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A drift detection prototype for quality control in
manufacturing
Research Paper
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Cognitive Service Systems (KODIS), Heilbronn, Germany

{dharmil-rajesh.mehta, safa.omri, richard.zowalla, jens.neuhuettler}@iao.fraunhofer.de

Abstract. Drift detection is a critical factor in sustaining the performance of
Computer Vision (CV) models in modern manufacturing, where it ensures the
continuous achievement of high efficiency, quality, and innovation. CV models effi-
ciency is more likely to reduce over time due to environmental changes, equipment
wear and tear, or alterations in product specifications. Moreover, the collection of
labeled data, essential for monitoring and adjusting these models, is often hindered
by constraints such as time, cost, and the lack of domain experts for annotation.
Addressing this gap, our research introduces an innovative unsupervised drift
detection technique capable of identifying shifts in data distribution without the
need for labeled data. This method proactively notifies operators of any decline in
data quality that breaches a predetermined safety threshold, thereby preserving
the operational integrity of CV applications. Our experimental results confirm
the method’s efficiency in detecting environmental shifts, changes in product
specifications, and an increase in the production of defective parts, highlighting its
significant potential to enhance quality control in manufacturing processes through
reliable drift detection.
Keywords: Drift Detection, Computer Vision, Artificial Intelligence, Concept
Drift

1 Introduction

In the dynamic world of manufacturing, where production environments and processes
are continuously evolving, the precision and adaptability of machine learning models,
especially those based on Computer Vision (CV) play a key role (Omri et al., 2023).
These models, integral to various stages of the production process including defect
detection, quality control, object recognition, and automation, hinge on the assumption
that data distributions remain static over time. Yet, in reality, these distributions are
subject to change, a phenomenon known as drift. Drift challenges the foundational
assumptions of many machine learning models by altering the statistical properties of the
target variable over time, necessitating robust detection mechanisms to ensure models
adapt and maintain performance in ever-changing environments (Engstrom et al., 2017;
Recht et al., 2019; Hendrycks and Dietterich, 2019).

The integration of Artificial Intelligence (AI), particularly through CV, into manufac-
turing, signifies a substantial shift towards more efficient, quality-driven, and innovative
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production methods. However, this shift is not without its challenges. The reliability
and effectiveness of CV systems in manufacturing are compromised by fluctuations
in environmental conditions, equipment integrity, and product specifications. These
variations can subtly, yet significantly, affect the data distribution, leading to a decline
in model performance if not promptly identified and addressed. Thus, monitoring CV
systems for drift becomes imperative, not only for maintaining operational standards but
also for upholding quality control and safety regulations.

Despite the recognized importance of drift detection in maintaining the accuracy of
CV models, the field faces several hurdles. Among these is the difficulty of acquiring
labeled data in manufacturing settings which is hindered by constraints such as cost,
time, and the availability of domain experts. This challenge underscores the need for an
unsupervised approach to drift detection, capable of identifying shifts in data distribution
without relying on labeled datasets (Breck et al., 2019; Klaise et al., 2020).

Recent advancements in drift detection have proposed more nuanced approaches that
consider the conditional distributions of data given specific contexts that are allowed to
change over time (Yingying Sun, 2024). Building upon these methodologies, our paper
introduces a framework for context-aware drift detection, which leverages machinery
from the causal inference domain to develop a comprehensive detection system built
upon a foundation of two-sample tests for conditional distributional treatment effects
(Cobb et al., 2021).

This paper presents an innovative unsupervised drift detection methodology designed
to tackle these challenges. Our method warns the user of a decline in the data quality
that could jeopardize the performance of CV models, ensuring that manufacturing pro-
cesses continue to benefit from the efficiency and innovation that AI brings. Through
rigorous experimentation, we demonstrate the capability of our approach in detecting
environmental changes, shifts in product specifications, and rise in the production of
defective items. In doing so, we offer a valuable tool for the manufacturing industry to
leverage the full potential of computer vision technology, enhancing quality control and
ensuring the reliability of AI-driven processes.

Our contributions are twofold:

1. we demonstrate the practical applicability of the drift detection method in the indus-
try by identifying environmental changes and variations in product specifications.

2. we offer a platform where users can not only test our method with sample data but
also upload their data to assess and compare drift occurrences.

Through rigorous experimentation and analysis, we aim to establish a new paradigm
in maintaining the accuracy and reliability of CV systems in the dynamic and ever-
changing environment of manufacturing. This endeavor not only addresses an immediate
need within the industry but also paves the way for future innovations in the fields of
machine learning and computer vision.

The remainder of the paper is structured as follows. In section 2 we discuss the
related work in the field of drift detection. In section 3 we discuss the methodology for
drift detection. In section 4 we present the experiment, result, and prototype. In section 5
we conclude the paper and give an outlook of the future work.



2 Related Work

The latest research in drift detection, particularly in machine learning (ML) and its
industrial applications, focuses on advanced methods for identifying and addressing
both concept drift and data drift. These drifts are crucial for understanding because they
directly impact the performance and reliability of ML models in dynamic environments.
Munirathinam (2020) presented a model for detecting drifts and identifying outliers in
IoT sensor data, with a focus on real-time monitoring and early detection. It is used to
identify potential outliers and detect both aggressive and progressive drifts, enabling
real-time monitoring and early detection. In the field of industrial process modeling,
concept drift detection methods have been developed, focusing on regression modeling
and addressing the challenges of detecting concept drift in industrial processes. Sun
et al. (2020) provides a comprehensive overview of concept drift detection methods
for industrial process modeling, addressing the need for more research in this area. In
the context of business processes, drift detection is used to identify sudden and gradual
changes, with a focus on automated and statistically grounded methods (Maaradji et al.,
2015, 2017). Yeshchenko et al. (2019) introduces the Visual Drift Detection tool, which
categorizes, drills down, and quantifies process drifts, providing a valuable aid for
business process redesign. These methods have been shown to accurately detect typical
change patterns and scale up to work for online drift detection. These studies underscore
the diverse approaches to understanding and mitigating drift effects but also highlight a
common limitation: the heavy reliance on labeled data and the assumption of relatively
stable environmental conditions, which are often not present in manufacturing contexts.

The use of drift detection in computer vision has been explored in various studies.
Suprem et al. (2020) introduced ODIN, a system that uses adversarial auto-encoders to
detect and recover from drift in visual data. Liu and Zhou (2014) proposed a framework
that combines concept drift detection with an online semi-supervised boosting method for
robust visual tracking. Rabanser et al. (2019) introduced an approach for drift detection
using statistical tests and distance-based methods. Liu et al. (2021) proposed a Learned
Kernel MMD a kernel-based two-sample test method that improves the performance
of drift detection by learning the kernels from deep neural nets. Cobb et al. (2021)
introduced Context-Aware MMD a drift detection framework for conditional distribution
effects. dos Reis et al. (2016) introduced an approach for drift detection in streaming. The
proposed method significantly reduced the insertion and deletion time of the data points
for drift detection. Hegedüs et al. (2012) presented an approach for detecting concept
drift in large-scale, fully distributed networks, using online learners and an adaptive
mechanism. These studies collectively demonstrate the potential of drift detection in
improving the accuracy and robustness of computer vision systems. Jin et al. (2023)
proposed the different environmental factors that can affect the performance of the CV
model in manufacturing.

3 Methodology

In this section, we will explain the methods used to detect drift in high-dimensional data
such as images. We first reduce the dimension and then perform statistical hypothesis



testing to compare the distribution of features. In addition, we discuss common issues
and challenges for a CV system in an industrial setting, which may influence deep
learning model performance in production. The framework for drift detection in the
experiment is as shown in Figure 1.

3.1 Dimensionality Reduction

Convolutional Neural Networks (CNNs) are one of the most suitable methods for feature
extraction for image data. The performance of Efficient Net is much better as compared
to other network architectures and even obtained the state-of-the-art performance on
ImageNet and the CIFAR-100 datasets (Tan and Le, 2019). The architecture not only
increases the accuracy of prediction on the dataset but also penalizes if the network is
very computationally heavy. Hence we use Efficient Net B5 for the experiment as a
feature extractor.

3.2 Statistical Hypothesis Testing:

To analyze potential drift in the input data, we compare the distribution of the feature
vectors within a reference data set with the distribution observed in a test data set, i.e. data
collected at a different location or under different environmental conditions. We perform
statistical testing using Maximum Mean Discrepancy (MMD) multivariate kernel tests
and Kolmogorov-Smirnov Test (KS) with Bonferroni Correction a univariate test and
aggregating it with Bonferroni correction.

Multivariate Kernel Two-Sample Tests: MMD is a kernel-based two-sample statistical
test that calculates the distance between feature means (Gretton et al., 2012a). A feature
map Φ maps X to kernel Hilbert space τ .

k(X,Y ) = ⟨ϕ(X), ϕ(y)⟩τ (1)

Given a probability P on X , the feature means µP maps Φ(X) to the mean of every
coordinate of Φ(X).

µp(Φ(X))) = [E [Φ(X1)] , ..., E [Φ(Xm)]]
T (2)

The inner product of feature means of X and Y can also be written as a kernel
function such that:

⟨µp(Φ(X)), µq(Φ(X))⟩τ
= Ep,q [⟨Φ(X), Φ(Y )⟩τ ]

= Ep,q [k(X,Y )]

(3)

MMD is the distance between feature means of X , Y that is of µp, µq:

MMD2(p, q) = ∥up − uq∥ (4)

By using the norm of the inner product, the Equation 3 becomes:



MMD2(p, q) = ⟨up − uq, up − uq⟩
= ⟨up − up⟩ − 2 ⟨up, uq⟩
+ ⟨uq, uq⟩

(5)

We calculate an unbiased estimate of the squared MMD using samples from both
distributions as follows:
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1
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(6)

P-value is calculated by performing a permutation test on the Gaussian Kernel matrix
(Gretton et al., 2012b).

κ(x, y) = e−
1
σ ||x−y||2 (7)

Multiple Univariate Testing: In MMD, K-Dimensional feature vectors are tested at
the same time. Hence, we selected KS Test, where each dimension is tested individually.
Z is the maximum absolute difference between two empirical cumulative distribution
functions Fp(z) and Fq(z). Multiple p-values make it difficult to decide whether there
is a drift in overall data because we don’t know which p-value to select. Therefore we
correct it using Bonferroni correction. It rejects the null hypothesis when the minimum
p-value is less than α/K.

Z = sup |Fp(z)− Fq(z)| (8)

Threshold selection: For selecting the probability of rejecting the null hypothesis
(p-value) we could either use a higher p-value (10%) or lower p-value (1% or 0.1%). If
we use a lower p-value, the machines would be running where the data might not be
similar to the reference dataset and the operator might not be notified until the value
drops close to 0 which can be very expensive. If we use a higher p-value value the
operator will be notified if there is any slightest change in the environment. The cost of
rejecting a true null hypothesis in our scenario is less than failing to reject a false null
hypothesis. Hence we have used a p-value of 10% for the experiments.

3.3 Environmental Influences on Image Data Quality

In industrial CV system, the quality of the captured image is important for accurately
monitoring product quality via a deployed deep learning model. In the following subsec-



Figure 1. Drift Detection Framework

tions, we will discuss common environmental influences that can affect image quality
and for which a drift detection system needs to be robust. These effects are depicted in
Figure 2. Addressing these issues is critical in maintaining the reliability and effective-
ness of the CV system in monitoring product quality and ensuring smooth operations
along production lines.

Blurry Images: A common problem is the occurrence of blurred images, which
can be caused by a variety of factors. Poor focusing, where the camera fails to adjust its
lens accurately to capture a clear image, is a primary issue (Gedraite and Hadad, 2011).
In addition, slower shutter speeds can cause motion blur, especially when monitoring
fast-moving production lines or moving objects. Finally, the presence of dirt or damage
to the lens can obstruct the light path, causing distortion and blurriness in the captured
images. The blurry images are generated using the cv2 Gaussian Blur function using a
kernel size of 5x5.

Images in Motion: When products are in motion (e.g. on fast-moving product lines),
or when the camera itself is in motion, images can suffer from motion blur. This
phenomenon occurs when the camera’s exposure time is not synchronized with the speed
of moving objects, resulting in a smear effect in the captured images that affects the
clarity and detail of the captured images. To simulate images in motion we have used a
kernel size of 5x5 and the motion direction is 45°.



Changes in Lighting Conditions: Variations of lightning conditions pose
a significant challenge to the consistency and reliability of image acquisition. Sudden
changes in the lightning environment, whether due to natural light variations or artificial
sources, can result in images with increased or decreased brightness. These variations
can greatly affect the accuracy of image analysis, affecting their ability to effectively
detect defects or anomalies in the captured data. Increased brightness in images can lead
to overexposure, washing out important details, and distorting the visual information.
Reduced brightness can obscure fine features and reduce contrast between objects. Over-
exposed images have 60% more brightness than the normal images and underexposed
images have 20% less brightness.

Change of Camera: Cameras may be upgraded, replaced, or modified for a variety
of reasons, ranging from technological advances to equipment failure. However, such
changes can introduce variability in the characteristics and performance of the imaging
devices, potentially resulting in images that differ from those contained in the original
training dataset. This variability can pose a challenge to CV systems trained on specific
images, as the newly captured images may have different resolutions, color profiles,
or different focal lengths. The reference dataset has an image size of 300x300 and the
images generated by the new camera are of 512x512 size.

Manufacturing of only Defective Parts: The scenario where only defective parts are
being produced is not a case of data drift, because the CV model is trained to catch these
data and label them as def. However, it is economically more favorable to detect this
case as drifted data and alert the manufacturers as soon as possible so that they can find
the underlying cause.

Images without drift: While deploying drift detection in production most of the time
the production process would be working fine under normal circumstances. Hence it is
of utmost priority to detect normal running conditions in manufacturing and not send
false alarms to operators.

4 Results and Prototype

4.1 Experiments Setup

To observe the performance of drift detection on the industrial use case and verify
that it can detect the environmental influences described above we have performed
experiments on a submersible pump impeller for quality inspection (Dabhi et al., 2020).
The functionality of the impeller is to transfer the energy from the motor to the fluid
being pumped. The dataset consists of the top view of the impeller which is made by
the casting process. The dataset consists of 8648 images, which are either labeled ok or
def (defect). The class distribution and the datasets used for testing in each experiment
are explained in Table 1.



(a) Ref-0 (b) Ref-1 (c) Test (d) Blur (e) Motion

(f) Bright (g) Dark (h) Camera (i) Defect

Figure 2. Sample Images. (a) Ref-0: Image from train dataset. (b) Ref-1: Image from train dataset.
(c) Test: Image from test dataset. (d) Blur: Gaussian Blur Kernel Size 5x5. (e) Motion: 45° Kernel
Size 5x5. (f) Bright: 60% more brightness. (g) Dark: 20% less brightness. (h) Camera: Resolution
of 512x512. (i) Defect: Manufacturing Defects

Reference Dataset: For quality control, the best-performing CV models that were
trained on these datasets are used in production. The full training dataset may be very
large and unavailable during production; to address this issue, we create ten reference
datasets by sampling 100 images from train-ok Ref-1. In addition, the majority of parts
produced during manufacturing will be of label ok; however, the proportion of ok and
def in the training dataset is forty-five percent. Therefore, we generate ten reference
datasets using train-ok dataset Ref-1.

Test Dataset: To ensure that the drift detection works properly and does not give
false alarms, we use test datasets for this purpose. The test dataset is ideal since it
contains images that are not shown to the model during the training step, but the proba-
bility density of the features must be similar to the probability density of the reference
dataset. Hence we generate the Test Samples dataset by randomly sampling 100
images from test-ok T-1. Similarly, we generate images with the environmental influ-
ences i.e. Blurry Images, Images in Motion, Change in Lighting
Conditions by adding noise in the Test Samples dataset using the OpenCV li-
brary. To test the Change of Camera scenario we generated a dataset by sampling
100 images from new-camera-ok NC-1. We generate Parts with defects dataset
by sampling 100 images from test-def T-2.

4.2 Statistical Results

In this section, we want to demonstrate that the drift detection method can be deployed
in a CV system to ensure that the CV model is deployed in a safe environment. It can
trigger an alarm and notify the users when there is any change in the environment or



Table 1. Dataset

Identifier Dataset No. of Images Class Image Size Experiment
Ref-1 train-ok 2875 ok 300 x 300 Reference Data
Ref-2 train-def 3758 def 300 x 300 Not used

T-1 test-ok 262 ok 300 x 300
Blurry Images, Images in Motion,
Changes in Lightning Conditions

T-2 test-def 453 def 300 x 300
Manufacturing of

only Defective Parts
NC-1 new-camera-ok 519 ok 512 x 512 Change of Camera
NC-2 new-camera-def 781 def 512 x 512 Not used

when the machine produces more faulty products. Table 2 shows the drift score using
pre-trained Efficient Net B5 as a feature extractor and using MMD and KS Test as a
statistical test for drift detection. Test Samples when compared with Reference Datasets
should have a p-value of more than 10 as they are from similar distribution. KS Test
gave false positive results for the Ref-3 Dataset. KS Test also found it difficult to detect
environmental changes such as increased intensities, blurred images, and faulty parts.
MMD outperformed KS Test in both scenarios by accurately detecting test samples
and erroneous samples. Hence, we have developed the prototype using MMD as a
hypothesis-testing method.

Table 2. Drift Score on the Datasets

Reference Test
Sample

Blurry
Images

Images in
Motion

Bright
Images

Dark
Images

Different
Camera

Parts with
defects

MMD KS MMD KS MMD KS MMD KS MMD KS MMD KS MMD KS
Ref-0 44 44 0 0 1 0 0 6 0 0 3 1 0 23
Ref-1 39 27 0 0 2 0 0 2 0 0 1 5 0 10
Ref-2 73 33 0 0 2 0 0 4 0 0 0 0 0 3
Ref-3 77 8 1 0 3 0 0 19 0 0 1 1 0 1
Ref-4 77 100 1 2 2 0 0 9 0 0 0 0 0 2
Ref-5 98 100 2 4 9 0 0 36 0 0 0 2 0 2
Ref-6 95 72 1 1 8 0 0 11 0 0 0 2 0 2
Ref-7 57 85 0 80 1 0 0 8 0 0 0 0 0 0
Ref-8 99 100 2 3 8 0 0 47 0 0 0 1 0 0
Ref-9 78 100 1 4 3 0 0 13 0 0 0 2 0 1

4.3 Prototype

In the progression of our research, we engineered an interactive prototype to facilitate
real-world application and evaluation of our unsupervised drift detection methodology.
This prototype represents a bridge between theoretical research findings and practical,
hands-on experimentation, enabling users to directly engage with the drift detection
mechanism within a controlled environment. The design and implementation details,
alongside the functionalities of this prototype, are articulated below:



(i)Architectural Framework: The prototype’s architecture comprises a React-based
frontend interface and a FastAPI-driven backend, implemented in Python. This archi-
tectural choice was governed by the need for a responsive user interface that could
seamlessly interact with a robust and efficient backend processing unit. React, renowned
for its efficient update and rendering capabilities, provides an intuitive interface for users
to interact with the prototype. Concurrently, FastAPI offers a high-performance backend
solution with asynchronous support, crucial for handling the computationally intensive
tasks associated with drift detection in high-dimensional data.
(ii) Functional Capabilities: The prototype is designed to perform a dual role: firstly, as
a demonstration tool, allowing users to replicate the drift detection experiments high-
lighted in this study; and secondly, as an analysis platform, enabling users to upload
their datasets to evaluate the drift detection capabilities in scenarios specific to their
operational environments. This functionality is pivotal for validating the adaptability and
effectiveness of the proposed drift detection methodology across various manufacturing
settings and conditions. The users have the possibility to run different tests as shown
in the experiment and compare the drift scores. If the user has some data available and
wants to perform drift detection on them he can even do so by uploading them on the
platform. We are planning to publish the code on our platform as open source with a
business-friendly OSS license in the near future.

5 Conclusion and Future Work

In this paper, we have addressed the critical need for robust drift detection in the
manufacturing sector, paving the way for more resilient and adaptable CV systems. By
tackling the challenges of unsupervised drift detection, we contribute to the broader
discourse on maintaining the accuracy and reliability of AI applications in dynamic
environments, ensuring that the manufacturing industry can continue to reap the benefits
of technological advancement without compromise. We have demonstrated the capability
of drift detection on a small dataset for a particular use case of quality control in
manufacturing.

Our work suggests several open questions that might offer promising paths for future
work, we aim to broaden the scope of our investigation to encompass a variety of domains
beyond CV, thus expanding the applicability and impact of our findings. A key focus
of our future work will involve comprehensive research into the development of an
advanced drift detection framework. This framework will not only identify instances
of data drift but will also possess the capability to categorize the nature of such drifts
accurately. By integrating a ’human-in-the-loop’ approach, we envision a system where
drift detection is not only automated but is also enhanced by human expertise, enabling
precise classification of concept drift types. This dual approach promises to refine the
detection process further, ensuring more nuanced and actionable insights for maintaining
the integrity of AI-driven systems in the manufacturing industry and beyond.
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