 4. So, large and extra-large eggs are sufficient to fulfil Order X and L in this particular supply-

demand match-up. This condition induces a sharp increase in the probability 𝑃̂𝐿→𝐿 . The increase is 
significant because large orders contribute the most to the giveaway and downgrade in all five trials. We 
can conclude that forbidding egg downgrades to a self-sufficient grade can lower production giveaway. 

We also check if the number of packaging lanes influences production giveaways. Trial 5 has three lanes 
for the large order (2:1 lane ratio), while trial 6 has four lanes (3:2 lane ratio). The total giveaway and 
downgrade ratios do not have a significant difference. Because there is one less packaging lane for the 

large order in trial 5, the probabilities 𝑃̂𝑆→𝐽, 𝑃̂𝐽→𝑋 and 𝑃̂𝐿→𝐿 are all higher. This result indicates that more 

large eggs are likely to pack in Order L, so causing a lower downgrade ratio 𝑅𝐷,𝐿
∗ ; Order X and J tend to 

accept more downgrades, so having higher downgrade ratios 𝑅𝐷,𝐽
∗  and 𝑅𝐷,𝑋

∗ . The two opposite effects 

offset each other, which explains the same 𝑅𝐺
∗  and 𝑅𝐷

∗  ratios. 

4.4 Limitations and Future Work 

There are a few limitations of our study. First, we have neglected the variations in the supply distribution 
from a single farm. For example, eggs used in trial 4, 5 and 6 are supplied from the same farm but might 
have slightly different weight distributions. So, actively recording supply egg distribution is required to 
validate our study further. 

Second, we have ignored production noises, such as lane interruptions and congestion. We only include 
their impacts in the average probabilities like 𝑃𝐺2→𝐺1and 𝑃𝐺1→𝐺1. Hence, the fitted model parameters are 
too simplistic for further generalization. We cannot directly use it to predict giveaways of new orders. 
Because recording real-time interruption data is challenging, we propose using machine learning to 
extract more information from our model. Our model generates eight additional parameters (Table 5). 
So, we can map production profiles like order numbers and accepted egg grade numbers into a higher 
dimension. This operation is likely to enhance data predictability. We need to record production 
configurations for numerous more orders to achieve this purpose. After that, we can build a historical 
database of giveaway ratios and modelled parameters by running our model fitting for all those orders.  

Lastly, the giveaway mitigation is inefficient by simply adjusting the operation configurations. We have 
only observed around 1% of giveaway and downgrade reduction in this experiment. Hence, we might 
need to study and manage other variables like the egg supply distribution to achieve better results. 

5 Conclusion 

This study introduces a statistical model to investigate the egg production giveaway based on selected 
operation variables. Simulations of egg-packaging processes have been performed based on the 
estimated model parameters. Because the simulated giveaway and downgrade ratios have coincided 
with the observed ratios, we claim that the model can interpret the underlying rules of the egg-packaging 
procedures. Based on the experiment results, we conclude that with sufficient egg supply, only the 
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“accepted egg grade number” setting can affect production giveaways. We have further discussed the 
limitations to address in the next step. The final model could later be part of the digital-twin tool used 
by the production operator to find the optimal configurations. 
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Appendix 1 Egg Packaging Process 

 

Figure 1 Process Flow Chart of the Egg Packaging Process on the grading floor (similar to 
Banjarat et al. 2019) 
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