
T ransactions on

R R eplication esearch

Conceptual Replication DOI: 10.17705/1atrr.00057 ISSN 2473-3458

Volume 6 Paper 14 pp. 1 – 21 2020

Coordinating Interdependencies in an Open Source
Software Project: A Replication of Lindberg, et al.

Randy V. Bradley

Department of Supply Chain Management, The University of Tennessee - Knoxville

rbradley@utk.edu

Audris Mockus

Department of Electrical Engineering and Computer
Science, The University of Tennessee – Knoxville

audris@utk.edu

Yuxing Ma

Department of Electrical Engineering and Computer
Science, The University of Tennessee – Knoxville

yma28@vols.utk.edu

Russell Zaretzki

Department of Business Analytics and Statistics, The
University of Tennessee – Knoxville

rzaretzk@utk.edu

Bogdan C. Bichescu

Department of Business Analytics and Statistics, The
University of Tennessee – Knoxville

bbichescu@utk.edu

Abstract:

The current study is a full replication (conceptual and empirical) of “Coordinating Interdependencies in Online
Communities: A Study of an Open Source Software Project” Lindberg et al (2016), which addresses the question of how
OSS communities address unresolved interdependencies. Following the original study, we analyze project development
data, archived in the GitHub repository, for the OSS project Rubinius. The analysis explores relationships among
development and developer interdependencies as well as activity and order variation. Further, we extend the original
study by examining the core relationships in the original study and investigating the external generalizability of the
results by replicating the analysis on three analogous OSS projects: JRuby, mruby, and RubyMotion. These offer an
opportunity to evaluate the generalizability of the original study to projects of different sizes and amount of activity, yet
similar otherwise to the project in the original study. Another extension is the use of an additional control variable, length
of activity sequence, which proves to have substantial implications of the study’s focal relationships. We find that three
out of the four projects we analyze support the findings of the original study as it pertains to four relationships in the
original study: order variation and developer interdependencies, activity variation and developer interdependencies,
order variation and development interdependencies, and development and developer interdependencies. We also
discuss the implications of our findings, especially in cases where the replication results differ from those in the original
study and offer suggestions for future research that can help advance this stream of research.

Keywords: Open Source Software, Interdependencies, Coordination

The manuscript was received 01/14/2019 and was with the authors 11 months for 3 revisions.

http://aisel.aisnet.org/cais/

2 Coordinating Interdependencies in an Open Source Software Project: A Replication of Lindberg, et al.

Volume 6 Paper 14

1 Introduction

The question of how decentralized open source software (OSS) development communities manage
technical (i.e. code that depends on components developed elsewhere) and social (i.e. where developer
decisions affect others) interdependencies is both interesting and critical. As the Internet, e-commerce, and
even consumer devices rely on the critical software developed by open source communities (Eghbal, 2016),
the effective coordination of these interdependencies is truly an issue of societal importance. Failure can
lead to quality problems (Cataldo, Mockus, Roberts, & Herbsleb, 2009) and delays (Herbsleb & Mockus,
2003). Avoiding these interdependency-induced issues may be accomplished through alignment of
development activities with the dependencies (Cataldo, Herbsleb, & Carley, 2008).

In their original study, “Coordinating Interdependencies in Online Communities: A Study of an Open Source
Software Project,” (Lindberg et al., 2016) investigate how OSS communities address unresolved
interdependencies both theoretically and through an empirical assessment of project development data
archived in the GitHub repository. Through an exploratory case study of an online community around the
OSS project Rubinius, they offer insights into how online communities manage both unresolved developer
and development interdependencies. They identify activity variation and order variation as two key outcome
measures associated with the aforementioned interdependencies.

The original study provides meaningful contributions for developers and researchers by proffering a theory
for how developer routines and forms of variation serve as emergent coordination mechanisms in an OSS
community. The findings indicate a significant difference between pull requests with unresolved
development interdependencies and pull requests without such dependencies. More specifically, Lindberg
et al. (2016) report that the relationship between development interdependencies and activity (task) variation
is wedge shaped. That is to say their analysis reveals that activity variation increases as unresolved
development interdependencies increase. However, low degrees of development interdependencies are
associated with a large range of activity variation levels, while high degrees of development
interdependencies are rarely observed only with high degrees of activity variation. Alternatively, there is no
discernable relationship between development interdependencies and order variation (see Figure L11). In
contrast, developer interdependencies has a positive linear association with activity variation. In essence,
the original study suggests that as more developers become involved with a particular pull request there is
an increase in activity variation. With regards to order variation, the original study reports a wedge-shaped
relationship between developer interdependencies and order variation, such that a large range of order
variation is observed with low degrees of unresolved developer interdependencies, whereas little range of
order variation is observed as developer interdependencies increase (see Figure L3). Lastly, the original
study's findings suggest that as development interdependencies increase so does the degree of developer
interdependencies (see Figure L2).

Despite the utility of the original study's process-based grounded theory approach to elucidating the
relationships between both unresolved developer and development interdependencies and developer
activities (i.e. activity variation and order variation), we believe that replication of empirical results through
independent collection of the original sample from the same data archives, as well as additional open source
ecosystems, is also of considerable worth to the research community. While reproducibility, vis-a-vis
collection of a new sample in an appropriate sampling frame, is clearly critical to a healthy scientific
ecosystem, Lindberg et al. (2016) is representative of many of the potential issues and challenges
associated with the use of archival, observational data sources for social science. The novelty and relevance
of the topic addressed by Lindberg et al. (2016) is likely to spawn a substantial amount of additional work in
this domain. However, given the nuances and difficulties in executing such observational studies that rely
on the extraction of archival data from OSS online communities or repositories, there is the need to ensure
reproducibility (Nosek et al., 2015; Open Science Collaboration, 2015) of such original work deriving from
complex big data, for example by sharing the data and source code and other approaches employed by
open science (Boulton et al., 2012). In addition to adding scientific validity, the replication of observational
big data studies increases assurances that (i) operationalizations of measures used in the original studies
accurately reflect underlying concepts and (ii) the modeled relationships do not omit relevant latent
variables.

1 The letter proceeding each table and figure indicates whether it is based on the original study (L) or the replication study (R) as it
pertains to the Rubinius project. Further, figures prefixed with JR, MR, and RM, refer to JRuby, mruby, and RubyMotion, respectively.

AIS Transactions on Replication Research 3

Volume 6 Paper 14 Paper 14

Lindberg et al. (2016) acknowledge that their contributions are limited by the scope of their inquiry and data.
Specifically, they (i) allude to the potential existence of other aspects of software development that they
could not observe that may influence coordination, and (ii) mention that their "measures are derived from
pull requests as they appear after a merge or reject decision has been made". These two limitations suggest
potentially unaccounted for latent variables and open the door for alternative operationalizations of the
study's key variables in future work. Therefore, this replication study is interested in testing whether or not
similar findings are identified after augmenting the original analysis with additional relevant variables and
alternative operationalizations of the variables found to be associated with developer or development
interdependencies.

To further assess the generalizability of the original study’s findings, we analyze the relationships on a set
of three additional projects that were selected based on similarities in functionality and contemporaneous
time horizons to the original project. In summary, we find moderately strong support for the original study’s
findings. However, given that our findings of support differ across relationships with respect to the additional
projects considered in the additional replications, we find less support for its generalizability in the context
of online communities.

Figure L1. Routine Variation and Development Interdependencies

4 Coordinating Interdependencies in an Open Source Software Project: A Replication of Lindberg, et al.

Volume 6 Paper 14

Figure L2. Relationship Between Development and Developer Interdependencies

Figure L3. Routine Variation and Developer Interdependencies

2 Methods

We perform a full replication of Lindberg et al. (2016), analyzing unresolved development and developer
interdependencies in relation to routine variation (i.e., activity and order variation). The types of replication
studies may vary, for example, (Gómez, Juristo, & Vegas, 2010) define dozens of names for different
replication types. To be specific, by full replication we mean that we perform a conceptual and empirical
replication. By conceptual replication we test the generalizability of the same ideas to different populations.
By empirical replication we seek to confirm the previous findings using a different set of specific methods
that test the same idea where we modify models and introduce additional control variables.

As a full replication, we examine the same variables used in the original study, but also augment the analysis
by including an additional variable not considered previously. We add length of activity sequence (i.e., the
number of activities in a pull request) to our analysis. Length of activity sequence is included because the
distribution of activity variation and order variation functionally depends on the number of activities in that
sequence and is necessary to distinguish the deterministic aspect of the relationship from the phenomena
of interest. We also investigate the same relationships (i.e. unresolved development and developer
interdependencies in relation to activity and order variation) that made up the quantitative analysis in the
original study.

AIS Transactions on Replication Research 5

Volume 6 Paper 14 Paper 14

Similar to the original study, we leverage data from GitHub (via the GitHub API) for the original OSS project,
Rubinius, and for three additional Ruby-language projects including JRuby, mruby, RubyMotion, that, like
Rubinius, are all compilers. The data on events, issues, issue comments, pull requests, pull request
comments, commits, and pull request files were obtained in September 2019. Except where noted in the
paper, we adhere to the data retrieval methods described in the original study. In instances where the
original study lacks sufficient detail regarding aspects of data collection and aggregation to replicate the
process, we follow the overall method of collecting archival data as outlined in the mining software
repositories (MSR) literature (see Mockus, Fielding, and Herbsleb (2002) for an example). In the remaining
instances, where there isn't agreed upon guidance in the MSR literature, we experiment with several
plausible approaches and select the one that produces results that most closely resembles the data set
described in the original study. For example, the original study states, “we collected this data over a 12-
month period (January 6, 2012, to January 6, 2013).” It is not clear, however, whether only issues created
during this time period are selected, or whether the data set also includes issues that overlap with this period
(e.g., issue created before January 6, 2012 but resolved after January 6, 2013, or issues created before
January 6, 2012 but resolved between January 6, 2012 and January 6, 2013). We ultimately settle on the
choice/approach that yields counts of pull requests and issues that are closest to the values in the original
study (see Table R1 for a comparison).

To test the generalizability of the findings in the original study, we further extend the replication study to
three other Ruby compiler projects (JRuby, mruby and RubyMotion). Among other things, this allows us to
see if the project size affects the relationships discussed in the original study. According to Table R1, JRuby
is about twice the size (as measured by the number of issues) of Rubinius and mruby, whereas RubyMotion
is approximately an order of magnitude smaller than all of the other projects.

All data for all projects are filtered from a single time period defined by the original study (January 2012 –
January 2013) and then the constructs of interest (activity and order variation) and interdependencies
(development and developer) are calculated. Finally, linear regression models are fit to estimate relations
between the five pairs of variables shown in Figures R1, R2, R3. JRuby is an exception with few activities
recorded during the interval used in the original study. We therefore shift the study period for JRuby to a
later date range (September 2014 – September 2015), during which activity is sufficiently intensive to obtain
all measures of interest.

2.1 Analytical Approach

The analysis in this study uses linear regression2 to test the significance of the relationships between the
response measures representing coordination routines (activity variation and order variation) and
explanatory variables (log (development interdependencies) and developer interdependencies). In the case
of order variation as a response, a separate simple linear regression is fit using both explanatory variables.
In the case of activity variation, two versions of this relationship are estimated and evaluated for both log
(development interdependencies) and developer interdependencies:

1. A simple linear regression of activity variation vs. both interdependencies,

2. a multiple linear regression of activity variation vs. each of the interdependencies with the length of
activity sequence; definition given above in the Methods section.

For each model, we report the coefficient, p-value, and adjusted R2 value of the model.

2.2 Assumptions and Methodological Differences

The slight differences observed in Table R1 in the numbers/counts of activities may be due to assumptions
made in the replication study or deviations in the methodological approach for collecting the data.
Additionally, we use the log transformation of development interdependencies to satisfy model assumptions.
A further reason for the numerical discrepancies could be due to the fact that the underlying data on GitHub
changes over time, (e.g., some issues may get resolved, others may become pull requests). Since we obtain
data from GitHub at a later date than the original study, it is possible that some issues may have a different
activity classification during our collection period as compared to the original study.

2 In the original study, beta coefficients are presented but the study does not explicitly state what methodology was used to obtain the
beta coefficients. However, we inferred that a linear regression analysis would be appropriate primarily because the nature of the
figures and variables suggest that a linear model was employed.

6 Coordinating Interdependencies in an Open Source Software Project: A Replication of Lindberg, et al.

Volume 6 Paper 14

Table R1. Comparison of issue and pull request counts used to identify criteria for inclusion

Quantity Rubinius(Original Study) Rubinius (Replication) JRuby mruby RubyMotion

Pull requests 1983 267 405 479 34

Issues 4884 356 960 215 1

Activities: Assigned 3 2 230 1 0

Activities: Closed 857 571 1030 678 23

Activities: Commented 1134 1120 3255 569 0

Activities: Mentioned 440 443 1358 179 22

Activities: Merged 369 191 315 387 19

Activities: Opened 268 261 405 479 34

Activities: Referenced 470 455 919 670 22

Activities: Reopened 17 14 62 12 0

Activities: Reviewed 146 182 500 3 10

2.2.1 Pull Requests and Issues

As in the original study, the basic analysis unit in the replication study is a pull request. Whereas the original
study defines issues as pull requests, GitHub refers to issues as a superset of pull requests (i.e., all pull
requests are issues, but not all issues are pull-requests). In the replication study, we, therefore, consider
issues with code attachments to be pull requests and issues without code attachments to be simply issues.

2.2.2 Activities

The original study uses the term activity, which is a term not native to GitHub. We assume that “activity”
corresponds to GitHub's “issue events”, because the types of issue events recognized on GitHub are nearly
the same as the types of activities in Table R1 of the original study. Based on this assumption, we extract
all events associated with an issue and treat them as synonymous to activities, and, thus count the number
of times each issue event type appears.

3 Results

3.1 Activity Variation and Development Interdependencies

The original study finds a significant relationship between development interdependencies (X) and activity
variation (Y) using a delta test5 but without assessing the slope of the relationship. However, using a more
standard regression approach, we do not confirm this finding through replication of the Rubinius study, nor
for the other three projects used in our replication. See Table R26 for comparisons of findings between the
original Rubinius project and the Rubinius replication project; in this case, neither the simple linear
regression model (activity variation vs. development interdependencies) nor the model that adds length of
activity sequence are significant. For each relationship, Tables R3,R4, and R5 contains comparative
findings from the original Rubinius project with methodological replications for the JRuby, mruby, and
RubyMotion projects, respectively (see Appendices B and BC for full regression results). While some
relationships show significance, the direction of significance is opposite to the original study as judged
through Figure L1, which suggests a lack of support. Both tables contain the beta coefficient, statistical

3 The original study refers to these as pull requests with code attached.
4 The original study refers to these as pull requests without code attached.
5 This finding uses a methodology called a delta test that is not replicated in our study in lieu of more standard regression methods.
The “delta” test proposed by (Bardsley, Jorgensen, Alpert, & Ben-Gai, 1999), is a statistical procedure to test for spatial homogeneity
(empty areas) in scatter plots. Bardsley et al. (1999) claim that this might be an appropriate way to evaluate regression type
relationships when the relationships (correlations) are weak. While the methodology does make sense in some cases, we find the
approach to be highly problematic in the context of our replication. Application of this method hinges on the fact that, when the data is
created, certain (x, y) pairs may be much rarer than others leading to few points in certain zones. For example, developer
interdependencies (x) is operationalized by simply counting the number of developers that work on a pull request. Naturally, large
values tend to be uncommon. It’s extremely rare to find a pull request that is worked on by more than 10 developers, irrespective of
activity or order variation values. In fact, we only found 2 out of 623. Therefore, the right half of the plot will tend to be relatively empty,
making it inevitable that the test would reject the hypothesis of random scatter. Of course, this is due to sampling bias and does not
mean that order variation increases with developer interdependencies. In general, sampling should be uniform across X when using
the delta test, which is not the case here, suggesting that the test is inappropriate in this replication study.

6 All replication model coefficients presented in this and subsequent tables are unstandardized, whereas it is plausible that the
coefficients in the original study are standardized. This might explain the differences in coefficient magnitudes across the two studies,
but in terms of statistical significance of variables, this doesn’t inhibit comparison across studies.

AIS Transactions on Replication Research 7

Volume 6 Paper 14 Paper 14

significance of the fitted coefficients of a linear regression on routine variations vs interdependencies, and
the adjusted R2. Each row in Tables R2-R5 represents a separate regression. We include two rows for each
activity variation related relationship: the first row shows the initial result after applying the simple linear
regression as in the original paper, while the second row shows the result after taking length of activity
sequence into consideration. Within each table, Coeff represents the coefficient of interest and Adj. R2 is
the adjusted R-squared statistic (which we report as a decimal (0-1), instead of a percentage (0-100)) for
each model we investigate. The column Result shows the estimated coefficient and whether or not it is
statistically significant. If the coefficient is not significant we affix the NS label, whereas we affix the NS*
label to a relationship that is significant but in the opposite direction of what the original study reports.
Further, results in bold indicate findings consistent with the original study. Although the adjusted R2 statistic
is not referenced in the original work, it is a standard tool in assessing the predictive strength of evidence
when linear regression analysis is used.

3.2 Order Variation and Development Interdependencies

Using the delta test, the original study finds no discernible relationship between development
interdependencies (X) and order variation (Y) and our findings based on linear regression are consistent
with that. We are not able to find significant relationships in the Rubinius project, nor in two of the other
replication projects. However, we are able to detect a significant relationship in the JRuby project, but the
coefficient has a sign opposite of that in the original study, also indicating a lack of support.

3.3 Activity Variation and Developer Interdependencies

The original study finds a positive and significant relationship between developer interdependencies (X) and
activity variation (Y). Consistent with the original study, we confirm that finding via replication of the Rubinius
in the simple linear regression model, while the model that adds the length of activity sequence control is
no longer significant. In the case of JRuby, mruby and RubyMotion, Tables R3-R5 show inconsistent results
across the projects. In no cases is the model augmented by length of activity sequence significant.
Conversely, we find a significant, but negative relationship in the mruby project while JRuby and RubyMotion
have significant positive associations when no control was included.

3.4 Order Variation and Developer Interdependencies

The original study finds a positive and significant relationship between developer interdependencies (X) and
order variation (Y). Our results confirm that finding via replication of the Rubinius, JRuby, and RubyMotion
projects. Conversely, we find a significant, but negative relationship in the mruby project resulting in
moderately strong support for the generalizability of the original study results.

Table R2. Rubinius (Original) vs. Rubinius (Replication) Results

Relationship/Project Rubinius - Original Rubinius - Replication

 Result Coeff p Result Coeff p Adj. R2

Development Interdependencies/
Activity Variation

Sup7 Not
Reported

Not
Reported

NS 0.0049 0.403 < 0

Development Interdependencies/
Activity Variation with Length of
Activity Sequence

Not
Applicable

Not
Applicable

Not
Applicable

NS 0.0010 0.843 0.24

Development Interdependencies/
Order Variation

NS Not
Reported

Not
Reported
(for linear
regression)

NS -0.0042 0.499 <0

Developer Interdependencies/
Activity Variation

Sup 2.08 <0.001 Sup 0.1121 <0.001 0.06

Developer Interdependencies/
Activity Variation with Length of
Activity Sequence

Not
Applicable

Not
Applicable

Not
Applicable

NS 0.0146 0.061 0.07

Developer Interdependencies/ Sup 1.16 <0.001 Sup 0.0443 <0.001 0.02

7 Lindberg et al (2016) do not report linear regression coefficients or p-values for development interdependencies, instead they use a
separate test that was not replicated; see discussion in Section 3.

8 Coordinating Interdependencies in an Open Source Software Project: A Replication of Lindberg, et al.

Volume 6 Paper 14

Table R2. Rubinius (Original) vs. Rubinius (Replication) Results

Relationship/Project Rubinius - Original Rubinius - Replication

 Result Coeff p Result Coeff p Adj. R2

Order Variation

Development Interdependencies/
Developer Interdependencies

Sup 1.59 <0.001 Sup 0.0297 0.03 0.01

3.5 Development and Developer Interdependencies

The original study finds a positive and significant relationship between development and developer
interdependencies. Consistent with the original study, we find support in our replication of the Rubinius
project. Although the RubyMotion project does not show a significant relationship, we find agreement with
the relationship in JRuby and mruby, which offers moderately strong support for the generalizability of the
original study’s results.

Table R3. Rubinius (Original) v. JRuby Results

Relationship/Project Rubinius - Original JRuby

Result Coeff p Result Coeff p Adj. R2

Development
Interdependencies/
Activity Variation

Sup Not
Reported

Not
Reported

NS -0.0062 0.152 <0.01

Development
Interdependencies/
Activity Variation with Length
of Activity Sequence

Not
Applicable

Not
Applicable

Not
Applicable

NS -0.0084 0.081 0.003

Development
Interdependencies/
Order Variation

NS Not
Reported

Not
Reported

(for linear
regression)

NS* -0.032 <0.001 0.10

Developer
Interdependencies/
Activity Variation

Sup 2.08 <0.001 Sup 0.0489 <0.001 0.05

Developer
Interdependencies/
Activity Variation with Length
of Activity Sequence

Not
Applicable

Not
Applicable

Not
Applicable

NS 0.0117 0.098 0.10

Developer
Interdependencies/
Order Variation

Sup 1.16 <0.001 Sup 0.0433 <0.001 0.03

Development
Interdependencies/
Developer
Interdependencies

Sup 1.59 <0.001 Sup 0.1688 <0.001 0.09

AIS Transactions on Replication Research 9

Volume 6 Paper 14 Paper 14

Table R4. Rubinius (Original) v. mruby Results

Relationship/Project Rubinius - Original mruby

Result Coeff p Result Coeff p Adj. R2

Development
Interdependencies/
Activity Variation

Sup Not Reported Not Reported NS -0.0041 0.379 <0.01

Development
Interdependencies/
Activity Variation with
Length of Activity
Sequence

Not
Applicable

Not
Applicable

Not
Applicable

NS -0.0047 0.195 <0.01

Development
Interdependencies/
Order Variation

NS Not Reported Not Reported

(for linear
regression)

NS -0.0066 0.163 <0.01

Developer
Interdependencies/
Activity Variation

Sup 2.08 <0.001 NS* -0.0172 0.002 <0.01

Developer
Interdependencies/
Activity Variation with
Length of Activity
Sequence

Not
Applicable

Not
Applicable

Not
Applicable

NS* -0.0484 <0.001 0.09

Developer
Interdependencies/
Order Variation

Sup 1.16 <0.001 NS* -0.03 0.004 0.02

Development
Interdependencies/
Developer
Interdependencies

Sup 1.59 <0.001 Sup 0.101 <0.001 0.03

10 Coordinating Interdependencies in an Open Source Software Project: A Replication of Lindberg, et al.

Volume 6 Paper 14

Table R5. Rubinius (Original) v. RubyMotion Results

Relationship/Project Rubinius - Original RubyMotion

Result Coeff p Result Coeff p Adj. R2

Development
Interdependencies/
Activity Variation

Sup Not
Reported

Not
Reported

NS -0.0658 0.379 <0

Development
Interdependencies/
Activity Variation with
Length of Activity Sequence

Not
Applicable

Not
Applicable

Not
Applicable

NS* -0.1188 0.011 0.65

Development
Interdependencies/
Order Variation

NS Not
Reported

Not
Reported

(for linear
regression)

NS -0.0928 0.163 0.03

Developer
Interdependencies/
Activity Variation

Sup 2.08 <0.001 Sup 0.2237 0.002 0.24

Developer
Interdependencies/
Activity Variation with
Length of Activity Sequence

Not
Applicable

Not
Applicable

Not
Applicable

NS 0.0165 0.80 0.58

Developer
Interdependencies/
Order Variation

Sup 1.16 <0.001 Sup 0.1915 0.004 0.21

Development
Interdependencies/
Developer
Interdependencies

Sup 1.59 <0.001 NS 0.0564 0.748 <0

Figures R1, R2, and R3 plot the replicated Rubinius project data overlaying the simple linear regression fit.
The corresponding illustrations for the JRuby (JR), mruby (MR) and RubyMotion (RM) projects can be found
in Appendix A.

Figure R1: Routine Variation and Development Interdependencies

AIS Transactions on Replication Research 11

Volume 6 Paper 14 Paper 14

Figure R2: Relationship Between Development and Developer Interdependencies

Figure R3: Routine Variation and Developer Interdependencies

4 Discussion

Below we discuss findings in the current replication along with limitations and offer suggestions for the
direction of future work. Tests of the models estimated in Section 3 provide relatively conclusive evidence
of our ability to replicate the results/corroborate the findings of Lindberg et al. (2016). Nevertheless, there
are some noticeable differences between the findings that are worthy of further discussion.

The original study and this replication report on wedge-shaped relationships and linear relationships,
respectively, as it pertains to the relationship between interdependencies and routine variation. From an
interpretation standpoint, the original study’s wedge-shaped analysis suggests that in certain cases there
exists a relationship between interdependencies and routine variation, but the directionality and
quantification/strength of that relationship is opaque. In contrast, the results of the replication study, which
employs a linear model, suggests there exists a directional relationship between interdependencies and
routine variation and quantifies (indicates the strength) the relationship. So, although both approaches can
determine the presence (or absence) of a relationship, the linear model provides greater specificity as to
the nature of the relationship. In the subsequent sections, we discuss the implications of the replication
study’s findings in relation to the original study’s findings.

12 Coordinating Interdependencies in an Open Source Software Project: A Replication of Lindberg, et al.

Volume 6 Paper 14

4.1 Activity Variation and Development Interdependencies

Given that the original study and this replication analyze this relationship from a different perspective (for
reasons explained in the Results section), it is reasonable that the findings are not consistent. However,
despite this point, our results are consistent with each other across the four projects examined in the
replication, wherein we find no association between activity variation and development interdependencies.
Additional insight can be gained by considering Figure R1 (left), wherein the data points don’t appear to
show a clear trend.

While the development interdependencies does not appear, on replication, to have a strong effect, including
length of activity sequence shows a significant, but negative, relationship with activity variation, but only in
the case of RubyMotion. When we adjust for the length of activity sequence as shown in Tables R2 and R3,
the relationship is either no longer significant or becomes significant but in the opposite direction. There are
a couple of reasons for the differences in the findings across projects. One reason could be that length of
activity sequence might be a better explanatory variable than development interdependencies, with respect
to activity variation. For example, previous studies suggest length of activity sequence is a primary
determinant of pull request latency (Yu, Wang, Filkov, Devanbu, & Vasilescu, 2015; Yu, Wang, Yin, & Wang,
2016). A second explanation might be that the differences across projects are due to project sizes, where
smaller projects may not have or need more sophisticated coordination routines (Blincoe, Valetto, & Damian,
2013). Yet another plausible explanation is the interplay between the length of activity sequence and
development interdependencies. The synergy between the two might yield different results for activity
variation than when considered individually. As such, future studies should consider whether the relationship
between activity variation and development interdependencies may be moderated by length of activity
sequence, which accounts for certain aspects of task complexity. If the coordination routines in more
complex development tasks need to be different than for simpler development tasks, their association with
development interdependencies would differ as well.

4.2 Activity Variation and Developer Interdependencies

With respect to this relationship, we confirm that in three of four projects analyzed, there exists a significant
relationship between activity variation and developer interdependencies 8 . Thereby suggesting relative
strong support for the findings in the original study. However, it should also be noted that when we control
for length of activity sequence, we cannot confirm the existence of the focal relationship in any of the four
projects. Again, we see that length of activity sequence acts as a suppressor and a more influential
explanatory variable. For example, as illustrated by the substantially larger adjusted R2 values for the models
(across all projects) in which we control for length of activity sequence. One potential reason for this
suppression effect is that longer activity sequences are typically associated with development tasks that are
unusual (Gousios, Pinzger, & Deursen, 2014; Yu et al., 2015; Yu et al., 2016), thus making coordination
more challenging. Furthermore, according to Gousios et al. (2014, p. 351), “the [pull request] discussion is
usually brief: 95% of pull requests receive 12 comments or less (80% less than 4 comments). Similarly, the
number of participants in the discussion is also low (95% of pull requests are discussed by less than 4
people). The number of comments in the discussion [the length of activity sequence] is moderately
correlated with the time to merge a pull request (ρ = 0.48, n = 141, 468).”

4.3 Order Variation and Developer Interdependencies

Apart from mruby, the replication projects confirm the findings of the original study. One explanation for the
differences for this particular project might relate to a larger number of open activities. Such open activities
may represent pull requests with no discussion, thus lacking order variation.

4.4 Development Interdependencies and Developer Interdependencies

With respect to this relationship, apart from RubyMotion, three of four projects analyzed support the original
study’s finding that there exists a relationship between development and developer interdependencies. It
should be noted that RubyMotion is the smallest of the projects we investigate, and one explanation for the
differences for this particular project might relate to the lack of need to develop complex coordination
routines for such a relatively small development project. Despite the finding differences in the RubyMotion
project, we find there to be moderately strong support for the theoretical position of Lindberg et al. (2016).

8In the case of mruby, the relationship was not confirmed.

AIS Transactions on Replication Research 13

Volume 6 Paper 14 Paper 14

Additionally, from a practical standpoint the finding has merit since tasks involving more developers are
more likely to require changes to more source code files and conversely.

4.5 Limitations and Future Research

Despite our attempt to replicate the results on the same project and on new projects, it is possible that the
relationships that we find to be replicable might not generalize beyond the set of projects we consider. In
the case of this replication, all projects investigated are compilers for the Ruby programming language. A
potential extension that can be offered by future studies is to investigate research that investigates these
relationships on projects that are dissimilar to the ones investigated by this replication study. It might be that
either practices of Ruby developers or, more generally, of compiler developers, might not exhibit the patterns
of activity routines as those associated with non-complier projects. Such studies could provide even greater
insights as to the true nature of might find a stronger empirical support for these theoretical relationships
promoted in this replication and the original study.

We point out a potential control variable that appears to impact some of the findings. Inclusion of additional
control variables may need to be considered in the future research. It may be the case that the postulated
relationships are mediated by additional latent variables that were not included in the models. For example,
the size of the task, may influence our predictor in a way that makes it difficult to discern the effects of the
other predictors. Future investigations are needed to ascertain the possibility and impact of such effects.

As discussed in the Methods section, even the archival data changes over time, hence we provide the exact
state of the archival data we used in conjunction with the analysis scripts to facilitate future replications.
Also, from a methodological perspective, some of the analysis methods may contain a subjective element,
for example, the choice of the modeling technique, the identification of outliers, or other decisions on
whether or not the modeling assumptions are satisfied. To mitigate this limitation, we try to explicitly state
and justify all of these choices. Some of our analysis is conducted using a slightly modified methodology to
ensure that the assumptions of the methods used to analyze the data are satisfied. It would be prudent for
future research to take the peculiarities of the software data into account and to ensure that the assumptions
of traditional methods, when applied on such data, are satisfied.

It is insightful to also consider the adjusted R2 in the interpretation of Table R2 and Table R3. First, note the
very low value of the adjusted R2 for our replication models. For example, all simple linear fits of activity
variation vs development interdependencies have a fit below 0.01, which indicates that the models do not
explain the observed variance of the activity variation and that it is primarily driven by other factors that are
not included in the model. This is corroborated by the increase in adjusted R2 when length of activity
sequence is taken into account. In general, these low values call into question the reproducibility of the
relations studied and point to a range of exciting opportunities for future research. For example, a new and
different perspective for studying the relationships between coordination needs and routines used to
manage them in software development projects should be considered. Alternative approaches to
operationalizing interdependencies and patterns of coding practices should be developed. Such
developments will provide an important contribution that moves this area forward.

Another avenue for future research may be pursued to investigate the possibility that the operationalizations
of the concepts used in this study may not adequately capture the totality of the underlying concepts and
suggest revised, more comprehensive measures.

5 Conclusions

This research replicates the study presented by Lindberg et al. (2016) on the relationships between
developer and development interdependencies and activity and order routine variations in OSS
communities. In fact, the current work is a full replication (conceptual and empirical) and extension, in that
it examines the core relationships in the original study across several projects of different sizes that, while
matching in focus, provide some variation in the amount of project activity.

We find that three out of the four projects we analyze support the following three relationships from the
original study:

1. order variation and developer interdependencies,

2. activity variation and developer interdependencies, and

3. development and developer interdependencies.

14 Coordinating Interdependencies in an Open Source Software Project: A Replication of Lindberg, et al.

Volume 6 Paper 14

Further, the original study finds no significant relationship between order variation and development
interdependencies, and we are able to also replicate this result across three of four projects in this study.
However, in contrast to the original study, neither of the four projects we investigate in the replication study
reveal a significant relationship between activity variation and development interdependencies. Overall, this
replication study offers moderately strong support for the validity of the original study’s findings, yet less
support for its generalizability in the context of online communities.

Acknowledgments

This research was supported by NSF award IIS-1633437.

AIS Transactions on Replication Research 15

Volume 6 Paper 14 Paper 14

References

Bardsley, W., Jorgensen, M., Alpert, P., & Ben-Gai, T. (1999). A significance test for empty corners in
scatter diagrams. Journal of Hydrology, 219(1-2), 1-6.

Blincoe, K., Valetto, G., & Damian, D. (2013). Do all task dependencies require coordination? the role of
task properties in identifying critical coordination needs in software projects. Proceedings of the
9th Joint Meeting on Foundations of Software Engineering.

Boulton, G., Campbell, P., Collins, B., Elias, P., Hall, W., Laurie, G., O’Neill, O., Rawlins, M., Thornton, J.,
Vallance, P., & Walport, M. (2012). Science as an open enterprise. London: The Royal Society.

Cataldo, M., Herbsleb, J. D., & Carley, K. M. (2008). Socio-technical congruence: A framework for
assessing the impact of technical and work dependencies on software development productivity.
Paper presented at the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement.

Cataldo, M., Mockus, A., Roberts, J. A., & Herbsleb, J. D. (2009). Software dependencies, work
dependencies, and their impact on failures. IEEE Transactions on Software Engineering, 35(6),
864-878.

Eghbal, N. (2016). Roads and bridges: The unseen labor behind our digital infrastructure. Retrieved from
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-
labor-behind-our-digital-infrastructure/.

Gómez, O. S., Juristo, N., & Vegas, S. (2010). Replications types in experimental disciplines. Paper
presented at the Proceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement.

Gousios, G., Pinzger, M., & Deursen, A. v. (2014). An exploratory study of the pull-based software
development model. Proceedings of the 36th International Conference on Software Engineering.

Herbsleb, J. D., & Mockus, A. (2003). Formulation and preliminary test of an empirical theory of
coordination in software engineering. Paper presented at the ACM SIGSOFT Software
Engineering Notes.

Lindberg, A., Berente, N., Gaskin, J., & Lyytinen, K. (2016). Coordinating interdependencies in online
communities: A study of an open source software project. Information Systems Research, 27(4),
751-772.

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and Methodology
(TOSEM), 11(3), 309-346.

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., Buck, S., Chambers,
C. D., Chin, G., Christensen, G., Contesabile, M., Dafoe, A, Eich, E., Freese, J., Glennerster, R.,
Goroff, D., Green, D. P., Hesse, B., Humphreys, M., Ishiyama, J., Karlan, D., Kraut, A., Lupia, A.,
Mabry, P., Madon, T., Malhotra, N., Mayo-Wilson, E., McNutt, M., Miguel, E., Paluck, E. L.,
Simonsohn, U., Soderberg, C., Spellman, B. A., Turitto, J., VandenBos, G., Vazire, S.,
Wagenmakers, E., J., Wilson, R., & Yarkoni, T. (2015). Promoting an open research culture.
Science, 348(6242), 1422-1425.

Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science,
349(6251), aac4716.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., & Vasilescu, B. (2015). Wait for it: Determinants of pull request
evaluation latency on GitHub. Paper presented at the 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories.

Yu, Y., Wang, H., Yin, G., & Wang, T. (2016). Reviewer recommendation for pull-requests in GitHub: What
can we learn from code review and bug assignment? Information and software technology, 74,
204-218.

https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/

16 Coordinating Interdependencies in an Open Source Software Project: A Replication of Lindberg, et al.

Volume 6 Paper 14

Appendix A: Routine Variation and Interdependencies Figures for
JRuby(JR), mruby(MR) and RubyMotion(RM)

Figure JR. 1: Routine Variation and Development Interdependencies

Figure MR. 1: Routine Variation and Development Interdependencies

AIS Transactions on Replication Research 17

Volume 6 Paper 14 Paper 14

Figure RM. 1: Routine Variation and Development Interdependencies

Figure JR. 2: Relationship Between Development and Developer Interdependencies

Figure MR. 2: Relationship Between Development and Developer Interdependencies

18 Coordinating Interdependencies in an Open Source Software Project: A Replication of Lindberg, et al.

Volume 6 Paper 14

Figure RM. 2: Relationship Between Development and Developer Interdependencies

Figure JR. 3: Routine Variation and Developer Interdependencies

Figure MR. 3: Routine Variation and Developer Interdependencies

AIS Transactions on Replication Research 19

Volume 6 Paper 14 Paper 14

Figure RM. 3: Routine Variation and Developer Interdependencies

Appendix B: Model: activity variation ~ log(development
interdependencies) + activity length for JRuby(JR), mruby(MR) and
RubyMotion(RM)

Table B1. activity variation ~ log(development interdependencies) + activity length for JRuby(JR), mruby(MR) and
RubyMotion(RM)

Rubinius(Rep.) Jruby Mruby RubyMotion

Coeff p

Adj. R2
Coeff p

Adj. R2
Coeff p

Adj. R2
Coeff p

Adj. R2

log(Dvpt.
intrdp)

0.001 0.843 0.24 -0.0084 0.08 0.0029 -0.0046 0.195 0.0008 -0.1187 0.0116 0.65

No. of evts
0.023 2e-16 0.0012 0.29 0.0016 0.301 0.1052 9.27e-09

Appendix C: Model: activity variation ~ developer interdependencies +
activity length for JRuby(JR), mruby(MR) and RubyMotion(RM)

Table C1. activity variation ~ developer interdependencies + activity length for JRuby(JR), mruby(MR) and RubyMotion(RM)

Rubinius(Rep.) Jruby Mruby RubyMotion

Coeff p

Adj. R2
Coeff p

Adj. R2
Coeff p

Adj. R2
Coeff p

Adj. R2

Dvper. intrdp
0.015 0.06 0.069 0.011 0.098 0.10 -0.048 3.1e-9 0.092 0.0165 0.80 0.58

No. of evts
0.006 2e-4 0.010 2e-16 0.019 1.53e-15 0.1038 1.83e-05

20 Coordinating Interdependencies in an Open Source Software Project: A Replication of Lindberg, et al.

Volume 6 Paper 14

About the Authors

Randy V. Bradley, PhD, CPHIMS, FHIMSS is an Associate Professor of Information Systems and Supply
Chain Management and Haslam Family Faculty Research Fellow in the Haslam College of Business at The
University of Tennessee. He holds a Ph.D. in Management of Information Technology (IT) and Innovation,
an M.S. in Management Information Systems, and a B.S. in Computer Engineering, all from Auburn
University. His areas of interest include digital business transformation, supply chain digitalization, and the
strategic application of business analytics and IT in the supply chain. His research has appeared or is
forthcoming in the Production and Operations Management Journal, IEEE Transactions on Software
Engineering, Journal of Business Logistics, Decision Sciences Journal, Journal of Management Information
Systems, MIS Quarterly Executive, Information Systems Journal, and Journal of Information Technology,
among others.

Audris Mockus, PhD is the Ericsson-Harlan D. Mills Chair Professor of Digital Archeology and
Evidence Engineering in the Department of Electrical Engineering and Computer Science at the University
of Tennessee. He holds a Ph.D. in Statistics from Carnegie Mellon University and an M.S. and a B.S. in
Applied Mathematics from Moscow Institute of Physics and Technology. His primary research interests are
digital archaeology, software engineering, and data science in which he studies software developers’ culture
and behavior through the recovery, documentation, and analysis of digital remains, with a focus on FLOSS
projects. Prior to entering academia, he worked at Bell Labs and Avaya Labs.

Yuxing Ma, PhD holds a Ph.D in Computer Science from the University of Tennessee, Knoxville, an M.S.
from North China Institute of Computer System Engineering, and a B.S. in Electronic Science & Technology
from Beijing Institute of Technology (BIT). His research is focused on open source software engineering.
Specifically, leveraging data driven approaches to understand the evolution of open source software
ecosystems.

Russell Zaretzki, PhD is an Associate Professor of Business Analytics & Statistics in the Haslam College
of Business at The University of Tennessee. He holds an M.S. and a Ph.D. in Statistics from Cornell
University, and a B.S. in Physics from University of Michigan. His research focuses on applied statistical
modelling, Bayesian statistics, and methods for causal inference.

Bogdan C. Bichescu, PhD is an Associate Professor of Management Science in the Haslam College of
Business at The University of Tennessee. He holds a PhD in Operations Management from the University
of Cincinnati. His research interests are concentrated in the areas of supply chain modeling and healthcare
operations. More specifically, his work examines the role of channel power and subcontracting on supply
chain performance, while his recent studies investigate the interplay between information technology and
hospital performance.

Copyright © 2020 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to publish
from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from
ais@aisnet.org.

mailto:ais@aisnet.org

