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Abstract: With the collecting and publishing data about consumers purchasing and browsing products at the platform of 

online, this data prodives new ways to better understand the consumers search behavior before purchase. How to base on 

consumers online search behavior and simutaneously consider offline experience costs is worth studying. An optimal method 

based on the utility of the attribute of product is proposed. The proposed method follows steps below. Firstly, based on the 

multi-attribute utility theory, the overall utility of product is calculated by using ratings data. Secondly, the overall utility is 

combined into the original sequential search model to find the optimal selection strategy. Thirdly, the candidate product sets 

arranged in descending order of the reservation utilities are finally obtained. Finally, taking the online ratings data provided 

by a comprehensive automobile website as an example, lastly the proposed method is simulated and compared with other 

method. The result shows that the proposed method is feasible and effective. 

 

Keywords: sequential search model, multi-attribute utility theory, product selection strategy, earch cost 

 

1. INTRODUCTION 

With the rapid development of the Internet, most online platforms provide a rating function (comment, 

word of mouth) for product or services. Such as JD, Taobao, Douban, Automobile Home and so on. Many 

scholars are studying how to use online rating or evaluation information to provide quality services to 

consumers. Some scholars have found that online rating information can effectively improve customer 

repurchase rate and loyalty 
[1-2]

, using rating information to shorten the brand relevance of consumers’ 

purchasing decision-making process 
[3]

. Research shows that taking reviews as a source of decision information 

can reduce the risk associated with purchasing decisions. Studies have shown that online rating information or 

comment information plays an important role in purchasing decisions 
[4-5]

. Therefore, it is a worthwhile research 

to support consumers to make product selection decisions based on online ratings. 

Product selection process is an important part of the purchase decision making and it has a direct impact on 

the purchase results. This process can be seen as an optimal sequential search with different expectations and 

uncertainties. Consumers decide to stop searching, which may be attributed to the inefficiencies or high search 

costs of next search 
[6-7]

. 

Search cost is the time and effort that consumers spend on searching for goods. Search theory believes that 

lower search costs leading to an increase in search behaviors. Assuming the search cost is zero, the rational 
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consumer will search for all the options and choose the one with the most greater real utility. In contrast, when 

the search cost is infinite, then the consumer will not search for any of the alternatives.  

For example, a consumer plans to buy a car. In general, he or she will obtain the relevant information 

through the professional online car information platform, and choose N models of cars as an alternative. The 

costs of this initial information filtering is generally considered to be relatively low, even near to zero. However, 

making purchase decisions in N alternatives, consumers also need to conduct more in-depth search surveys on 

these alternative vehicles. Because it is only to test-drive to understand the true effect . In theory, the car that 

was test-drove, then consumers can choose the one that suits them best according to their preferences. However, 

in the actual situation, test-driving all alternative set are not the best strategy due to various costs (such as traffic 

expenses, time and so on). 

Therefore, consumers usually develop an action plan: First, all the alternative cars based on the information 

they know are sorted (depending on the strategy, such as random sorting, sort by expected utility). Then, test 

drive the first of the alternative cars. Every time customer test-drive a car, there is a certain cost to pay. If 

customer think that this car is more suitable than all the remaining vehicles, this one can be chose. Otherwise, 

continue to spend a certain amount of time to test-drive next car. At this time, the consumer can compare the 

testing-drive with the test-drove, and can choose the one with the highest utility or continue to test-drive. This 

cycle finish until the purchase decision is made. Then, assuming that the consumer is completely rational and 

able to evaluate the cost of searching for each commodity, whether there is an optimal test drive strategy to 

maximize the utility of the consumer is a problem worth studying. 

 

2. REVIEW OF THE LITERATURE 

when consumes search for product or service information online, a similar problem arises: which strategy 

can maximize the utility during sequential search process. Researchers have studied the methods of product 

ranking based on online rating data 
[8-9]

. Li et al (2014) researched the problem of ordering product based on 

online rating information, and proposed an online product ranking method based on social network analysis. The 

method solves the problem of inconsistent online rating information rating group. Liu et al (2017) used 

sentiment analysis and intuitionistic fuzzy sets to sort the items after processing the online comment information. 

Most of the existing research do not study how to select product based on online rating information from the 

perspective of behavioral economics and rarely considering consumers’ search cost while searching for product 

information. According to economic theory, search cost is a key factor in determining the scope of consumer 

search activities. Therefore, when the expected marginal profit of the search is lower than the marginal cost, the 

search should be stopped 
[10-12]

. Most research focused on identifying search costs and models 
[13]

 . Developing a 

structured approach that uses integrated data to estimate the distribution of consumer search costs 
[14]

 . Using 

comprehensive data and estimated a search model (search under a fixed alternative) in the automotive market 

environment 
[15]

 . Using behavioral data viewed and purchased by users to analyze which classic search model is 

more in line with observed data patterns 
[16]

 . Model based on user clickstream data, including product attribute 

information and user purchase information. However, few studies have used rating information to model user 

search behavior. This paper present a novel method to model the decision-making process of consumer product 

selection based on rating information, and provide decision-making basis for consumers to choose product.  

 

3. MODEL BUILDING AND DEVELOPMEN 

 

3.1 Utility and search costs 

A multi-attribute utility function based on utility theory, which is a model that can fully describe 
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consumers’ purchasing decisions based on multiple attributes 
[17-18]

. 

Assuming that each item has l attributes, and the score of j item attribute k is jkx , then item j can be 

represented as a vector ),,,( 21 jljj xxxJ  composed of l pieces of jkx . 

Suppose
jkx has v discretized attribute rating values r, where by the rating set ),,( 21 kvkk rrrR   

constituting attribute value k is discrete. Most of the the product rating data is discrete. For a small number of 

continuous data, it can be graded to facilitate discretization.  

According to the multi-attribute utility theory, the utility function can be expressed as follows: 

 

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k
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   （1） 

iju is the utility of product j to user i, and ikw is the preference weight of user i's sensitivity and satisfies to 

product attributes.  
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)( jkijk xu  refers to the utility of product j’s attribute K to user i, and the calculation formula is as follows: 

 

jkijkijkjkijk xbaxu )(
         （3） 

This paper specifies a linear utility function to represent consumer’s preference for an attribute to improve 

computational efficiency , but it is not affecting the ranking results. In this paper, the rating data of each attribute 

is within the interval [1, 5]. So it can be specified that the rating who’s value is 1 corresponds to the lowest 

utility 1, and the the rating who’s value is 5 corresponds to the highest utility 5. Therefore, the scale parameters 

in equation (4)can be determined, namely ɑijk=0 and bijk=1. 

Consumers have to pay a certain search cost for each additional commodity. Search cost can be interpreted 

as the time and effort spent on searching. Consumers with stronger time constraints have higher search cost 

levels
[19]

. In the context of buying a car, search cost is interpreted as the time cost for identifying and evaluating 

a candidate. Consumers can evaluate search costs based on their distance from the 4S store and their income 

level. 

 

3.2 Probability distribution of utility 

We assume the distribution of utility of each attribute is truncated normal distribution. It’s probability 

density function as follow: 
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Where    is standard normal distribution.  Φ  is cumulative distribution function of standard normal 

distribution. From formula (6), the cumulative density distribution of the utility can be calculated: 
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ikw is the preference of user i for the attribute k of product j, )( ijuF is the cumulative density distribution of 

the product j. 
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3.3 Utility-based sequential search model 

In the sequential search process, the consumer decides to stop or continue searching after searching for one 

commodity. The optimal Sequential Search theory holds that the search is stopped when the marginal revenue of 

the continued search is less than the marginal cost. The utility value of product j for consumer i is recorded as 

iju . At any stage of the search process, 


iu  is defined as the highest value of the product searched so far. When 

searching for product j, the consumer’s expected marginal benefit is: 

 

  ijij
u

iiji duufuuu 

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
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（8）

 

Where f(*) is the probability distribution of iju . The marginal benefit is the expected utility value of 

product j. Assuming that the marginal benefit is higher than 


iu , the probability that iju exceeds 


iu  is greatly 

increased. 

Please note that the revenue from the search only depends on the ranking of utility values above 


iu . 

Utility values below 


iu  are at the left end of the utility distribution and can be rearranged arbitrarily without 

affecting the search or selection. 

Given the current best selection, the consumer’s goal is to maximize the difference between the expected 

utility value and the search cost incurred after searching a set of products. At the individual level, these products 

include the following two characteristics: the product-specific search cost cij, and the product-specific 

uncertainty f(*). It means that, if there is at least one product j, the premise of the consumer continuing to search 

is as follows: 

 
  iijij uc

         
（9） 

That is, the expected marginal benefit of continuing to search is greater than the marginal cost ijc . 

The optimal Sequential Search strategy can be normalized to the following steps. First, divide the product 

collection into ii SS U
, i

S contains all the products that have been searched. iS contains all unsearched 

products. Suppose 


iu is the maximum utility value of all products in set iS ,  
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ijû is the true value of iju . For convenience, the product with a utility value of 


iu  is called a candidate. 

At any stage of the search process, the state of the system is given by ),( *

ii uS . Defining the function 

value ),( *

ii uSH is the expected value (calculated discount) that follows the optimal search strategy as it moves 

forward from the current state. This function value must satisfy the following Bellman equation 
[12]： 

         























  




 ij

u

u
ijiiijiii

Sj
iii cudFujSHudFujSHuuSH

i
*

**** ,,max,max),( 
  

（11）

 

where )(F  is the cumulative density function of iju (CDF), )(E is the expected utility of iju . 

Equation (12) shows that starting from state ),( 

ii uS , the consumer can choose to terminate the search 

and purchase the candidate for


iu , or choose to search for any iSj . When the latter is chosen, the consumer 

attempts to maximize the expected value of product j, and that is: 
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Because the single session involved in the search is performed in a short period of time (within a few days), 
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the discount rate 
i  

can be set to 1. 

For now, some important assumptions can be made for the search model. First, the model is a full 

information model in which consumers are assumed to have a complete understanding of the product and its 

attribute values. This allows the consumer to form iju  for all products prior to the search and use them in the 

sequential search process to calculate the reservation utility value. Second, consumers can estimate their own 

search cost ijc based on the information they have. 

 

3.4 Optimal strategy 

The solution to the above dynamic programming is to continue searching until a utility value 


iu  greater 

than a certain limit is found, which in turn depends on how many products remain in the unsearched collection. 

This limit depends on the size of the reservation utility value. 

Each consumer i has a reservation utility zij for each product j. To define this concept, assume that the 

consumer has found that the reservation utility value of an product is the same whether she continues to search 

or stop searching. In other words, the reservation utility value zij satisfies the following equation: 
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z
ijijijijij udFzuzc
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（14） 

Therefore, the formula for the reservation utility value is: 

 
)(1

ijijij cz 
            （15） 

The optimal search strategy, namely the problem of solving the consumer maximization equation (5) (for 

example Weitzman(1979)) has three components: (i) Search rule: it determines the order in which the sequences 

are searched; (ii) Stop rule: it determines the length of the search sequence; (ⅲ) Selection rule. 

(i) Search rule: Calculate all reservation utility values zij and sort them in descending order. If you're 

searching for an commodity, you should search for products that have the highest utility value zij in the products 

that have not yet been searched. 

(ii) Stop rule: If the maximum utility value


iu obtained so far is greater than the biggest reservation utility 

value among the commodity that have not been searched,then stopped the search. 

(iii) Selection rule: Once the search stops, select the candidate commodity 

iu
 

in 
iS . 

It is assumed that the above-mentioned optimal selection rule and stopping rule are derived based on the 

knowledge obtained by searching for one product without affecting the cognition of other products, that is, the 

process of assuming that the consumer does not exist in the search process. The current literature on consumer 

behavior suggests that this is a reasonable assumption for consumers in the search process 
[20]

. 

 

4. EXAMPLES AND SIMULATION 

Take car buying as an example to illustrate the product selection strategy proposed in this paper. 

Suppose a consumer wants to buy a compact SUV. There are four alternative models in the alternative (A, 

B, C , D) . The favorite five attributes are: space, fuel consumption, power, control, cost performance.And 

the attribute preference is given as w=(0.4,0.2,0.2,0.1,0.1), Assuming that the cost of each test-drive is c (in 

combination with the time it takes to arrives the  each 4S store, consumer can estimate his own search 

cost c). 

A crawler program is designed by python and is used to download the word-of-mouth score data for 

the alternative models from the Automobile Home. For the score data of the five attributes, it can be 

determined that the number of consumers participating in the online evaluation of the four alternative 

models is 4896, 5066, 4977, 3987. Then, according to the equations (1) and (4), the utility probability 

distribution f(u) of each candidate vehicle model can be calculated. 
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After f(u) is obtained, the reservation utility of the alternative product can be calculated according to 

formula (12). The calculation result is shown in Table 1. The formula for calculating the expected net utility is as 

follows: 

  ijijij cuENetU                                  （16） 

Table 1.  Expected utility of each alternative vehicle and reservation utility (considering C) 

  A B C D 

(C=0) 
Reservation utility 5 5 5 5 

Expected net utility 4.772 4.447 4.424 4.139 

(C=0.1) 
Reservation utility 4.744 4.674 4.673 4.453 

Expected net utility 4.672 4.347 4.324 4.039 

(C=0.5) 
Reservation utility 4.286 4.029 4.025 3.758 

Expected net utility 4.273 3.947 3.924 3.639 

(C=1) 
Reservation utility 3.775 3.465 3.451 3.17 

Expected net utility 3.744 3.447 3.424 3.139 

Note: The order of reservation utility and expected utility is exactly the same because the distribution of rating 

data for each vehicle is similar. 

The selection process for the above four vehicles is now simulated according to different selection 

strategies. In this paper, we use R to simulate the selection process. The first round of simulation simulates the 

selection process 2000 times, then each round of simulation adds 2000 times in turn. There are 200 rounds of 

simulations. So ,the last round of simulations is 200,000 times. We use the average net utility in each round of 

simulation to evaluate the actual effects of the two strategies, the calculation formula is as follows: 
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Where the number of simulations per round is n,


tu is the final choice obtained from the t-th simulation, 

The average net utility of the two strategies at different search costs can be seen in Figure 1 . 

Figure 1.  Search cost, average net utility difference between the two strategies 

 

It can be seen from the simulation results that as the number of simulations increases, the average net utility 

converges to a certain value. At the same time, the average net utility of  presented method is higher than the 

expected net utility method, and the lower the search cost is, the more obvious the benefit of proposed strategy 

is. As can be seen from Figure 1, as the search cost increases, the average net utility difference will become 

smaller and smaller. Based on the data of this example, the cost c starts from 0.2, and the average net utility 

difference gradually approaches zero. That is, when the cost-utility ratio C/U is greater than 4%, the effect of 

using the two strategies is the same, because the search cost at this time has begun to approach the marginal 

cost  

th
e 

av
erag

e 
n

et 
u

tility
 

d
ifferen

ce  



The Eighteenth Wuhan International Conference on E-Information Systems and Operations Management    501 

benefit, so the consumer loses the willingness to search for the next commodity. This also leads to the same 

depth of search for both methods, and the resulting utility is indiscriminate (because the actual utility of the 

search depends on the utility distribution of products). According to that, the merchant can minimize   

consumer’s search cost to enhance the attraction to the consumer and increase the probability of the consumer 

searching for the product. Using the product selection strategy proposed in this paper, we can increase the 

maximum consumer surplus. 

 

5. CONCLUSION 

This paper examines the issue of product selection considering consumer’s search costs and their 

preferences. Since consumers need to spend time and effort to evaluate and purchase goods, rational consumers 

seeking to maximize utility need an optimal selection strategy. We use discretized online attribute rating data to 

build a utility-based optimal sequential search model. From a new perspective, the problem of product selection 

in reality is solved, and the strategy calculation process is simple and easy to program. 

The results show that the sequential search strategy in descending order of reservation utility is the best 

choice for consumers. In particular, reservation utility is primarily related to the distribution of higher utility in 

the utility distribution. That is to say, when consumers choose goods, they should give preference to 

low-probability and high-return products, because it is easier to reduce the number of searches and stop the 

search as soon as possible. 

There are still some aspects that can be studied in depth in the future. Firstly, consumers in reality are often 

not completely rational. What kind of characteristics do irrational consumers have in the process of product 

selection? This is a problem worthy of study. Secondly, in this model, the proposed optimal search model does 

not have the learning ability, but in reality, consumers have learned and updated the distribution of product 

information in real time during the search process. So in the future research, the product selection strategy 

considering consumer's learning ability is also a valuable research direction. 
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