Association for Information Systems

AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2009 Wirtschaftsinformatik

2009

AMODEL-DRIVEN APPROACH TO ENABLE
ACCESS CONTROL FOR ONTOLOGIES

Willy Chen
Mannheimer Zentrum fiir Wirtschaftsinformatik

Heiner Stuckenschmidt
Mannheimer Zentrum fiir Wirtschaftsinformatik

Follow this and additional works at: http://aisel.aisnet.org/wi2009

Recommended Citation

Chen, Willy and Stuckenschmidt, Heiner, "A MODEL-DRIVEN APPROACH TO ENABLE ACCESS CONTROL FOR
ONTOLOGIES" (2009). Wirtschaftsinformatik Proceedings 2009. 6.
http://aisel.aisnet.org/wi2009/65

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2009 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009/65?utm_source=aisel.aisnet.org%2Fwi2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A MODEL-DRIVEN APPROACH TO ENABLE
ACCESSCONTROL FOR ONTOLOGIES

Willy Chen, Heiner Stuckenschmidt'

Abstract

Industrial applications of semantic technologies - in particular ontologies - include the integration
of heterogeneous information sources and the management of information resources and services.
Currently, the adoption of these technologies in large-scaled applications within enterprises is
slowed down by their failure to meet some basic requirements of commercial applications. One of
those is the support of sophisticated security policies for protecting the knowledge contained in
ontologies and their instances from unauthorized use. In this paper, we propose a model-driven
approach to enable access control for lightweight ontologies based on a role-based security model
and well-known standard technologies.

1 Motivation

Ontologies and Industrial Applications

Semantic technologies originally developed for knowledge representation and reasoning on the web
are gaining attention from industry as an adequate means for solving complex information
management tasks. A constantly growing number of companies that offer professional services or
tools in this area reflect this trend [4]. Typical applications of ontologies include knowledge and
skill management [20] as well as web service and business process management [8]. Studies [10]
and successful projects [21] emphasize the relevance of these technologies in the area of product
lifecycle management (PLM), in particular in the automotive sector. Their application in large-
scaled industrial use cases (e.g., [2]) quickly shows that theoretical issues like expressiveness and
decidability are less a limiting factor for their uptake in industry than non-functional aspects. In
commercial scenarios we are particularly faced with ever changing domains that need to be
reflected within a knowledge base, restricted resources for its development and maintenance, and
the uncertain perspicuity and acceptance of such an information source by the actual users [11].

The Need for Access Control

Another important requirement of many industrial applications is the need to protect knowledge
against unauthorized access. This need is particularly evident in many potential application areas of
ontologies such as the area of data and application integration. The integrated data sources often
hold confidential information that should not be accessible for everybody. In some cases, such as

I Mannheimer Zentrum fiir Wirtschaftsinformatik, A5, 6 68159 Mannheim

663

the deregulation of the energy markets, there are even legal constraints on the accessibility of
strategic information between different parts of the same enterprise.

Tailoring the integration of data sources for different target groups is too much effort in most cases.
Therefore, the only sensible solution is a complete integration of information along with the
implementation of a fine-grained access control mechanism that grants access to parts of the
integrated model based on a suitable set of security policies. While this problem has been
investigated in details for standard technologies such as relational databases, so far there are no
convincing solutions for providing fine-grained access control for ontology-based knowledge in the
presence of logical inference. This hinders the uptake of semantic technologies in industrial
applications dealing with sensible information. Providing a solution to this problem therefore
increases the usefulness and the potential impact of semantic technologies in practice.

Outline and Contributions

Within this paper we present a security architecture for enabling access control of ontologies within
standard semantic web infrastructures without the need to modify existing reasoners. In fact, we
propose the use of a security proxy, which rewrites incoming SPARQL queries so they meet prior
defined access control policies. For creating and maintaining those policies together with the
corresponding ontologies in an integrated manner, we present an approach based on the Model-
driven Architecture (MDA). To this aim, the paper is organized as follows. In section 2 we briefly
recall previous work on a model-driven approach for managing lightweight ontologies for industrial
applications and provide an example ontology. In section 3, we extend the approach with a role-
based access control model that uses the XACML standard [17] for defining policies and show how
it applies to our example. In section 4, we discuss our approach for enforcing security policies by
rewriting SPARQL queries posed to the knowledge model. We conclude with a brief review of
related work in section 5 and a discussion of the strength and weaknesses of our approach.

2 Indutrial-Strength Ontologies

In previous work [1] we have proposed a lightweight knowledge model and an associated
metamodel that meets the representation requirements of typical industrial applications while still
being easy to understand and implemented using existing technology. In the following, we briefly
present parts of this model for which we investigate the development of a security framework.

A Metamodel for Lightweight Ontologies

Gasevic et al. [9] have shown the relevance of the Model-driven Architecture (MDA) for ontology
development. The Object Management Group (OMG), which provides all standards related to
MDA in software engineering, has recently finalized the standardization process of the Ontology
Definition Metamodel (ODM, [18]) - a metamodel for OWL ontologies based on the Meta Object
Facitiliy (MOF), the standard for describing such models. The participation of big players of the
branch such as IBM and AT&T and a first implementation by the Eclipse foundation, the EODM
project, shows the high relevance of the ODM particularly to the industry. The coverage of OWL
Full however results in a fairly complex metamodel. For OWL DL and Lite the ODM could be
significantly simplified, since the use of RDF constructs are restricted in these subsets. Because
OWL Full is not relevant to commercial applications due to its undecidability, we focus on more
practical subsets of OWL. To enable high performance reasoning even with large A-Boxes we
propose the use of a subset of OWL Lite, which falls into plain Datalog. Such a subset, namely
OWL Lite, has been defined by de Bruijn et al. [5]. The relevance of such a subset has been
discussed by Volz [22] and Hitzler et al. [12]. In order to enable the direct representation of data

664

from relational databases, we added the primitive data types. The resulting subset, OWL Lite™”, has
been presented in more details in [1]. Table 1 gives an overview of the included language elements
and also presents some mappings to other knowledge representation languages.

OWL Abstract Syntax

DL Syntax

vh.C

F-Logic Syntax

Datalog Syntax

restriction(R allValuesFrom(())* see partial elass definitions
. ANA:G A Alz) — Cilz)

Class(A partial ... Ci) AEG /\211 AN Ry = mo] — 301 /\2 Alzy) A Rz, x3) — Ci{xa)
Class (A complete C')...Ch) A=Cn...nCy| A { ;1[(; A {(-ir“,—_Ci f:
EquivalentClassas({')...(%) Ci=...=0y /\;.‘-J\ C; = C; Ar.—'J" Cilz) — Cilz
ObjectProperty([?

super (R;) .. super(R,) RCR; Az[R =yl — 2[R — 4] A R(z.y) — Rilz.y)

domain(Cy) ... domain(C,) TCYR .C; Az[R—=yl—2z:C; N Rz, y) — Ciix)

range(C')) ...range () TCVR.Cy AzlR =yl —y:C, ARz, y) — Cily)

[inverseDf(Ry)] R=R, A { i{gﬂ aylr A'L}L,R;;{: . ; A { g:l.;i.%:, A,Rg,; i,

[Symmetric] R=R" 2[R =y — y[R — 1] R(z,y) — Ry, z)

[Transitive]) Trans{R) J[R -y A r;i}? — :| — .r[R —= :] R(z.y) A Rly.z) — Rz, z)
SubProperty0f (R Ra) RiC Ry xRy — y] — x[Ry» — 1] Ri(x,y) — Ralz.v)
EquivalentProperties(R;... Ry) Ri=...=R, Nigj B — y] — 2[R; — 4 Nig; Rilz.y) — Rjlz.9)
DatatypeProperty (U

domain(C) ...domain(Cy,) TCEVU.C; AU = y] = w:C; (not supporled)

range ([))** TCUD CilU = D] ‘not supported)
Individual (o type(C}) ... type(Ch) o€ C; No:C; M Cilo)

value(R; o1) ... value(Ry, o,) (0,07} € By MolR; — o] A Rilo.0;)

value(l] v1) ... value(l; wvy) {0, vi) J; Aoll; —] not supported)

! for named classes
2 - - - .
=: for universal class restriction

* only allowed in partial class definitions
** only primitive datatypes allowed

Figure 1 Languages Features of OWL Lite™®

To actually utilize the metamodel for implementing an application for ontology development, we
build on the Eclipse Modeling Framework (EMF), a project aiming at providing Eclipse-based
tools for model-driven development. Among others, we can utilize the framework to automatically
generate a Java object representation of metamodels defined in the Ecore - a meta-metamodel
language, which is a real subset of MOF. Figure 2 shows the Ecore metamodel for OWL Lite™.

namespace
namespace |
(© Namespace 1 [
T prefix : EString & Resource
T absoluteURI : EString T identifier :EString
0.% | T label :EString
T comment @ EString
resources 4&
[
0 | type) | 1 datatype
© Ontalogy 0. domain © Propenry 3 Datatype (€] Data\f’glue @ Individual | 1"
0.1 T ientifier : EString | £ value :ESting
equivalentClasses anProperty |1 [ﬁ value
o 1
AL value
© OntologyClass 01 0.* | values
0.* range
subClasses j} (2 DatatypeProperty @ ValueSiat
B Restriction subPrapertie A
1 references 0
allvaluesFrom 0.
© DataSlot
— (O ObjectProperty
@ AllValuesFromRestriction T symmetric : EBoalean 1 references
—— T transitive : EBodlsan
© ObjectSlot
n.r n.r

equivalentProperties inverseProperties

Figure 2 Lightweight Ontology M etamodel

665

An Example

Consider a product ontology, which integrates different information about products and their parts
that may exist in different departments of a car manufacturer. Clearly, some information from e.g.
sales such as the purchase price of a part should not be visible for developers. Also, external staff
that works on specific parts should only see data which they require for their work. For example,
somebody who is working on the braking system should only be able to see brake parts and specific
electronic control units such as the Anti-Lock Braking System.

The example ontology is defined using the abstract OWL syntax:

Class(Manufacturer partial) Class(AntiLockBrakingSystem partial ElectroniControlUnit)

Class(Supplier partial Manufacturer Class(TransmissionControlUnit partial ElectronicControlUnit)
restriction(produces allValuesFrom Part)) Class(TCU partial ElectroniControlUnit)

Class(Product partial) EquivalentClasses(TCU, TransmissionControlUnit)

Class(Car partial Product) ObjectProperty(produces domain(Manufacturer)

Class(Part partial Product) range(Product))

Class(BodyPart partial Part) ObjectProperty(contains domain(Car) range(Part))

Class(PrototypeBodyPart partial BodyPart) DatatypeProperty(hasSalesPrice domain(Product) range(float))

Class(Brake partial Part) DatatypeProperty(hasPurchasePrice domain(Product)

Class(ElectronicControlUnit partial Part) range(float))

3 The Security Framework

Access Control and Policy Specification

Access control systems enable the regulation of access to protected resources (i.e. objects) in
distributed systems by subjects such as users or system processes (cf. [6]). They can be categorized
in discretionary access control (DAC), mandatory access control (MAC), and role-based access
control (RBAC) models. In DAC-based systems, the permissions to access an object are defined by
its owner. In MAC models, the system determines the access to objects either by utilizing access
rules or lattices for assigning permissions to subjects. It thus removes the ability of the users to
control access to their resources. RBAC systems finally remove the explicit use of subjects within
access rules or lattices and replace them with roles, which form a logical group of a number of
subjects. In fact, permissions are assigned to roles and the subjects are assigned members of a
number of roles. Thus changes of single subjects do not necessarily have consequences in the actual
access control policies.

The Extensible Access Control Markup Language (XACML) is an OASIS standard that describes
both a policy language and an access control decision request/response language (both written in
XML) [17]. The policy language consists of following basic constructs:

e PolicySet: A PolicySet is a container for a number of Policies or other PolicySets.

e Policy: A policy represents a single access control policy, expressed by a set of Rules. It
applies for a defined Target.

e Rule: A Rule consists of a Target element and has an attribute Effect, which can be either
‘permit’ or ’deny’.

e Target: The Target element declares a set of Subjects, Resources, and Actions for which a
Rule or Policy applies.

666

Note that the actual XACML specification defines a number of additional constructs to further
refine the access control policies. Altogether XACML is an extensible standard that allows
enterprises to build fine-grained access control systems.

Protecting Resour cesin Ontologies

In order to apply access control mechanisms to ontologies, we need to identify the resources, which
should be protected. Since the T-Box of ontologies in generally represents a shared vocabulary of a
specific domain, it is not reasonable to restrict access at this level. In fact, we aim at controlling the
access to instances of specific classes and properties — i.e. the A-Box, while the T-Box remains
unrestricted. We thereby assume that the access to individuals of all classes and all property values
are denied by default for avoiding unintended security leaks. Because of this, access to specific
classes and thus corresponding individuals as well as property values have to be explicitly granted
to subjects. For this purpose, we consider following basic access rule types: (1) permit access to all
individuals and values respectively of a class, a datatype property, or an object property; (2) deny
access to a specific individual. To refine these policies, we further provide means to (3) deny the
access to individuals and values of subclasses and subproperties of prior permitted resources. As
common in modern access control systems, we envision a RBAC model for simplifying the
maintenance of the access control policies.

Extending the M etamodel

In order to enable a uniform and interdependent maintenance of the protected ontologies together
with the security policies, we extend the earlier presented metamodel of lightweight ontologies by
means to model access control policies. Thus, we do not need to commit to a single representation
formalism for either ontologies or security policies. We initially cover a subset of the XACML
specification, which provides basic features for realizing the access control mechanism for
ontologies as presented above (cf. Figure 3). We thereby leave out the PolicySet element and only
consider simple restrictions on ontology resources. The use of the Target construct allows grouping
the Policies by Subjects, Resources, or any combination of both. If no Action, Subject, or Resource
is defined for a Target, we consider that the Policy or Rule applies for all Actions, Subjects, and
Resources respectively.

© Policy target 1 © Target 0" @ RestrictedResource

T policyld :EString [i3 action : EString
resource
P
‘ target 1
1.% rules
© OntologyClass @ Property @ Individual

@ Rule < <from ontalogy == < <from ontalogy == <<from ontology ==
T ruleld : EString
T effect @ EString subject

.
@ R 0+ © User

T username :EString
T password : EByteArray

T rolename ¢ EString

members

Figure 3 Access Control Policies M etamodel
Security Architecture

We can utilize existing reasoners for OWL Lite to infer implicit knowledge and query an ontology.
This is typically done by sending a SPARQL select query to the appropriate endpoint of the used
reasoner. In order to ensure confidentiality in such an infrastructure, we enforce the use of a
security proxy, which intercepts all communication to the reasoner. Similar to web proxy systems,

667

we require a user authentication prior to its first use. The proxy acts as the Policy Enforcement
Point (PEP) within the XACML architecture and constructs an authorization decision query to the
Policy Decision Point (PDP). The decision of the PDP is based on the access control policies
provided by the Policy Retrieval Point (PRP) and the information provided by the Policy
Information Point (PIP) about for example the role of a user. The PEP finally enforces the decision
of the PDP either by completely denying the query, by rewriting the query so it meets the security
policies, or by directly redirecting the query to the reasoner. Details of this part of the process are
discussed in section 4 below. The resulting security architecture ensures that enforcement of access
control policies in a loosely coupled way by utilizing existing frameworks and tools without the
need to modify existing reasoners, so they can directly support such a task.

Within this work we assume that the security proxy unifies the different components (PxP) defined
by the XACML architecture so there is no need to exchange messages between them. In future
work, we consider splitting the single parts into separated components.

Example

An external developer works on the braking system of a car and thus should be able to access the
required product information — i.e. information about Brakes and AntiLockBrakingSystems (ABS).
Nevertheless, a specific prototype ABS-system should not be visible for him. We define following
policy for a role ’ExternalBrakeDeveloper’:

Policy P, = {subject="ExternalBrakeDeveloper’, rules={R, Ry} }
Rule R; = {‘read’, ‘permit’, {Class(Brake), Class(AntiLockBrakingSystem) } }
Rule R, = {‘read’, ‘deny’, {Individual(ABS1)}}

For employees working in the sales department, we define similar rules, but explicitly permit the
access to the datatype property ‘hasPurchasePrice’:

Policy P, = {subject="Sales’, rules={R3, R4, Rs}}

Rule R; = {‘read’, ‘permit’, {Class(Product)}}

Rule R4 = {‘read’, ‘deny’, {Individual(ABS2)}}

Rule Rs = {‘read’, ‘permit’, {DatatypeProperty(hasPurchasePrice)} }

4 Enforcing Access Policies

As outlined above, security policies are enforced at a security proxy that receives queries to the
ontology and rewrites them in such a way that no policies are violated considering the presence of
logical inferences. In this section, we provide details about this rewriting step. The goal of the
rewriting step is to create a query that returns the same results as the original query except for those
answers that contain restricted information. For this purpose, the proxy first determines the access
restrictions that apply for the specific query by determining the role of the issuing user and looking
up the restrictions that apply to this role in the policy rules. As defined in the security framework,
such rules can apply to classes, properties and instances. In this paper, we further focus on read
restrictions on these elements. A proof-of-concept implementation based on the Jena framework
can be downloaded at http://www.chenwilly.de/wi.html.

Preliminaries
Select queries in SPARQL typically contain a set of triple patterns, where subject, object and

predicate may all be variables. However, for rewriting queries to meet the defined access

668

restrictions it is essential to be able to determine, if a variable will hold an individual or a data
value. This can be achieved only if we assume that the predicate position within a triple is not a
variable. Knowing the predicate, we can easily determine what kind of resource occurs for the
subject and the object position. We refer to ?vi as variables for individuals and ?di for data values.
Temporary variables ?t; are introduced to expand the query with respect to enforce the given
policies. When combining several filters we ensure that the variable names remain unique.

Filtering Query Results

A read restriction on individuals 1y, .., i, is interpreted in the way that the user is not allowed to see
answers that contain this specific individual. This condition can easily be fulfilled by extending the
query with the following filter condition on each of the return variables ?vy:

FILTER (v = eXii1 & & .. && v = i)

This condition removes all results, where restricted individuals are bound to any of the return
variables.

We interpret read restriction on a class C in such a way that the user is not allowed to see answers
that contain instances of the restricted class. Therefore not allowing the access to a class is
equivalent to restricting the access to any individual of the class. Matters are complicated by the
fact that class membership can be inferred using the ontology. Therefore, it is not possible to
simply add filter restrictions for all instances that are defined to be member of restricted classes.
We can however, delegate this problem to the underlying inference engine by using a filter
expression on the schema level:

OPTIONAL { vy rdf:type 2t; . FILTER (?t; = C) } FILTER (! bound (?t1))

This expression checks for each return variable, whether the instance bound to the variable is of
type C. If this is true, the corresponding answer is filtered out based on the criterion that variable
?t; 1s bound to the restricted class.

Read permission on classes can be enforced in a similar manner by adding a filter expression,
which ensures that the queried instances are at least member of one of the permitted classes C;:

vy rdf:type ?ty. FILTER (?t; =C1 || ... || 2t1 = C»)

We further interpret restrictions on a relation R in the way that the user is not allowed to see
answers in which two of the return variables are bound to instances that are in relation R to each
other, because queries might be formulated in such a way, that they model the restricted relation
without actually mentioning it. We again use a filter expression to filter out the corresponding
answers from the result set.

OPTIONAL { 2 2t 2; . FILTER (?t1 = R) } FILTER (! bound (?t1))

Here ?vi # ?vj are return variables of the query. The expression checks whether the existence of
relation R between ?vi and ?vj can be derived from the ontology. If this is the case, the
corresponding answer is filtered out based on the criterion that the variable ?t; is bound to R. This
solution again delegates the problem of dealing with derivable information to the underlying
inference engine which is used to check whether (?vi ?t; ?v;) can be derived from other information

669

such as inverse relations, etc. Clearly, ?vi or ?v;j may also be concrete resources. Similar to
explicitly granting read access to individuals of a specific class, we can add a filter for permitting
access to property values R;:

?Vk ?t]_ r)VJ FILTER (?t]_: Rl ” " ?t]_: Rn)

Controlling the Rewriting Process

In section 4.2 we have presented the concrete filter expressions that can be used to ensure that no
restricted information is returned by a query. This section now deals with linking the manipulation
of the queries with the policy specifications in order to control the rewriting process. Following the
assumption from 3.2, we can formulate a simple rewriting strategy that first extends the query with
filters for those individuals explicitly restricted for the role under consideration and then also adds
filters for concepts and relations access to which is not explicitly permitted. The corresponding
simple algorithm is given below:

ReWrite(Q:Query, R:Role, P:Palicy)
FORALL {i,read, R, deny} € P DO AddDenyFilter (Q,i)
FORALL {C,read, R, permit} e PDO AddPermitFilter(Q,C)
FORALL {C,read, R, deny} € PDO AddDenyFilter (Q,C)
FORLAL {P,read, R, permit} e PDO AddPermitFilter(Q,P)
FORALL {P, read, R, deny} e PDO AddDenyFilter (Q,P)
IF{C,read, R, permit} ¢ P DO DenyAccess(Q)
IF {P, read, R, permit} ¢ P DO DenyAccess(Q)

Verifying Anomaliesin Access Policies

During the creation and maintenance anomalies such as contradictory rules could occur in access
policies. Since we use filters to enforce the policies, a deny rule always overrides a permit rule on
the same resource. Thus, inconsistent access policies would not result in unintended information
leaks. To ensure the consistency of access policies, we additionally provide an initial set of
verification rules that can be applied at the metamodel level on rules that apply for the same
subject:

e [F EXISTS R; = {‘read’, ‘permit’, RestrictedResource(R)}, R, = {‘read’, ‘deny’,
RestrictedResource (R)} THEN Anomaly(R;, R»)

e [F EXISTS R; = {‘read’, ‘permit’, OntologyClass(C;)}, R, = {‘read’, °‘deny’,
OntologyClass(C;)} AND EquivalentClasses(C;,C;) THEN Anomaly(R;, R,)
e IF EXISTS R; = {‘read’, ‘permit’, ObjectProperty(P;)}, R, = {‘read’, ‘deny’,

ObjectProperty(P,)} AND (EquivalentProperties(P;,P;) OR ObjectProperty(P;
inverseOf(P,))) THEN Anomaly(R;, R»)

e [F EXISTS R; = {‘read’, ‘permit’, ObjectProperty(P;)}, R, = {‘read’, ‘deny’,
OntologyClass(C;)} AND (ObjectProperty(P; domain(C;)) OR ObjectProperty(P;
range(C;))) THEN Anomaly(R;, Ry)

e [F EXISTS R; = {‘read’, ‘permit’, DatatypeProperty(P;)}, R, = {‘read’, ‘deny’,
OntologyClass(C;)} AND DatatypeProperty (P; domain(C;)) THEN Anomaly(R;, R,)

670

5 Reated Work

Recently, there has been quite a bit of work on combining semantic web technologies with security
issues. Most of this work, however, is about applying semantic web technologies to the problem of
specifying and checking security policies and related aspects (e.g. [15]). The aspect we are
interested in, the protection of knowledge encoded in an ontology has so far received less attention.
Qin and Atluri [19] have presented an approach to enable access control at concept level for
ontologies. Their approach is based on a propagation mechanism that derives access rights for
concepts based on the semantic of the ontology and partial access rights explicitly stated. A similar
approach is envisioned by Knechtel [14] who proposes to derive the access rights of derived facts
from the access rights based on access restrictions imposed on stated knowledge. In contrast to this
our approach relies on the re-writing on queries based on security policies. This allows us to leave
the task of optimizing the execution of the query to the query engine.

The inference problem, which is central to our work, has been investigated by researchers in the
field of database research [7]. The problem has been investigated in the context of statistical
databases, where statistical inference can be used to derive classified information from unclassified
ones [16]. Special attention has been paid to the inference problem in the context of multilevel
secure databases. Here it also has to be ensured that access policies are not violated between the
different security layers. In our work, we have so far ignored such problems arising in multilevel
security policies. Most of the work on secure databases has addressed the relational model and
problems that arise from the use of database constraints. The problem of enforcing security
constraints in deductive databases, a problem that is closely related to our work has so far only
been addressed on a theoretical level with little concerns on implementability [3] .

6 Conclusions

In this paper we have presented an approach to restrict the access to confidential knowledge that is
represented using ontologies, which we consider an important feature for real world applications.
We thereby fully build on existing technologies and infrastructures. The access control system
relies on a security proxy, which intercepts all communication to the SPARQL endpoint of any
utilized OWL reasoner. When enforcing fine-grained role-based access policies we need to take
possible inferences from the ontology into account. Instead of realizing this complex issue within
the security proxy, we delegate this task to the reasoner by adding SPARQL filter statements to
incoming queries from users. This allows us to apply our solution with all reasoners supporting
OWL Lite and SPARQL.

Since the access policies and rules are highly dependent on the ontologies they have been defined
for, we utilize a model-driven approach to enable their interdependent development and
maintenance. Moreover, we do not need to decide for a specific representation language for either a
priori, but can transform the created models to various formalisms we required. For ontologies, we
can directly support OWL, F-Logic [13], and Datalog, while we may rely on the XACML
specification for access policies.

Future work includes the support of variables at the predicate position of triple patterns in SPARQL
queries. Similarly to the rewriting of queries, we thereby aim at analyzing the query results,
whether they contain confidential information. Also, we intend to support access control
mechanisms for OWL DL on the one hand and OWL Lite™ combined with rules. Clearly,
hierarchical access control models will also be part of future research.

671

7 Bibliography

[1] CHEN, W. and STUCKENSCHMIDT, H., Towards industrial strength knowledge bases for product lifecycle
management, in: 16th European Conference on Information Systems, Galway, Ireland, 2008.

[2] CHEN, W. et al., Business-oriented CAx-Integration with Semantic Technologies, in: 3rd International
Applications of Semantic Technologies Workshop, Munich, Germany, 2008.

[3] BONATTI, P. et al., Foundations of Secure Deductive Databases IEEE Transactions on Knowledge and Data
Engineering, 1995.

[4] DAVIS, M., Semantic Wave 2008 Report - Industry Roadmap to Web 3.0 & Multibillion Dollar Market
Opportunities 2008

[5] DE BRUIJN, J. et al., OWL Lite’, WSML Deliverable D20 v 0.1, 2004.

[6] ECKERT, C., IT-Sicherheit, Oldenburg, 2003.

[71 FARKAS, C. and JAJODIA, S., The inference problem: a survey, SIGKDD Explor. Newsl., ACM, 2002.

[8] FENSEL, D., Ontologies: Silver Bullet for Knowledge Management and Electronic Commerce, Springer, 2001

[9] GASEDVIC, D. et al., Model Driven Architecture and Ontology Development. Springer, 2006

[10] HAHN, A., Integration verteilter Produktmodelle durch Semantic-Web-Technologien, Wirtschaftsinformatik, 47,
278-284, 2005.

[11] HEPP, M., Possible Ontologies: How Reality Constrains the Development of Relevant Ontologies, IEEE Internet
Computing, 2007.

[12] HITZLER, P. et al., DLP is not so bad after all, in: OWL: Experiences and Directions, 2005.

[13] KIEFER, M. et al., Logical Foundations of Object-Oriented and Frame-Based Languages, Journal of the ACM,
1995.

[14] KNECHTEL, M., Access rights and collaborative ontology integration for reuse across security domains, Poster,
ESWC 2008 PhD Symposium, 2008.

[15] KOLOVSKI, V. et al., Analyzing Web Access Control Policies, in: Proceedings of the Sixteenth International
World Wide Web Conference, 2007.

[16] MANDUJANO, S., Inference Attacks to Statistical Databases: Data Suppression, Concealing Controls and Other
Security Trends, Aleph-Zero electronic magazine 25, 2000.

[17] OASIS, A Brief Introduction to XACML, http://www.oasisopen.org/committees/download.php/2713/Brief
Introduction to - XACML.html, March 2003.

[18] OMG Adopted Specification, Ontology Definition Metamodel, http://www.omg.org/docs/ptc/07-09-09.pdf, 2007.
[19] QIN, L. and ATLURI, V., Concept-level access control for the semantic web, in: Proceedings of the 2003 ACM
workshop on XML security, 2003.

[20] STAAB, S., Wissensmanagement mit Ontologien und Metadaten, Habilitation Thesis, University of Karlsruhe,
2002.

[21] SYLTAKE, T. et al., How Ontologies and Rules Help to Advance Automobile Development Advances in Rule
Interchange and Applications, in: Proceedings International Symposium RuleML 2007, Orlando, Florida, 2007.

[22] VOLZ, R., Web Ontology Reasoning with Logic Databases, PhD thesis, Universitit Fridericiana zu Karlsruhe,
2004.

672

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	A MODEL-DRIVEN APPROACH TO ENABLE ACCESS CONTROL FOR ONTOLOGIES
	Willy Chen
	Heiner Stuckenschmidt
	Recommended Citation

	Microsoft Word - Erste Seiten 246_Band1.doc

