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DESIGNING DISTRIBUTED DATABASE SYSTEMS
FOR EFFICIENT OPERATION

Sangkyu Rho
Seoul National University

Salvatore T. March
Carlson School of Management

University of Minnesota

Abstract

Distributed database systems can yield significant cost and performance advantages over centralized systems for
geographically distributed organizations. The efficiency of a distributed database depends primarily on the data
allocation (data replication and placzment) and the operating strategies (where and how retrieval and update query
processing operations are performed). We develop a distributed database design approach that comprehensively
treats data allocation and operating strategies, explicitly modeling their interdependencies for both retrieval and
updateprocessing. We demonstrate that data replication, join node selection, and data reduction by semijoin are
important design and operating decisions that have significant impact on both the cost and response time of a
distributed database system.

1. INTRODUCTION To enhance retrieval efficiency the same data can be redundantly
allocated to multiple nodes (i.e., data can be replicated). Of

Geographically distributed organizations must efficiently support course, such redundancy increases update costs.
local operations and must share information across the organiza-
tion. With the emergence of commercial distributed database Operating strategies include operation allocation (or query
management systems (Ricciuti 1993; Richter 1994; The 1994), optimization) and concurrency control strategies. Operarion
distributed database systems are becoming more common. allocation defines where, how, and when retrieval and processing
Distributed database systems provide users with access to operations are performed (Yu and Chang 1984). Retrieval
corporate databases that are maintained at different locations. operations must be performed at a node containing the required
Such systems can yield significant cost and performance data. Processing operations can be performed at any node;
advantages over centralized s 'stems for geographically cdistributed however, if thedata is not located at the processing node, it must
organizations. These advantages include improved system be sent there over the communication network. The order in
performance, reduced system costs, and improved data availabil- which operations are performed can have a significant impact on
ity (Ozsu and Valduriez 199la, 1991b). performance. To reduce the amount ofprocessing required, select

and project operations are always performed before join opera-
Given a computer network consisting of nodes (computers with lions. However, the order in which join operations are performed
processing and storage capabilities) connected by links (with data and the use of data reduction strategies must be determined.
transmission speeds and capacities), judicious placement of data
and proccssing capabilities can result in extremely efficient and The concurrency control mechanism is responsible for insuring
responsive systems. However, inappropriate replication or that updae operations are performed correctly and consistently,
placement of data or poor utilization of processing capabilities particularly when there are multiple copies of the data (Bernstein
can result in high cost and poor system performance (Ozsu and and Goodman 1981). Update operations must eventually be done
Valduriez 1991b). at all nodes containing a copy of the affected data.

There are two aspects to distributed database design, data Data allocation and operation allocation are interdependent
allocalion and operating strategies. Dam allocation includes the problems (Apers 1988). 'I'he optimal set of file fragments and
determination ofunits of data to allocate (termed file.»agments) their optimal allocation depend on how queries are processed
and the placenieint ofcopies of those units to nodes in the network. (i.e., the operation allocation). However, the optimal operation
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allocation depends on where file fragments are located (i.e., the database management system either at compile time (e.g., R*
data allocation). Early work in this area focused either on data [Lohman et al. 19851) or at run time (e.g., Distributed INGRES
allocation, assuming either that there was no data redundancy or [Epstein, Stonebraker and Wong 1978]). We argue that it is
that a data copy would be pre-selected for each query, or on important to generate an efficient operation allocation for each
operation allocation (query optimization), assuming a given data known query at design time. This enables designers to estimate
allocation. Much of this work ignored the effects of update and the system load and, perhaps, to pre-compile query execution
concurrency control mechanisms. strategies. Globally optimized query processing strategies may,

in fact, be more efficient than one-at-a-time query optimizers.
We combine both data allocation and operation allocation in a
single model. Our model includes data replication, update
operations, a concurrency control mechanism, data reduction, join The criteria against which data allocation and operation allocation

node selection, and join ordering. It evaluates both operating cost decisions are evaluated typically relate to system costs and

and response time. No current distributed database design
response time. System costs include data storage, network

approach includes all of these components. communication, and local processing. 'Ihe determination of these
as variable costs is itself a difficult problem depending on such

We develop a genetic algorithm-based solution procedure and factors as hardware utilization, the actual variable costs of

apply it to two example problems. The algorithm selects efficient operation (electricity, personnel), and the recovery of investment
daia and operation allocations based either on minimum operating (initial cost, interest, depreciation, etc.).
cost or on minimum response time criteria. In the example
problems. we demonstrate that both operating cost and response Response time is uie expected time that a data request spends in
time can be significantly reduced when mplication, join node the system. It includes both processing time and the delays
selection, and data reduction are considered concluding that these experienced in local data processing and data transmission.
are important components of a distributed approach. Response time is typically estimated using an open queueing

network assuming Poisson arrival processes and exponential
'Iheremainder of the paper is organized as follows: in the next service time distributions (Kleinrock 1975; Cornell and Yu
section, we present a basic background in distributed database 1989).
systems focusing on data allocation and operation allocation. In
the following section, we briefly review the prior research. We
then present our model andsolution algorithm. Finally, we solve

For illustrative purposes, consider a bank having a headquarters

the example problems and compare our results in terms of total and three regional offices. Suppose further that each has a

cost and response tint with those obtained by other, more limited computer system in a fully connected network. Each computer

approaches. is described by CPU and disk capacities and unit costs. Each link
in the network is described by speed, capacity, and unit transfer

2. DISTRIBUTED DATABASE SYSTEMS cost. Suppose that the database schema has three tables,
Customer, Account, and Transaction (Figure 1). Each customer

In a distributed database system, data from a single conceptual hassome number ofaccounts against which transactions (deposits
database are maintained at various nodes in a computer network. and withdrawals) are made. Each customer has a preferred

The process of allocating data to nodes is termed distribution regional office at which the customer does most ofhis/her banking
design or data aUocation (Ceri, Pernici and Wiederhold 1987; (i.e., the office at which the accounts were opened). Of course,
Ozsu and Valduriez 19918). Given a data allocation, user customers can go to any regional office. Each regional office
retrieval and update queries must be processed. Queries arise at must be able to process transactions for any customer (although
some node and Inay update or retrieve data stored at any node. they primarily process transactions for their own customers).
The process of determining how, when, and where queries are Furthermore, regional omces and headquarters require access to
processed is termed, que,y optinization or operation allocation. data about various difierent customers, accounts, and transactions.
Theconcurrency comrot mechanism specifies update processing
constraints. Figure 2 shows an example set of retrieval and update queries.

Each is executed from each location with some selection criteria
Typically, the tint, allocation and concurrencycontrol strategy are and some frequency. For example, Query Rl could be executed
determined at design tirr¥: and change infrequently, if at all (there from headquarters once per day, selecting region 1 accounts (i.e.,
are research efforts in data migration strategies [Gavish and br-id = "Region 1"). It could be executed onceper month from
Sheng 1990]; however, this aspect ofdistributed system operation region 2 selecting region 2 accounts, and so forth. A distributed
is beyond the scope of this paper). Operation allocation is database system should allocate data and operations for efficient
typically done by a query optimizer within the distributed execution of known queries.
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Customer (10,000 instances, 960,000 characters) Operating costs and response time of retrieval requests can be
reduced by replication. Redundantly allocating a copy of each21=id Text 5
fragment to each node that references it allows all retrievalc-name Text 20
queries to be processed locally. However, such data replicationssn Text 9
increases the operating cost and response time of update queriesc-address Text 30 as all copies of the referenced fragment must be updated. 1[hec-city Text 20
exact effect of replication on update costs is dependent upon thec-state Text 2
concurrency control mechanism (Ram and Marsten 1991; Ramc-zip Text 10
and Narasimhan 1990,1994), a component of the distributed
database operating strategy.

Account (15,000 instances, 1,350,000 characters)

ACCI/Q Text 8 2.2 Operating Strategies
c-id Text 5
br-id Text 5 As discussed above, there are two components to operating
a-type Text 2 strategies: operation allocation and concurrency control
a-status Text 2 mechanism.
s-balance Numeric 15.2
s-date Date 8 Operation allocation (or distributed query processing) involves
c-balance Numeric 15.2 three phases (Yu and Chang 1984): copy identification,
period-interest Numeric 15.2 reduction, and assembly.
ytd-interest Numeric 15.2

In copy idenqfication (also termed materialization), one or more
Transaction (300,000 instances, 2,350,000 characters) copies ofeach fragment referenced by the query are selected for

processing. The identification ofappropriate fragment copies cad-
kid Text 10 play a critical role in determining the overall query processingacc-no Text 8 costs (Martin, Lam and Russell 1990; Yu and Chang 1983,loc-id Text 5 1984).
date Date 8
time Time 8 Reduction applies onlyto join queries where the fragments to beamount Numeric 15.2 joined are stored at different nodes. In it, sem#oins are used to
t-type Text 2 reduce the amount ofdata that must be transferred to accomplish
t-status Text 2 the necessary joins. In a semijoin, denoted reducer -+ reducee,
t-ref Text 20 the unique join attribute values from the reducer fragment are

transmitted to the node containing the reducee fragment. A
Figure 1. Tables for an Example Distributed record from the reducee is selected only if its join attribute

Database System matches one of the transmitted join values. Only the selected
records are transmitted to the node containing the reducer and the
join is performed there.

2.1 Data Allocation
Ifall records in the reducee are selected,then no data reduction

Data allocation produces a subschema for each node of the is achieved; tlie entire second fragment is gent to the node of the
distributed database s*cm (Ceri, Pernici and Wiederhold 1987). reducer. In this case, the semijoin strategy would not be
Prior to data allocation, the units of data to allocate must be bene.ticial. -Iliat is, it would not reduce the amount of data
determined. This process is termed.»agmentation (Navathe et transferred to accomplish the join. Much oftheworkin distrib-
al. 1984). Thae are two types of fragmentations: horizontal and uted query optimization is devoted to identifying situations where
vertical. Horizontal fragmentation groups records of a file that semijoins are beneficial (e.g., Apers, Hevner and Yao 1983;
satisfy a selection condition (Ozsu and Valduriez 199lb). Bernstein and Chiu 1981; Hevner and Yao, 1979).
Vertical fragmentation groups attributes of a file that have a high
probabilityofbeing accessed together (March 1983; Navathe et In assembly, data are sent to the result node (if they are not
al. 1984). already there) and final processing is performed (e.g., sorting and

aggregations). Prior research typically assumes that reduced files
Fragments must then be allocated to nodes (Dowdy and Foster are transmitted to the result node where aU joins are performed.
1982). Fragment allocation can be done either with or without Furthermore, prior research typically ignores local processing
replication. costs, thus removing any consideration ofjoin order. However,
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a. Retrieval Queries

Rl. Customer Statements
SELECT c-id, c-name, c-address, c-city, c-state, c-zip, acc-no, s-balance,

c-balance, period-interest, ytd-interest, t-id, t-type, amount.
Customer, Account, Transaction
Customer.c-id = Account.c-id
Account.acc-id = Transaction.acc-id
Account.br-id = [region]

R2. Balance Inquiry
SELECT c-id, c-name, acc-no, c-balance
FROM Customer, Account
WHERE Customer.c4d = Account.c-id

R3. Branch Status Report
SELECT br-id, acc-no, c-balance
PROM Account
WHERE br-id = [region]
AND acc-no = [specified]

b. Update Queries

Ul. Adjust Account balance
UPDATE Account
SET c-balance = [new balance]
WHERE acc-no = [specified]

U2. Maintain Customer Data
UPDATE Customer
SET c-address = [specified], c-city = [specified], c-state = [specified],

c-zip = [specified]
WHERE c-id = [specified]

U3. Record Transaction
INSERT INTO Transaction
VALUES ('t-id' ....... , 't-ref')

Figure 2. Queries for Example Database System

the nodes at which joins are performed and the join order (Mishra Owicki 19821). Two-phase locking (2PL) is the most commonly

and Eich 1992) can significantly affect the overall query implemented. Distributed 2PI. one variation of 2PL, is modeled
processing cost and response time. This research integrates join in this research.
node selection and join order in a comprehensive model of data
and operation allocation. The next section presents a brief overview of prior research in

distributed database design and distributed query optimization.

Concurrency controlnrchanisms specifyhow update processing
is performed. In particular, they insure that replicated data are 3. PRIOR RESEARCH
kept consistent. A number of distributed concurrency control
mechanisms have been proposed (e.g., two-phase locking Several researchers have developed models for the combined data

[Mohan, Lindsay and Obermarck 1986], timestamp-based and operation allocation problem (Apers 1988; Blankinship,

[Bernstein, Shipman and Rothnie 1980], optimistic [Ceri and Hevner and Yao 1991; Cornell and Yu 1989). They do not,
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however, consider the effects ofdata replication or update queries cost and minimization of average response time. In the next
and the requisite concurrency control mechanisms. Nor do they section, we present our model and its solution method.
consider the effects of semijoins or join order. Noting that files
are an inappropriate unit of allocation, Apers developed an 4. A MODEL AND ALGORITHM FOR
approach to identifying file fragments for allocation. Blankinship, DATA AND OPERATIONHevner and Yao note that data and operation allocations should ALLOCATIONbe evaluated by both cost and response time criteria.

Cornell and Yu develop a model that first decomposes queries We assume that the global database schema is given, along with
into steps and then allocates files and query steps to nodes. Their a set of queries for which performance is to be optimized.
cost model is simplistic, including only communication costs; Following March and Rho and Apers, we first determine min-

however, their constraints are comprehensive, including local term fragments for allocation from the selection and projection

node data storage, VO, and processing and communication criteria ofqueries. Based on the retrieval queries R 1, R2, and R3
capacity. In addition, their response time analysis includes

of Figure 2, for example, each relation in Figure 1 could be

queueing delays. Again, however, they do not consider the effects horizontally parlitioned into three fragments, each containing the
instances for one region (e.g., Customer into Customer 1,of data replication or update.
Customer 2, and Customer 3).

Ram and Narasimhan (1990) formulate a model which include
data replication and a concurrency control mxhanism, centralized We then transform the queries into subqueries on the min-term

two-phase locking (2PL) with a single, shared network directory. fragments, which in turn are decomposed into query steps. For

Their model includes queueing delays in local message processing example, retrieval query R3 from Region l would simply retrieve

operations. They assume that files are accessed independently the corresponding min-term fragment (i.e., Account 1); however,

and that, once accessed files are sent from the storing node to the R3 from headquarters would require aunion of all three min-term

requesting node where all processing is done. In processing a fragments (i.e., Account 1, Account 2, and Account 3). There-

complex distributed query, however, it may be more efficient to fore, R3 can be decomposed into three subqueries (i.e., Rl.1,

send files to intermediate nodes for processing before sending the
R 1.2, and R 1.3) based on the fragments required. Query steps

results to the requesting node. Furthermore, local processing, include all messages that need to be sent as well as the actual

except for messages, is ignored. Ram and Narasimhan (1994) retrieval and processing that must be performed. If data needed
formulate a similar model based on primary copy 2PL con- for a query is not stored at the requesting node, it must send

messages to the node(s) from which it will be retrieved. As wecurrency control mechanism.
assume a distributed 2PL concurrencycontrol nrchanism, update

March and Rho (1995) develop a model that also includes data queries require the set of messages.
replication, updatequeries, and a concurrency control mechanism.
Their model treats both data and operation allocation in an The task is then to

integrated manner. Their cost model includes local node storage,
I/0, and CPU processing costs as well as communication costs. (1) allocate min-term fragments to nodes (data allocation with

replication),Although operations can be allocated to any node, they assume
that join order is predetermined. Furthermore, theydo not include

(2) allocate revieval query steps to nodes (copy identification),semijoins.
and for each join query,

As discussed above, join order and the use of semijoins can have
a significant impact on performance. Work in distributed query (3) identify beneficial semijoins,
optimization dealing with semijoins [Apers, Hevner and Yao
1983; Berostein and Chiu 1981; Hevner and Yao 1979; Yoo and (4) determinejoin order, and

Lafortune 1989) assumes that a data allocation is given.
(5) allocate join operations to nodes (ioin node selection)

In this paper, we extend the basic approach of March and Rho
to incorporate a more comprehensive operation allocation model to minitnize either total operating cost or average response time.

that includes reduction bysemijoins and the determination ofjoin Following Cornell and Yu and March and Rho, the followingorder. We adopt Apers approach to identifying file fragments for notation is used: a(k,m) and b(k,m) are defined as the fileallocation and the query decomposition of Cornell and Yu, We fraginelits referenced by step m ofquery k For message and local
model costs and queueing delays in communications and in local selectioli and projectioil steps only one file is referenced, hence,
data processing including both retrieval and update queries. We for those steps b(lim) is null. For combine-fragment steps (joins
include two evaluation criteria: minimization of total operating and unions),a(k,m) and b(k,m) are temporary files generated in
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previous selection and projection, semijoin or combine-fragment 4.3 A Genetic Algorithm Solution Procedure
steps. 1, is defined as the size of file fragment i (in characters)
and L  as the size of a message. The size of each file fragment One of the difficulties facing researchers in this area is tractability.
is calculated from the problem description parameters. The size
of each temporary file is estimated from the selection and

Data and operation allocation are interrelated problems, each of

projection conditions, semijoin, and join operations that produce which is NP-hard (Eswaran 1974; Hevner 1979). To address the

them (see, e.g., Gardy and Peuch 1989). node(k) is defined as tractability problem, we developed a genetic algorithm-based

the origination node of query k, nod«k,m) as the node at which
solution procedure (Goldberg 1989). A genetic algorithm was

step m of query k is performed; and node(i) as the node from chosen for several reasons. First, genetic algorithms have been
which fragment i is accessed. For join steps, node(k,m) repre- successfully applied to similar complex, combinatoric, real-world

sents join node selection decision. Similarly, for message steps problems including distributed database design (March and Rho
of retrievals, node(a(k,m)) represents copy identification. 1995). Second, genetic algorithms are robust in that they work
decisions. Finally, copy(i,t) represents fragment allocation and well even in discontinuous, multimodal, noisy search spaces
it is 1 if fragment i is stored at node t, otherwise it is 0. (Goldberg 1989). Genetic algorithm-based solution methods can

easily incorporate very complex and nonlinear cost models such
4.1 Total Operating Cost Model as ours. Third, genetic algorithms result not only in a "best"

solution, but also in a pool ofgood solutions. The set of solutions
The first performance model is designed to minimize total in the final pool provides significant intuition into the effects of
operating cost including communication, disk VO, CPU process- design alternatives. For example, if all solutions in the final pool
ing, and storage, i.e., store a given file at a particular node, the designer would be

reasonably confident that it is important to store that file at that
node.

Min Cot • E f  I (COM(tm) + IORm) + CPU(k.m)) € sro(t). , Our distributed database design algorithm contains a genetic
algorithm within a genetic algorithm (adapted from Rho and
March [1994] and summarized in Appendix 3). The outer genetic

Where f(k) is the frequency ofexecution of query k per unit time, algorithm addresses data allocation. The inner genetic algorithm
COM(km), IO(k,m), and CPU(k,m) are therespectivecosts of addresses operation allocation. A nested approach is advanta-
communication, disk I/O and CPU processing time for step m of geous over a standard approach because it can more easily handle
query 14 and SIO(t) is thecost of storage at node t per unit time. the dependency between data allocation and operation allocation.

Expressions for these cost components are summarized in As discussed above, the feasibility of an operation allocation is
Appendix 1. dependent on the data allocation - each retrieval operation must

be allocated to a node containing the required data. It is very
To be feasible, a data and operation allocation must not exceed difficult to enforce this type of constraint with a standard generic
systemresource capacities. We consider communication link, algorithm.
disk I/0, CPU, and storage capacities as.constraints. These are
assumed to be given. Furthermore, a nested approach allows us to easily incorporate

different operation allocation models. Such flexibility is desirable
in distributed database design, since different distributed database

4.2 Average Response Time Model management systems utilize different query processing models
(i.e., query optimizers). The genetic algorithm is written in C++

The average response time of query k can be decomposed into and runs in a UNIX environment. Its run time depends on
threeparts: communication (RUk)), disk I/0 (R,000), and CPU problem size (i.e., the number of nodes and queries) and on
(Repu(k)). The objective, then, is to algorithm parameters (poolsize and number of iterations).

In the remainder of this section, we briefly describe how a
solution is represented in the genetic algorithm. Details of the

E f(k) (RcuM(10 + Rio(10 + Ropu(k)) algorithm are presented in Rho (1995). The solution representa-
Min RT = tion for the outer genetic algorithm represents the fragment

E f(k) allocation. The solution representation for the inner genetic
algorithm consists of four parts, each representing one of the four
types of decisions in our operation allocation model: (1) copy
identification, (2) beneficial semijoin identification, (3) join order,

We assu d M/M/1 queueing models for communication links, and (4) join node selection. Figure 3 shows the representation
disks, and CPU's. Expressions for the above response time of one solution. Each part of the representation is discussed
components are summarized in Appendix 2. below.
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a. Outer Algorithm Representation

Fragment Fragment Allocation

Customer 1 1110

Account 1 1100

Transaction 1 0010

Customer 2 1100

Account 2 1110

Transaction 2 0100

Customer 3 1000

Account 3 0001

Transaction 3 1000

b. Inner Algorithm Representation

Query Origination Copy Semi- Join Join
Node Id. join Order Node

Rl.1 HQ 202 0 1 1 0 1 2 0 0

Rl.1 Region 1 212 0 1 1 0 1 2 1 1

Rl.2 Region 2 121 0 1 1 0 1 2 2 2

Rl.3 Region 3 030 02 20 23 33

R2.1 HQ 00 00 0

R2.1 Region 1 1 1 00 1

R2.1 Region 2 2 1 01 2

R2.2 HQ 00 00 0

R2.2 Region 1 1 1 00 1

R2.2 Region 2 1 2 01 2

R2.3 HQ 03 00 0

R2.3 Region 3 03 01 3

R3.1 HQ 0

R3.1 Region 1 1

R3.2 HQ 0

R3.2 Region 2 2

R3.3 Region 3 3

Figure 3. An Example Solution Representation
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1[lhe fragment allocation is represented as sets of n bits, one set allocation strategies: No replication (NR) and Replication (R).
for each fragment, where n is the number ofnodes in the network. We consider three types of operation allocation strategies.
A bit has a value of 1 if the corresponding file fragment is Operation Allocation Strategy 1 (0A1) is similar to that of Ram
allocated to the corresponding node. It has a value of0 otherwise. and Narasimhan (1991,1994). It includes only copy identifica-
The solution illustrated in Figure 3.a (1110 1100 0010 ... 1000) tion. It ignores data reduction by semijoin and assumes that all
stores Customer 1 at Headquarters, Region 1, and Region 2; joins are performed at the result node in a predetermined order.
Account l at Headquarters and Region 1; Transaction 1 at Region Operation Allocation Strategy 2 (OA2) includes join node
2; etc. selection as well as copy identification. Like OAl, however, it

ignores reduction by semijoins and assumes that joins are
Copyidentification decisions are represented by a vector with a performed in a predetermined order. It is the model used in
position for each fragment referenced by a query. Each value in Cornell and Yu and in March and Rho. Finally, Operation
the vector is the node from which the fragment is accessed. Query Allocation Strategy 3 (OA31) is the model presented in this paper.
Rl.1 requires fragnints Customer 1, Account 1, and Transaction It integrates copy identification, join node selection, beneficial
1 (seeFtgure 2). The copy identification illustrated in Figure 3.b semijoin selection, and join ordering. This results in six different
for this query, originating at Headquarters (the vector (2 0 2) in distributed database design models (NR-OA 1, R-OAl, etc.; see
the Copy Id column), specifies the use of Customer 1 from Figure 4.). The distributed database design models of Ram and

Region 2, Account 1 from Headquarters, and Transaction l from Narasimhan (1990,1994), Cornell and Yu, and March and Rho
Region 2. correspond to R-OA 1, NR-OA2, and R-OA2, respectively.

Semijoin decisions are represented as sets of 2 bits, one set for We solved the example problem both to minimize total operating
eachjoin in the query. If asemijoin is to be performed, the value costs (Figure 5) and to minimize average response time (Figure
ofthebit corresponding to the reducer file is set to 1. otherwise 6), for each model described above (see Table 1) using the
it is 0. Query R.1 requires two joins (i.e., three fragments must genetic algorithm. Cost and response times are reported relative
be joined). The semijoin decision for this query, originating at to the base case NR-OA 1. The example problems were solved
Headquarters (the bit sets (01 10) in the Semijoin column of in under six hours on a Sun Sparc 20 workstation. The poolsize
Figure 3.b) specifies theuse of semijoins Account 1-+ Customer 1 and number of iteration for the outer algorithm were 50 and
and Account 1 -, Transaction 1. 1,000, respectively; and those for the outer algorithm were 300

and 5,000, respectively.
Join order decisions are represented as a list of joins, where the
sequence indicates the order in which joins are performed. The Ili Figure 5, columns represent the total operating cost of the best

join order decision for query Rl.1 originating at Headquarters (i.e., "Ininimum" total operating cost) solution found for each

(thelist (1 2) in the Join Order Column of Figure 3.b), specifies model. Dotted lines represent the average response time. In

that thejoin betwwn Customer 1 and Account 1 (i.e., the first join
Figure 6, columns and dotted lines represent the minimum

inthequery) isperformedbeforethejoin with Transaction 1 (the
average response tilne and total operating cost, respectively.

second join in the query). As shown in Figure 5, replication reduced the minimum operating
cost significantly across different operation allocation strategies.

Join node decisions are represented by a vector with a position However, its effect becomes smaller as the operation allocation
for each join in the query. Each value in the vector is the node strategy becoines more comprehensive. Join node selection
at whichthejoinisperformed. Thejoin nodedecision forquery (OA2) reduced the cost significantly when replication was not
Rl.1 originating atHeadquarters (i.e., the vector (0 0) in the Join allowed. However, it did not when replication was allowed. This
Node column of Figure 3.b), spccifies that both joins are is not unreasonable since the problem was retrieval intensive.
performed at Headquarters. In a retrieval intensive problem, it is likely that nodes become

self-contained (i.e., each node contains all the data necessary to

5. COMPARISON OF MODELS meet its retrieval requests, therefore no communication is
required). When all or most of the nodes become self-contained,

In this section, we compare our model with prior models in terms join node selection is not likely to have significant effects on the
minimum cost. Semijoins and join order (OA3) reduced theof total operating cost and average response time and demonstrate minimum operating cost significantly. Further analysis of the

that data replication, join node selection, and data reduction by solutions revealed that the effect was mainly due to semijoins.
semijoin can have significant effects on both the operating cost It is not surprising since two-join queries were the most complex
and response time of a distributed database system. query type in the proble111. As expected, the average response

time was reduced as the minimum total operating cost was
In order to s*tematically compare our model with prior models, reduced except for OA3. A 10% reduction in the minimum total
we classifydistributed database design models based on their data operating cost was achieved at a slight increase in the average
and operation allocation strategies. We consider two types of data response time. -
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Operation Allocation Data Allocation Strategy
Strategy

Replication (R)No Replication (NR)

Copy Identification NR-0A1 R-0A1
(0A1) (B ase Case) (Rain and Narasimhan 1994)

+Join Node Selection NR-OA2 R-OA2
(OA2) (Cornell and Yu 1989) (March and Rho 1995

+Beneficial Semijoin & NR-OA3 R-OA3
Join Order (OA3)

Figure 4. Types of Distributed Database Design Models

Table 1. Minimum Cost by Data and Operation Allocation Strategies

Operation Allocation Strategy
Data Allocation

Objective Strategy 0Al OA2 OA3

No Replication 59499.5 46095.6 29533.5
(18.788) (17.854) (7.197)Min Total Operating Cost

(Average Response Time) Replication 40882.0 40771.8 26597.8
(14.843) (14.760) (7.354)

No Replication 17.878 14.940 7.201
(60941.4) (48128.7) (29832.8)Min Average Response Time

CTotal Operating Cost) Replication 14.525 13.889 6.851
(43156.1) (44159.2) (27609.0)

As shown in Figure 6, data and operation allocation strategies in Figure 7, minimizing total operating costs resulted in a
have similar effects on the minimum average response time. significant increase in the minimum average response time for
Replication reduced the minimum response time across different OA2. Again, semijoins and join order (OA3) reduced both the
operation allocation strategies. However, the effect is not as operating costs and response time significantly.
significant as on the minimum operating cost Join node selection
(OA2) reduced the response time. Unlike the minimum operating Although limited in scope, the results demonstrate that replica-
cost criteria, join node selection slightly reduced the response tion, join node selection, and data reduction by semijoin can have
time when replication was allowed. Semijoins and join order significant impact on the operating cost and response time of a
(OA3) reduced the minimum response time significantly. Often distributed database system. The results also suggests that there
the total operating costs were reduced as the minimum average can be trade-offs between total operating costs and average
response time was reduced. This is not alwa>% the case, however, response time.
as illustrated in the solution for OA2 with replication where a
reduction in the minimum average response time was accompa- 6. SUMMARY AND FUTURE RESEARCH
nied by a slight increase in operating cost (due primarily to an
increase in storage costs). We developed a comprehensive distributed database design

model that treats data allocation and operating strategies in an
An update intensive variation of the example problem was also integrated manner. Our model includes data replication, a
solved. These results are presented in Figures 7 and 8. As concurrency control mechanism, data reduction by semijoin, join
expected, replication was not as effective (since it can signifi- node selection, and join ordering, aspects of distributed database
cantly increase update costs and response time). As illustrated design that are typically treated in isolation in prior work. We
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Appendix 1. Total Operating Cost

COM(k,m) = XI H(k,m,t,p) c 
t p.t

where c,p is the communication cost per character from node t to p.

For message steps of retrievals,
H(k.m,t,p) = LM if f = node(k) and p = node(a(k,m»
H(k,m,Lp) = 0 otherwise

where L  is the size of a message, node(k) is the origination node of query k, node(i) is the node at which file fragment i is
located.

For join steps,
H(k,m,t,p) = L«k,m) + Lb(Un) if t = node(a(k,m)) = node(b(k,m)) and p = node(k,m)
H(k,m,Lp) = Le.m) if t = node(a(k,m)) and t # node(b(k,m)) and p = node(k, m)
H(k,m,Lp) = LAm) if t # node(a(k,m)) and t = node(b(k,m)) and p = node(k, m)
H(k,m,t,p) = 0 otherwise.

where Li is the size of file fragment i (in characters), a(k,m) and b(k,In) are the file fragment referenced by step m of query
k. and node(k,m) is the node at which step m of query k is processed.

For a final step,
H(k,m,t,p)=L«un) if t =node(a(k,m)) and p = node(k)
H(kin,Lp) = 0 otherwise.

For send-message steps of updates,
H(k,m,t,p) = L  if t = node(k) and copy(a(k,m), p) = 1
H(k,In,Lp)= 0 otherwise

where copy(i,0 is 1 if fragment I is stored at node 4 and 0 otherwise.

For receive-message steps of updates
H(k,m,t,p) = LM if copy(a(k,m), 0 = 1 and p= node(k)

H(k,m,t,p)= 0 otherwise.

IO(k, m) =   0(k,m,t) 4

where dt is the cost per disk VO at node t.

For selection and projection steps,
O(k,In,0 = Dkint if t = node(a(k,m))
O(k,m,0 = 0 otherwise

where Dkmt is the number of disk I/Os required to process step m of query kat node t.

For join steps,
O(k,In,0 = F*B)t if t # node(k, m) and t = node(a(k,m)) and t# node(b(k,m»

O(k,In,t) =Fb(k,m)£ if t # node(k, m) and t # node(a(k,m)) and t = node(b(k,m))
O(k,In,0 = F#*#+ Fkk,n)t if t # node(k, m) and t = node(a(k,m)) and t = node(b(k,m))
O(k,m,0 = Du if t = node(k,m) = node(a(k,m)) = node(b(k,m))

0(k,m,t) = Dkmt + Ea(k,m), if t = node(k,m) = node(b(k,m)) and i # node(a(k,m))

0(k,m,t) = Dimt + EKk#t)! if t = node(k, m) = node(a(k, In)) and t # node(b(k,m))
O(k,m,0 = Dkmt + Ea<k,n), + Eb(k,m)+ if t = node(k,m) and t # node(a(k,m)) and t # node(b(k,m))
O(k,m,0 =0 otherwise
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where F«km) is the number of additional disk accesses needed at node t in order to send a(k,m) from node t to another node
after having retrieved it and Ea(k,m)t is the number of disk access required to receive and store a(k,m) at node t (typically a
file write and the creation of needed indexes).

For final steps,
0(k,m,t) = Ea(k,m,t if t # node(a(k,m)) and t = node(k)
O(k,In,0 =Faa,m> if t = node(a(k,m)) and t # node(k)
0(k,m,0 = 0 otherwise.

For update requests,
0(k,m,0 =Dknm if copy(a(k,m), 0= 1
O(k,m,0 = 0 otherwise

CPU(k, m) =   U(k,m,0 Pt

where pt is the CPU processing cost per unit.

For message steps,
U(k,In,0 = St if t=node(k) and t # node(a(k,m))
U(k,m,0 = Rt if t # node(k) and t = node(a(k,m))
U(k,In,0 = 0

where St and Rt are the expected CPU units required to send and receive a message.

For selection and projection steps,
U(k,m,0 =Wbnt if t = nodefa(k,m))
U(k,m,0 = 0 otherwise

where Wkmt is the number of CPU units required to process step m of query k at node t

For jom steps,
U(k,m,0 = F'8(k#n)t if t # node(k, m) and t = node(a(k,m)) and t # node(b(k,m))
U(k,m,t) =F'b(}Un)t if t # node(k, m) and t # node(a(k,m)) and t = node(b(k,m))
U(k,m,t) = F'a(k,m, + F'b(km)t if t # node(k, m) and t = node(a(k,m)) and t = node(b(k,m))
U(k,m,0 = Wiwt if t = node(k, m) = node(a(k,m)) = node(b(k,m))
UGg,In,t) = Wkmt + E'aot#)1 if t = node(k, m) = node(b(k,m)) and t # node(a(k,m))
U(k,m,0 = Wkmt + E'b(k,n)t if t = node(k, m) = node(a(k,m)) and t # node(b(k,m))
U(k,m,t) = Wbt + E'a(kAn)t + E'Kk#01 if t = node(k, m) and t # node(a(k,m)) and t # node(b(k,m))
U(k,In,0 =0 otherwise

where F«k.m)t and E'41,m)t are the number of CPU operations required to send and receive a(k,m) from and to node L
respectively.

For final steps,
U(k,In,t) = E'a(k,m)t if t # node(a k,m)) and t = node(k)
U(k,m,t) = F'a(kin)t if t = node(a(k,m)) and t # node(k)
U(k,m,0 = 0 otherwise.

For send-message steps of updates,

U(k,m.0 - 62 copy(a(k,m), p) St if t = node(k)
pIt

U(k,m,0 - Rt if t # node(k) and copy(a(k,m), t) = 1
U(k,In,0 - 0 otherwise
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For receive-message steps of updates,
U(k,m,t) =   copy(a(k m), p) Rt if t = node(k)

p.t

if t # node(k) and copy(a(k,m), t) = 1
U(k,rn,0 = 0 otherwise

For update steps,
U(k,m,0 =Wbnt if copy(a(k,m), 0=1
Ucin,0 =0 otherwise

STO(0 = St I cop,0,0 Li

where st be the unit storage cost per unit time at node t.

Appendix 2. Average Response Time

  W(t,p)TL(t,p)N(k,m,t,p)   H(k,m,t.p) |
RcoM(k)=

   l(uut,p)1 - Uut.pm.(t,p) Uut,p) J
where UL(Lp) is the capacity of the communication link from node t to node p (bytes per unit time), TL(Lp) =

 f(k)IH(k,m,t,p), W(Lp)= -
TL(t,p) , and N(k,m,Lp) is 1 if H(k,m,t,p) > 0 and it is 0 otherwise.

k m 2,f(k)IN(k.m,t,p)
k m

1

RD(k) = I :0(k,m,0 UIO(t) -TIO(t)

where UK)(0 is the disk UO capacity at,node t (number of disk I/O'sper unittime) and TIO(0 -   f(k) 0(k,m,t) is the
k m

total number of disk VO's at node L

1

Rckag) = I UCk,m,0 UCPU(t)-TCPU(t)

where UCPU(0 is the CPU capacity at node t (number of instructions per unit time) and TCPU(0 =   f(k) 0(k,m,t) is
km

the total number instructions at node t.
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Appendix 3. A Nested Genetic Algorithm for Distributed Database Design

Outer Genetic Algorithm:

1. Generate initial pool of solutions:
1.a. Randomly generate a feasible data allocation (to be feasible, each file (fragment) must be allocated to at least one node),
1.b. Use the (inner) operation allocation genetic algorithm (see below) to allocate operations for this data allocation, thus producing

a complete solution for this data allocation,
1.c. Evaluate the cost of this solution,
1.d. Repeat until the initial solution pool is generated.

2. Iterate through successive generations:
2.a. Probabilistically select two parent solutions from the solution pool,
2.b. Produce a new data allocation (child) by applying crossover or mutation,
2.c. Use the (inner) operation allocation genetic algorithm (see below) to allocate operations for this data allocation (child), thus

producing a complete solution for this data allocation,
2.d. Evaluate the cost of this solution,
2.e. If the new solution is better than the worst solution in the solution pool, add it to the pool and remove the worst solution,
2.f. Repeat for N generations, where N is the maximum number of iterations.

Inner Genetic Algorithm:

3. Generate initial pool of operation allocations:
3.a. Randomlygenerate a feasible operation allocation for th9 given data allocation (to be feasible all retrieval operations must

be assigned to nodes at which the required data is stored),
3.b. Evaluate the cost of this solution,
3.c. Repeat until the initial operation allocation pool is generated.

4. Iterate through successive generations:
4.a. Probabilistically select two parent solutions from the operation allocation pool,
4.b. Produce a new operation allocation (child) by applying crossover or mutation,
4.c. Evaluate the cost of this solution,
4.d. If the new solution is better than the worst in the operation allocation pool, add it and remove the worst,
4.e. Repeat for M generations, where M is a maximum number of iterations.
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