
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2009 Wirtschaftsinformatik

2009

ADJUSTMENT STRATEGIES FOR
MANAGING UNANTICIPATED CHANGES
IN SOFTWARE DEVELOPMENT
PROCESSES
Katja Andresen
University of Applied Science Berlin

Norbert Gronau
University of Potsdam

Follow this and additional works at: http://aisel.aisnet.org/wi2009

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2009 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Andresen, Katja and Gronau, Norbert, "ADJUSTMENT STRATEGIES FOR MANAGING UNANTICIPATED CHANGES IN
SOFTWARE DEVELOPMENT PROCESSES" (2009). Wirtschaftsinformatik Proceedings 2009. 68.
http://aisel.aisnet.org/wi2009/68

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2009%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2009%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009/68?utm_source=aisel.aisnet.org%2Fwi2009%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

ADJUSTMENT STRATEGIES FOR MANAGING
UNANTICIPATED CHANGES IN SOFTWARE

DEVELOPMENT PROCESSES

Katja Andresen1, Norbert Gronau2

Abstract
Software engineers face multiple challenges of managing unanticipated changes, dependencies,
uncertainty, emerging demand patterns. In this contribution we focus on the process of software
development and its design to especially cover unforeseen changes. The article presents a structural
view on the (distributed) software engineering process introducing three domains that trigger
adjustment opportunities of the engineering process. Hereafter the solution approach imposing the
process model PEPMAD is outlined.

1 Introduction

The software industry is acknowledged worldwide as a key driver of social and economic growth
[28]. Software Engineering has been a research field since the late 60’s. The international
conference on Software Engineering has been held regularly since 1975. Various meetings, events,
journals and magazines are devoted to the topic of software engineering [28]. Nonetheless most
modern approaches suffer from constraints that can be considered principles of the software
engineering (as programming, testing, integrating). Of course, entire approaches emerged for which
the motivation is to alleviate aspects. Nowadays advances address the building of self-
adapting/managing/healing software systems [14]. Attempts are called automatic programming,
constraint-based languages or aspect orientation to name a few Fehler! Verweisquelle konnte
nicht gefunden werden.[19]. Hence new technologies are available to support the development of
systems that respond more quickly and efficiently to a changing environment. However, most
technology used to develop, maintain, and evolve software systems do not adequately cope with
complexity, distribution and change [8], [16]. On the other hand, the capability to cope with
changes is very often a unique selling proposition for software developing companies and essential
for successful business.

In this article the focus was laid on the engineering process that is being affected when changes
need to be managed. The results stem from the research project “IOSEW”3 dedicated to explore the

1 University of Applied Science Berlin
2 University of Potsdam
3 The research project IOSEW is funded by the Federal Ministry of Education and Research, Germany (IOSEW:01/SF
03).

717

link between flexibility strategies and (distributed) software product development. Four industrial
partners that are small and medium sized contributed with specific software engineering processes
and problems that provided the foundation for results. All of our industrial research partners
develop and sell enterprise systems software.

This contribution is organised as follows: first a short overview of the principles in software
engineering process are given. The process is divided into time depended phases introducing change
qualities. Afterwards a structural process view is presented dividing the process into sub-views that
contribute to run-time adjustment. Then requirements and challenges in terms of optimization are
discussed before the solution approach is presented. The section on recent developments points at
influential research work. Finally, the results are summarized.

2 Characteristics of the Software Development Process

The modern software paradigm requires basic activities. Although depths vary common initial
planning activities comprise the definition of “ingredients” as engineering techniques such as
specification, design, implementation et cetera. The selection of programming languages and basic
project management methods are integral to modern software engineering. Along with that roles are
assigned and a schedule is outlined in the initial planning process.
During the course changes occur that may or may not have been foreseen, e.g. additional customer
requirements, resource fluctuation and more [7]. If all options are known in advance only
anticipated changes are to be planned for. However, common software engineering activities show a
different picture. Table 1 provides typical adjustment challenges based on the research in IOSEW.

Table 1: Typical requirements to design for adjustments

Element Challenges based on Case-Studies
A: Software development model Unforeseen additional test phase
B: Software development model
/ Actor

Iteration of requirements analysis

C: Software development model Combination of models, e.g. with development partners
D: Resource actor Key-Developer leaves company
E: Environmental turbulence Top-Down Management Decision to cancel cooperation with

external division
F: Environmental turbulence Management decision about cooperation with new partner

Design and Run-time considerations
The examples undermine; in the design phase of the software engineering process the need for
adjustment can not be fully foreseen or anticipated. Thus, the planning process takes all known and
foreseen constraints into consideration. However, the goal is to design for unanticipated changes
that may occur within the dynamic context of the process. The process should be enabled to adapt to
changes during run-time. The differentiation between design-time and run-time is common in
various approaches dealing with flexibility issues in systems and software techniques. Especially
software systems are oftentimes characterized in this form [1], [6].
In software systems design issues as bandwidth, sensors, represent parameter that can individually
adapt to environmental influences embedded in control loop constructions for instance [4]. The
view helps to link qualities as flexibility, fault-tolerance, tempo of adjustment with initial (planned

718

for) behaviour and dynamic real-time performance of the software system. On one hand we use this
perspective to differentiate between initial software process design and on the other to evaluate
dynamic process behaviour; here unanticipated adaptation comes into play as unforeseen process
variations are of importance. We consider the following research questions that are further
discussed in this paper:

1. How can the complex task of designing an adjustable software engineering process be
divided into subtasks that are more easily to manage?

2. How can the system be enabled to adapt for best output during run-time when unanticipated
changes need to be addressed (goal-function).

3. Along with that how can the responsiveness be evaluated. Is there an easy way to integrate
concepts into daily business?

In the following section the software process is viewed thru the lens of increasing capability to
adjust to changes.

3 Areas for Design and Run-Time Process Adjustment

Generally, the systems approach is taken characterizing an information system. Figure 1 provides
an unstructured overview of elements as the software development process, actors, organisational
development and implementation techniques, relations between the arrangement of phases and the
framework. The software (development) process itself is a structure typically comprised of the
following steps: product and resource specification, development, implementation and release. For
that a set of software development models exist describing approaches to activities that take place
during the process. Actors as developers, members of the organisational and managing company
structure as well as customers taking part in this process are involved.

Phase 1 Phase 3Phase 2 Phase.. SE M odel

Specif icat ion Developing Implementat ion Release SE
Process

Adapt ion
requestAct ors

decisions

(dist rubut es)
unit s

Figure 1: Elements of the Software Process

To classify software processes the following system description follows a three layer approach that
structures domains to analyse and influence adaptive behaviour: 1) elements 2) structural topology,
and 3) decision area.

1) Elements of the systems describe all entities that are part of the software-engineering
process. Each entity can be seen as parameter that is somehow adaptable to changing
conditions. The degree of adaptable behaviour may be given by nature, e.g. the capabilities of
actors to cope with changes. Others are determined by rules like building blocks and coverage
of the chosen software development models.

719

A few scenarios (Table 1) can be realized if elements as correcting variable are considered.
The test team in ‘A’ could respond to lacking software quality by integrating additional steps.
Mastering the loss of a key-developer in D, integrating an additional phase into the waterfall
model leads to limitations of adjustments purely based on adjustment of elements. The latter
examples require structural changes.

2) The structural topology addresses the links between elements. The links can be dynamically
established, changed or simply dropped during run-time of the software development process.
Links represent communication flows between actors; the interconnection of phases (first x
then y), tasks and sub-tasks.
Process adjustments using structural topology require degrees of standardisation (as
communication rules) to establish and deploy links. Also, modularity is a key to exchange and
integrate elements. Roles therefore require clearly assigned profiles. Deploying modularity the
process is structured into different stages to define variation points. Structural topology
adjustment allows to completely revising the organisational set-up of the development process.
However, elements (a phase, an actor) can be replaced without necessarily changing the
structural topology.

3) The decision area refers to the (physical) distribution of elements. It relates to the area
decisions to adapt are made. Distribution of elements raises the question of distributed
(adaptable) process management. One of the features that are currently assigned to self-
organizing systems is their decentralization [4]. Distributed adjustment involves further
activities as distributed decision management and achievement strategies for desired global
behaviour results. Decentralization of engineering processes may take different forms.
Outsourcing, near- or off shoring are categories representing organizational aspects.
Mapping two or more sites requires interoperable processes and process models. To add or
diminish locations scalable structures are needed.

Table 2: adjustment strategies (referring to scenarios in table 1)

Domain Elements Structural topology Decision area
A: additional testing - possible but requires

 scalability of se model,
 actor

- adjustment of se4 model
- model exchange
- allocating additional
 work-load

- delegation of (modular)
 tasks, processes, phases
- new partnering models

B: Failure in
functionality

- possible but restricted to
actor

- methods
- implementation of additional
requirement analysis

- (external) delegation
- partnering as option

C: model
combination in
distributed
environment

- requires structural change - defining synchronization
points
- se model adjustment or
exchange

- global (interoperable)
 process model
- distributed software process
 management

D: key developer
leaves

- Requires structural change;
 sd.-model might support
 profiles

- exchange of element
- se model adjustment or
- se model exchange

- delegation of activities

E: management
decision – cancel
cooperation

- requires structural change
- work load increase possible
(scalability)

- exchange or adjustment of
elements

- reduction of decision area

F: management
decision -
cooperation

- requires structural change
- work load decrease
 possible (scalability)

- se model combination - expansion of decision area
 possilbe

4 se model = software engineering process model (Waterfall, V Model, XP, RUP, …)

720

In the view of the abovementioned elements contain the properties to adjust to changes; each
representing “parameters” similar to correcting variables in software technique and other
disciplines. This form of adaptation does not change the structure but the value or status of the
element (e.g. work-load).

As opposed to adjustment purely related to elements structural links allow a more dynamic
behaviour towards unanticipated changes during run-time of the project. Common turbulences as
loss and exchange of elements etc. require adjustments that address the structure or configuration of
the se-process. Communication rules and behaviour are linked to this domain; likewise a revision of
the (pre-planned) process model; the integration of redundant (work-load) absorbing structures.
The third domain covers partnering strategies (outsourcing of activities). Collaboration to mutually
address the product development is linked with a shift from local or personal level to global level.
Obviously, organisational changes as distributing product development, integrating new partner
during the project stands for a high degree of flexibility during the project. However scenarios as
merging locally distributed teams and process models involves building responsiveness, agility and
adaptability into process architectures, project management methods, and organizations.

Adjustment Strategies and Requirements

Many sources of change are relatively unpredictable such as changes in leadership personnel (E, F
in table 2), not specifiable (emerging) functions or events (B). Frequently, when product
development goals are at risk engineers interact ad-hoc to then known facts [7]. In such cases the
engineering model may not be suitable anymore. If documentation is suddenly crucial the waterfall
model will be an option perhaps in exchange of less documentation focussed models. Hence
expensive rework and uncertainty need to be accepted. The best way to narrow the problem space is
to identify candidates reducing the consequences of unanticipated changes. At this point the
domains of adjustment support deriving necessary properties:

Obviously, elements, links and decision space need to be scalable to handle quantitative
aspects as work-load. Links between elements should be allowed to be established when
needed. A scalable decision space adds and diminishes partners/sites that share the
engineering problem.
Modular process structures defining sub-tasks and goals allow efficient modification of
structures and decision space. Modular structures of engineering models ensure the
definition of development phases and sub-tasks therefore exchange, distribution is an option
if needed.
Interoperable structures ensure compatibility and standards [18]. At the level of elements
role models (project manager, developer, tester etc.); communication rules; exchange
formats, protocols and further aspects of standardization contribute to topology adjustment.
The input and output services between (distributed) sites are also a matter of well defined
standards and rules allowing efficient partnering.
Software engineering processes are considered knowledge-intensive processes. The skills of
actors contribute in as much the engineering model may manage knowledge, e.g. contain
best-practises (RUP model) or knowledge and skill profiles of actors.

Requirements that can be derived in order to respond and adapt to run-time dynamics relate to the
context of elements, structural flexibility approaches but also se-process model adjustments. A
selection has been illustrated. Understanding the factors that impact how process models are

721

chosen, how they are developed, how they evolve and how they can be adapted are therefore critical
topics for managerial attention.

Designing Distributed SE-Processes – Local versus Global Optimization

A key challenge for distributed SE-processes referring to the decision area is to balance local and
global optimization (E, F Table 2).
In biologically inspired systems decentralization does not involve global coordination but local
autonomy is postulated [12], [20]. Likewise actors as engineers, customers would act locally and
the view is restricted to their immediate region. In terms of optimization this imposes a constraint
upon the system (Figure 1). The question to ask is how a global process configuration can be
achieved over n sites or engineering partners when commercial software is developed.
Theoretically, each partner acts goal-oriented and is responsible for its own internal state and
behaviour meaning by authority or contracting self-management is enforced.

Practically, organisational and geographical aspects stand for both complexity and variety in
process and product design in proprietary models employed by commercial firms. The process
optimization does strongly depend on how well actors are able to understand each other and find
ways to mutually satisfactory results. So tensions and mistrust will cut off many options for joint
benefit [7], [3]. Therefore, we suggest coming to an achievable solution that can be locally
accepted.

Scenario E and F is an example for different levels of achievability. An expected top-down
management decision to perhaps finish with a partner that serves as an equal engineering partner
represents a very turbulent and unsecure environment for the (internal) team.
Central coordination, redundant structures rather than local autonomy appear more fruitful in the
light of loosing product and engineering knowledge. From a local focus redundancy in structures is
an option to adapt as the process benefits in future (e.g. test-algorithms, de-bugging, documenting
etc.). Hereby distributed autonomy is reduced; central control structures are established; thus the
focus is to reach a local optimum for the team afraid to lose a partner.
Based on the link between structure of product and organisations that participate in the development
structural analogies represent the similarity between product and process design [11]. In other
words decentralized processes require likewise product and process management structures for
better adjustment (global optimization). Structural analogies are identified as key enabler for
adaptability in related research [1], [7]. However, stability valuing trust and mutual benefit appear a
basic must when designing distributed adaptable engineering processes that show overall-
efficiency.

4 Solution Approach – PEPMAD

So far we have shown the enduring principles in software engineering; provided sub-views on three
domains that trigger adjustment. We also showed our concept of achievability in terms of
optimization. In this section managerial functions to support adaptive behaviour during run-time are
outlined.
Adaptation during run-time responds to environmental context of the software engineering process,
e.g. new customer demand patterns. Hence changes need to be registered. Afterwards a decision
needs to be taken what way to go. Hence alternatives need to be found and evaluated, e.g. additional
testing, partnering with X or Z etc. Third, to put the decision into action requires reconfiguring the

722

process. Therefore, to enable the software process to be more adaptable three basic functions are
required: (1) context management; (2) option management and (3) configuration management. The
context management gathers information about decision area, structural topology and elements. It
corresponds to process monitoring (Figure 2). If changes are significantly unanticipated the
adaptation management is engaged. The evaluation of alternatives is criteria based. The suitable
alternatives are subject for reconfiguration activities. The criteria that serve for evaluation of
alternatives are based on relevant properties (as scalability, modularity, interoperability,
redundancy…) that need to be enhanced in order to adapt the domains of adjustment to design the
process more adaptable.

The PEPMAD – Process Model

PEPMAD – the Potsdam Evolutionary Process Model for Adaptable Design is a process model
(Figure 2). In general, a process model is a central outline for a systematic development of a system
being an organisational framework. It specifies the order and the kind of actions between system
elements in focus [13]. The goal of PEPMAD is to define features that are essential for a given
software engineering process to be more adaptable during run-time.
The loop construction allows continuous course of activities and adaptation to new circumstances
[27]. The evolutionary aspect is given by the integrated loop which implies self-optimization and
continuous improvement [24]. The term applied to a software development system is a vision lent
from biological context to underline the fact that the system itself has to recognize its needs and
accordingly adapt its functions, retaining the useful and abolishing the disturbing elements [25].
Also, process adjustment is a continuous organizational task that should be integrated as soon as
possible as software changes occur on the first day of development resulting in engineering process
changes [8].

process monitoring

process reconfiguration

Criteria recommended
actions

Input Output

1

2

3

Figure 2: PEPMAD – Potsdam Evolutionary Process Model for Adaptable Design

PEPMAD @work

Applying PEPMAD there are two choices to make: the process or scenario to analyze and the depth
of analysis. With regard to the first the differentiation between single site locations versus
distributed (open) environment is of interest. Distributed processes need to be modular and
interoperable to facilitate the work, to attract partners that understand the task and to contribute to it.
By contrast, in single locations problems are more often solved by face-to-face communication. A

723

special stage represents the start-up engineering organisation that has just entered the market with a
software product. At this point the benefits of modularity may not (yet) be of interest but the
capturing of process and product knowledge to (iteratively) optimize project performance.
Based on the initial condition of the engineering process the evaluation of the decision area is linked
with a weighting of important process qualities; for instance modularity and interoperability in
distributed and others as self-optimization, knowledge management for start-up’s. A catalogue of
about 50 aspects captures the current situation. The model provides conclusions on this to support
adjustment strategies. The situation-based weighting of the criteria does influence the importance
and order of recommendations that are directly linked with questions.

An optional but recommended step especially in distributed environments is the communication
analysis deploying KMDL® (Knowledge Modelling Description Language) to identify strategic
positions in the communication network [15]. In addition to the questionnaire lived communication
can be visualized that show established communication ways also bottle-necks. The following
picture illustrates the PEPMAD contents (Figure 3).

Option Management

Structural topology

Context Management

Distribution of elements

distributed single

Decision-area

Monitoring / Loop structure

Weighting of criteria

Situation-based
questionnaire

communication analysis

recommondations

Modularity ...Scalability

elements

gate-keeper ...bridge

Reconfiguration Management

Star

Gatekeeper

Liason

Isolation

Bridge

links actions procedures

software
procedure models

Question 1

When?

Answer 1

Comments

Question 2

How?

Answer 2

Comments

...

...

Question n

Who?

Answer n

Comments

Figure 3: PEPMAD in detail

As said, the recommendations show options for better process adjustments. Options are directly
linked with process models if they do contain the recommended activity. For instance, for a start up
documentation may be recommended to ensure stability against loss of expertise; models supporting
documentation as waterfall model would be listed. The idea is to additionally provide a choice of
deployment packages that consist of established process models. Fifteen well-known process
models have been pre-evaluated in terms of adaptation features. The best (most adaptable) results
can be attained if the models can be integrated or combined to complete the recommendations.

5 Recent Developments

PEPMAD is being established within a research project “IOSEW”. Software engineering processes
of four software companies ranging from very small to medium sized companies provided the
foundation for the process model. PEPMAD is tool-based covering the “simple run”. For a first-

724

time deployment three hours joining key personnel and consultant to ask and explain questions are
necessary. Afterwards the simple cycle can easily be integrated into the business. The extended
cycle deploying link analysis using KMDL® does require experts for data gathering and
visualization; approximately 3 – 4 days are needed for a geographically distributed process between
2 to 3 partners.

The rest of the section points at a selection of related recent research that either influences or
contributes to the results.
Autonomic computing (AC) presents autonomic elements that follow the well-known MAPE cycle:
to monitor, analyze, plan and execute [22]. AC introduces a computer system. PEPMAD as said is a
process model; nonetheless basic activities of the MAPE cycle are shared. PEPMAD in our opinion
appears to be a special variation though the MAPE model is less specific.

A range of work has aimed to examine the link between a product’s architecture and the
characteristics of the organization that develops this product. The link in between is the process of
production. The roots of this approach lie in the field of organization theory, where it has long been
recognized that organizations must be designed to reflect the nature of the tasks that they must
perform [23], [9].

In addition, discussions on flexibility concepts and methodologies, popular in the IT engineering
world, termed agility, adaptation, changeability served as impulse though typically not agreed upon
as they often reflect a specific level of consensus [1],[10].

6 Conclusions

Developers design software systems based on needs and constraints imposed by external factors.
These constraints require organisations not only to adjust to them but also and especially to respond
to them in shortest time.
We have investigated the approach to build a self-adapting software engineering process to manage
turbulences during process run-time. The concepts fill the gap between structure and function of the
engineering process. PEPMAD postulates a couple of main principles:

- Three domains of adjustments support overall process adjustment; namely elements,
structural links and decision area.

- Based on well defined domains of adjustment the goal is to use them all during run-time by
planning well in advance.

- To gather or buy information is one principle to diminish uncertainty.
Given these characteristics, PEPMAD would also benefit from research in several related areas. For
example dynamic software product lines and product reuse [17], [25] , automatic versus distributed
human decision making, and further structural analogy research [29].
Nonetheless to cope with dynamics each planning phase should be supported by process models
that support change during project run-time taking possible adjustment strategies into consideration.
PEPMAD is a blueprint to better adapt to the additional emergence of unanticipated change. The
feasibility has been proven for small to medium software developing companies. To ensure broad
utilization and adoption the process model would benefit from more case studies, which probably
would contribute to refinements. Of interest the generalization of results for open-source software
engineering processes remains uncertain. Additionally, new developments in process models,
standards that influence the enduring principle of software engineering appear challenging.

725

7 References

[1] ANDRESEN, K.: Design and Use Patterns of Adaptability in Enterprise Systems, Gito, Berlin, 2006.
[2] ANDRESEN, K., GRONAU, N., Managing change – Determining the Adaptabiltiy of Information Systems,

European Conference on Information Systems (EMCIS) 2006
[3] BALASUBRAMANIAM, R., LAN, C., ANNAN, M., PENG, X., Can distributed Software be Agile?,

Communications of the ACM, 49, 41 – 46, 2006.
[4] BICOCCHI, N., MAMEI, M., ZAMBONELLI, F., Towards Self-organizing Virtual Macro Sensors, IEEE

Computer Society, First International Conference on Self-adaptive and Self-organizing Systems (SASO), 2007.
[5] BLAIR G., S., COULSON, G., BLAIR L., DURAN-LIMON, H., GRACE, P., MOREIRA, R.,

PARLAVANTZAS, N., Reflection, self-awareness and self-healing systems, ACM Press, 9 – 14, 2002.
[6] BISHOP, J., HOORSPOL; N., Cross-Plattform Development: Software that Lasts, IEEE Computer, 39, 26 – 35,

2006.
[7] BOEHM, B.: Making a difference in the Software Century, IEEE Computer 41, 32 – 38, 2008
[8] BOHNER, S., An Era of Change-tolerant systems, IEEE Computer 40, 100 – 102, 2007.
[9] BURNS, T., STALKER, G., M., The Management of Innovation, Tavistock Publications, London, 1961.
[10] COALLIER, F., Standards, Agility, and Engineering, IEEE Computer 40, 100 – 102, 2007.
[11] CONWAY, M.E., How do Committee's Invent, Datamation, 14, 28-31, 1968
[12] CARILLO, L., MARZO, J.,L., VILA, P., MANTILLA, C., A., Ant Colonies for Adaptive Routing in Packet-

Switched Communications Networks. In Eiben et. al. (editors) Parallel Problem Solving from Nature, 673 – 682,
1999.

[13] FITZGERALD, B., Formalised systems development methodologies: a critical perspective, Information Systems
Journal, 6, 3 – 23, 1996.

[14] GHEIS; K., ULLAH KAHN, M., REICHLE, R., SOLBERG, A., Modeling of Component-Based Self-Adapting
Context-Aware Applications for Mobile Devices, IFIP Working Conference on Software Engineering Techniques,
718- 722, 2006.

[15] GRONAU, N. FRÖMING, J., Eine semiformale Beschreibungssprache zur Modellierung von
Wissenskonversionen. In: Wirtschaftsinformatik, 48, 349-360. 2006 (in German).

[16] GWANHOO, L., DELONE, W., ALBERTO-ESPINOSA, J., A., Ambidextrous Coping Strategies in Globally
Distributed Software Development Projects, Communications of the ACM, 49, 35 – 40, 2006.

[17] HALLSTEINSEN, S., HINCHEY, M., SOOYOUNG, P.; SCHMID, K., Dynamic Software Procuct Lines, , IEEE
Computer 40, 93 – 95, 2007.

[18] HANISCH, F., STRASSER, W.: Adaptability and interoperability in the field of highly interactive web-based
courseware. In: Computers & Graphics, 27, 2003; 647-655

[19] HAREL, D., Can Programming Be Liberated, Period? IEEE Computer 41, 28 – 37, 2008.
[20] HERRMANN; K., WERNER, M., MÜHL, G., A Methodology for Classifying Self - Organizing Software

Systems. International Transactions on Systems Science and Applications, 2 (1); 41 – 50, 2006.
[21] HIGHSMITH, J., COCKBURN, A., Agile Softwaer Development: the business of innovation, IEEE Computer,

34, 120 – 127.
[22] KEPHART, J. O., The Vision of Autonomic Computing, IEEE Computer 36, 41 – 52, 2003.
[23] LAWRENCE, P., R., LORSCH, J.W., Organization and Environment, Haward Business School Press, Boston,

MA, 1967.
[24] LEHMANN, M., M., Feedback in the software development process, Information and Software Technology, 38,

681 – 686, 1996.
[25] MADAM HOMEPAGE, Mobility and ADaptation enAbling Middleware,

http://www.intermedia.uio.no/confluence/display/madam/home (28.07.2008)
[26] MADHAVJI, N., H., The Process Cycle [Software Engineering], Software Engineering Journal, 6, 234 – 242,

1991.
[27] NUSEIBEH, B, Weaving together Requirements and Architectures, IEEE Computer, 34, 115 – 119, 2001.
[28] OSTERWEIL, L., J.; GHEZZI, C.; KRAMER, J.; WOLF, A.,L.: Determining the Impact of Software Engineering

Research on Practice, Computer, IEEE Computer 41, 2008.
[29] V. HIPPEL, E., Task Partitioning: An Innovation Process Variable, Research Policy 19, 407 – 418, 1990.

726

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	ADJUSTMENT STRATEGIES FOR MANAGING UNANTICIPATED CHANGES IN SOFTWARE DEVELOPMENT PROCESSES
	Katja Andresen
	Norbert Gronau
	Recommended Citation

	Microsoft Word - Erste Seiten 246_Band1.doc

