
Association for Information Systems
AIS Electronic Library (AISeL)

MCIS 2009 Proceedings Mediterranean Conference on Information Systems
(MCIS)

2009

Measuring Developer Contribution From Software
Repository Data
Eirini Kalliamvakou
Athens University of Economics and Business, ikaliam@aueb.gr

Georgios Gousios
Athens University of Economics and Business, gousiosg@aueb.gr

Diomidis Spinellis
Athens University of Economics and Business, dds@aueb.gr

Pouloudi Nancy
Athens University of Economics and Business (AUEB), pouloudi@aueb.gr

Follow this and additional works at: http://aisel.aisnet.org/mcis2009

This material is brought to you by the Mediterranean Conference on Information Systems (MCIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in MCIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Kalliamvakou, Eirini; Gousios, Georgios; Spinellis, Diomidis; and Nancy, Pouloudi, "Measuring Developer Contribution From
Software Repository Data" (2009). MCIS 2009 Proceedings. 55.
http://aisel.aisnet.org/mcis2009/55

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fmcis2009%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2009?utm_source=aisel.aisnet.org%2Fmcis2009%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2009%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2009%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2009?utm_source=aisel.aisnet.org%2Fmcis2009%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2009/55?utm_source=aisel.aisnet.org%2Fmcis2009%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

600

MEASURING DEVELOPER CONTRIBUTION FROM SOFTWARE REPOSITORY DATA

Kalliamvakou, Eirini, Athens University of Economics and Business, 47 Evelpidon Street, 11362,
Athens, Greece, ikaliam@aueb.gr

Gousios, Georgios, Athens University of Economics and Business, 76 Patission Street, 10434,
Athens, Greece, gousiosg@aueb.gr

Spinellis, Diomidis, Athens University of Economics and Business, 76 Patission Street, 10434,
Athens, Greece, dds@aueb.gr

Pouloudi, Nancy, Athens University of Economics and Business, 47 Evelpidon Street, 11362,
pouloudi@aueb.gr

Abstract

Our work is concerned with an enriched perspective of what constitutes developer contribution in
software infrastructures supporting incremental development and distributed software projects. We use
the term “contribution” to express the combination of all the actions a developer has performed during
the development process and propose a model for calculating this individually for developers
participating in a software project. Our approach departs from the traditional practice of only measuring
the contribution to the final outcome (the code) and puts emphasis additionally on other activities that
do not directly affect the product itself but are essential to the development process.We use the Open
Source Software (OSS) context to take advantage of the public availability of data in software
repositories. In this paper, we present our method of calculation and its system implementation and we
apply our measurements on various projects from the gnome ecosystem.

Keywords: Contribution, Metrics, Open Source Software, Repositories

1 INTRODUCTION

An important aspect of all engineering principles is the assessment of the contribution of individuals
that work on a project. Contribution assessments are performed to monitor the rate of project
development, identify implementation bottlenecks and isolate exceptional cases, while the results of
contribution assessments can help with project planning and future estimations. An open issue linked
with contribution assessment is the definition of what contribution is in a particular context and also the
selection and application of the appropriate measurements.

In software engineering, contribution assessment entails the measurement of the contribution of a
person in terms of lines of code (LOC) or function points towards the final development of a software
project (Kan, 2003). This practice clearly focuses on the contribution to the final outcome of the project
(i.e. the source code). To this end, only LOC is regarded as measured contribution. In recent years,
however, the shift towards modern development practices and the proliferation of software and project
management tools challenge this perspective. A software developer today is not only required to write
code, but also to communicate and coordinate with colleagues effectively and to use a variety of tools
that produce and modify code with minimal input from his or her side. This change has become more
apparent with the emergence of Open Source Software (OSS).

In this respect, a developer contributes to a wide range of activities both involving the process and the
product. Such an enriched perspective on a developer’s contribution requires all individual actions to be
taken into account. In this paper we discuss and measure contribution in this respect; a combination of
all the actions a person has performed during the software development process weighted for their
significance to the specific project. Our practice, then, encompasses the contribution to the final
outcome as well as to the process that generated it.

601

This paper introduces a new model for measuring developer contribution, assuming that a more
comprehensive image can be formed about a developer’s contribution by combining actions directed
towards the product itself and the process that yields it. For implementing our contribution calculation
algorithm we have combined our proposed model of calculation with repository mining techniques. We
provide a visual representation of the results, thus offering rich information regarding the total
contribution per developer and how it is divided among different actions during the development
process. Our initial observations set the basis for discussing contribution to multi-agent, distributed
software projects based on this new kind of information.

2 EXISTING WORK

We use the term “contribution” to express the combination of all the actions a developer has performed
during the development process. In today’s changing software development environment a developer’s
work items have been enriched with the addition of further activities that benefit the whole project, and
this reality needs to be reflected. Contribution, as a notion, encapsulates other notions that have been
frequently used in the literature to express activity, participation, effort or performance. In these cases,
we see that although the name changes, the same concept is being described and the same
measurement is used.

Productivity is a reoccurring discussion in all processes that involve inputs and outputs. In economic
terms, productivity is the ratio of output to input, the output of a process divided by the effort required
to produce it. In Walston & Felix (1977), programmer productivity is defined as the ratio of the delivered
source lines of code (DSL) to the total effort in man-months (MM) required to produce the delivered
program. Input and output in software engineering processes are frequently addressed with output
usually measured in LOC (Walston and Felix, 1977; Asundi, 2005; Maxwell and Forselius, 2000). As the
LOC metric cannot be determined safely before the end of the project, function point analysis usually
complements it. Input, on the other hand, is not as a straightforward notion in software development
and its calculation requires further explanation.

In a software project there are several assets that receive input (Hertel et al., 2003; Koch and Schneider,
2000), leaving trails of the actions of participating developers. Participation and performance of
developers, which can be calculated from their input, are frequently discussed in productivity contexts.
Again, although it is noted that OSS developers provide many different kinds of services to their
projects, participation is measured in terms of number of source code contributions, showing a
complete focus on participation to the outcome, while performance is mainly expressed in terms of rank
advancement (Roberts et al., 2006).

The shortcomings of just measuring LOC to account for a developer’s significance to a project have been
discussed by researchers (Amor et al., 2006). Aiming to estimate cost in the OSS context, Amor et al.
propose that developer activity should be calculated. Although this is usually done by means of loc, they
stress that it is necessary to enhance this by a more detailed description of activity that accounts for
actions other than simply writing code. This is a first attempt to move from focus on the outcome to
examining the whole process. Cost is considered a function of effort, which in turn is considered a
function of activity and suggested sources of information include CVS repositories, mailing list archives
and bug tracking systems. In this regard, Amor et al. differentiate from previous literature that regards
participation of developers simply as the addition of LOC (Koch and Schneider, 2002; Mockus et al.,
2002; Mockus and German, 2003).

Today, with software development following more agile practices, developers in a project contribute to
more project assets than simply writing code. Agile software development shares similarities with the
OSS environment (Warsta & Abrahamsson, 2003) and here developers, too, have a multifaceted
presence and contribution to the project, not only at the level of the code artifact but also in more
supporting activities. Especially OSS projects lend themselves well to discussions and calculations of
contribution due to the wide variety of publicly available data. To this end, we propose a definition and

602

measurement of developers’ contribution that accounts not only for the LOC that they have produced
but also their support via posting to mailing lists, submitting bug reports and building wikis.

Asset Action Id Effect

Code and Add lines of code CADD +
Documentation Remove lines of code CREM +
Repository Change lines of code CCGN +
 Commit new source file CNS +
 Commit new directory CND +
 Commit code that generates a bug CGB -
 Commit code that closes a bug CCB +
 Add/Change code documentation CAD +
 Commit fixes to code style CSF +
 Commit more than X files in a single commit CMF -
 Commit documentation files CDF +
 Commit translation files CTF +
 Commit binary files CBF -
 Commit with empty commit comment CEC -
 Commit comment that awards a pointy hat CPH +
 Commit comment that includes a bug report num CBN +

Mailing lists - First reply to thread MFR +
Forums Start a new thread MST +
 Participate in a flamewar MFW -
 Close a lingering thread MCT +

Bug Database Close a bug BCL +
 Report a bug BRP +
 Close a bug that is then reopened BCR -
 Comment on a bug report BCC +

Wiki Start a new wiki page WSP +
 Update a wiki page WUP +
 Link a wiki page from documentation/mail file WLP +

IRC Frequent participation to IRC IFP +
 Prompt replies to directed questions IRQ +

Table 35. Project resources and actions that can be performed on them. The effect column denotes
whether an action has positive or negative impact.

3 OUR APPROACH

Our work is concerned with the measurement of developer involvement and activity in the face of
incremental and distributed development practices. The model we are building exploits the availability
of publicly accessible software repositories to perform measurements and its system implementation
can run fully automatically with no human intervention. The current paper extends previous work
(Gousios et al., 2008), both theoretically as well as technically. Specifically, we present an updated
method of calculation and a more detailed table of actions. Also, we have applied our methods and
measurements to generate results.

Our model departs from the classic measurement practices as it does not consider the added lines of
source code as the only contribution metric. This is a deliberate choice that we believe better reflects
how software is developed using modern development methodologies, in the context of which, an
important portion of development time is spent on communication and manipulation of development
support tools. Our model does not neglect the importance of source code either; we still use the lines of
code which we have represented via three actions (CADD, CREM, CCGN in Table 1), but we also combine
them with the developers’ other actions on the project. We argue that this combination provides a more

603

complete image of how much a developer has contributed to the software development process, not
accounting only for writing code.

To identify which actions can be classified as contribution, we follow a hierarchical, top-down approach:
we first identify the project assets that can potentially receive contribution and then analyze the actions
that can be performed on each of the identified assets to see if they constitute a contribution or not.
The actions have been initially identified intuitively and through personal experience and based on
related literature (Hertel et al., 2003; Koch and Schneider, 2000; Amor et al., 2006). After consulting
with experts the table is updated and refined.

In Table 1, we present a non-exhaustive breakdown of actions that can be performed on the identified
project assets. Most actions are self-explanatory and relatively easy to mine from each asset repository
using simple heuristics or external tools (Spinellis, 2006). Each action is a measurable entity whose value
is updated after the corresponding project asset has been updated.

Not all actions have a positive effect on a project; for example, a commit with an empty commit
comment can be considered as negative contribution in the sense that it is considered bad practice.
Furthermore, not all actions have the same importance on the evolution of a project; for this reason, we
also specify weights that are attached to each action.

We consider a project with a set of k developers (which we shall call Developers throughout). Each one
of them can perform any of the n different actions to contribute to a project. With each action i, we
associate two functions, ci : Developers → R and Ci : Developers → [0, 1]. ci(d) represents the total
number of actions identified for developer d with regard to action i, while Ci(d) is the corresponding
percentage, i.e., ci(d) divided by the sum of the work that all developers did in this action:

Since not all actions have a positive effect on the project, we can group actions together and derive
separate calculations for positive-effect and negative-effect contributions of developers.

Furthermore, not all actions that constitute contribution to the project have the same importance. For
this reason, the model also allows for weights to be attached to each action. These weights will be
specified independently of the model, in order to reflect individual views regarding each action’s
significance to the whole project, for every different project.

We either use weights w1,…, wn [0,1] with a sum of 1, or we may use arbitrary weights W1,…, Wn

R to represent significance. If we use the weights wi we compute the total contribution of each
developer d by

while in the case that we use Wi we compute the weighted average:

The model’s invariant is that for any i,

k

j
ji

i

dc

d
d

1

ic
C

n

i
iitot dwd

1

CC

n

i
i

n

i
ii

tot

d

d

1

1

W

CW

C

1
1

k

j
ji dC

604

4 MODEL EVALUATION

In order to evaluate our proposed metric, we have applied the Kaner & Bond metric evaluation
framework (Kaner & Bond, 2004). Kaner & Bond propose their framework to evaluate software metrics
through the measurement of which quality attributes can be captured and described. The framework
denotes that the metric should possess certain properties in order to ensure that it fits the purpose of
describing the quality attribute.

Currently we use the proposed contribution metric in its own merit but we see that it can be used also
to explain causal relationships involving contribution since it captures well the scaling of the measured
attribute. We use this as an evaluation of our metric for the purposes of this paper.

The results can be seen in Table 2. In Section 7 we discuss how we plan to verify our method of
calculation.

Criterion Our Metric

Purpose Assess developer contribution in distributed working environments.
Scope A project developed by a distributed workgroup
Measured Attribute Degree of contribution to the development process
Attribute Scale Ratio scale
Attribute Variability There is no knowledge of the variability of the measured attribute prior to

performing the measurements
Metric Function The proposed metric counts and weights the number of actions on project

assets. The highest those counts are, the more a developer has contributed to a
project in a positive or negative manner (see section 3)

Metric Scale Ratio scale: The higher the contribution value, the more a developer has
offered to the project.

Variability of readings Some metric components are based on heuristics which may not work in
certain cases. This may affect measurements in non-foreseeable ways. Metric
components showing unstable results should be identified and excluded from
the final version of the model.

Attribute and Metric
Relationship

The metric generally captures changes in the attribute well. Metric components
are analogous to contribution, subject to variability. For 2 given developers in
the same project, d1 and d2, the equation c(d1) + c(d2) = c(d1 + d2) is always
valid.

Side effects No side effects can be foreseen. As the metric takes into account a variety of
factors and it is automatically calculated it is difficult for developers to change
their behavior towards optimizing the metric without increasing their actual
contribution.

Table 36. Metric evaluation according to the Kaner & Bond framework.

5 IMPLEMENTATION AND METHODOLOGY

The model presented has been developed as a plug-in to the Alitheia Core software evaluation tool. The
Alitheia platform is an extensible, open platform for software engineering research (Gousios & Spinellis,
2009). Alitheia Core consists of a set of services, such as accessors to project assets, continuous
updating of monitored projects and relational data storage, and it is extensible through the use of plug-
ins. Plug-ins can either implement basic software metrics or combine the results from various project
data sources or from other plug-ins arbitrarily. Alitheia Core stores plug-in results differentialy, by
attaching them to entities exported by its database. The system is designed to perform in-depth analysis
of thousands of projects on a per repository revision basis and allows full automation of the quality
evaluation process after the initial project registration. We used the Alitheia Core tool to preprocess the
full history of the source code repositories, the full mailing list archives up to January 2009 and 3 years
worth of bug reports from 48 sub-projects of the gnome project.

605

The contribution plug-in is implemented as a compound plug-in, building on the pre-existing size metrics
plug-in to avoid re-implementing them. The contribution plug-in is bound to three project entities,
namely project versions, mailing list threads and bug reports. This means that it is automatically
recalculated every time the core system encounters an updated version of either of the three entities.
The overall implementation is relatively straight forward: the plug-in makes extensive use of platform
services, for example to recognize file types or to get threaded messages in order of arrival, in order to
analyze the actions that the developer has performed on the affected resources.

The plug-in uses a custom table to extend the Alitheia Core default schema in order to store its results.
The storage schema extension can be seen in Figure 1. For each identified action, the plug-in stores the
affected resource identifier, the developer identifier and also copies the timestamp of the affected
resource.

A crucial point of the implementation is the identification of developer identities across the three data
sources. In the course of a project, developers use several emails to post to mailing lists or to subscribe
to bug tracking systems, but usually can be uniquely identified by the name that is attached to an email
post or the user name for the project’s SCM system. During the project updating phase, Alitheia Core
fills the Developer table in with all data each updater knows or can infer from the raw data, namely user
names, {real name, email} tuples and emails for source code, mailing lists and bug databases
respectively. It then applies a set of heuristics, such as various anagrams of the developer’s name and
approximate string matching algorithms, to map developer names to SCM usernames. Identity
resolution is currently not very effective: out of the 6137 unique usernames the system recognized for
the projects we evaluated, only 598 were fully resolved. For this reason, we conducted all
measurements on the set of identities that have been matched only. We performed manual inspection
on a random set of matched identities to ensure the validity of the matching.

606

Figure 1. Relationships between entities defined by the Alitheia Core storage schema and those
defined by the contribution plug-in

6 RESULTS AND DISCUSSION

We have performed our measurements on 48 sub-projects of the gnome project. We have gathered
data for 17 actions, 14 with positive effect and 3 with negative. Our data cover the whole history of the
project until January 2009 for source code and mailing list-related actions, while we also processed the
bug reports for the last 3 years.

In Figures 2 and 3 we present the visual representation of our results.

This is a new type of information offered that can be used for discussion of various aspects of
contribution, especially if combined with project-specific characteristics. We have chosen to present 4
projects (Gnome Desktop, Gnome-vfs, Gedit and Tracker), where the percentage of resolved developers
was greatest. For each project we can see how the total contribution of each developer is distributed
among actions, accounting separately for positive-effect (up) and negative-effect (down) contribution. In
these diagrams the information relates specifically to resolved developers.

Although our model supports action weights, for the purposes of this paper we have made all our
calculations using equal weights of 1 for each action. As a result of this decision on the one hand we lose
information regarding contribution in terms of significance to the project but, on the other, we see more
clearly how developers decide to spread their contribution across different actions.

The view of contribution offered by these diagrams enables us to make a series of observations. Firstly,
we can use them to focus on exceptional cases in a project and see what pattern the specific developers

607

portray. For example we can see that in Gnome Desktop the developer with the highest contribution in
positive-effect actions has a very low contribution in negative-effect actions. On the other hand, in
Gnome-vfs we observe that the highest-ranking developers in terms of positive-effect contribution also
have the highest negative-effect contribution. Such observations might lead to different conclusions for
each project, taking into consideration its specific characteristics. For example, a single developer in the
Gnome-Desktop project has a high score of binary file commits; judging from the fact that the Gnome-
Desktop project develops the user visible parts of the desktop, a possible explanation could be that the
specific developer is a project artist that commits a large number of image files. Also, in the Gnome-vfs
project, we observe that the developers who have done the most work, seem to also have performed
the largest share of big number of files commits. This might be due the fact that the people that do the
most work are project leaders and therefore are those that create branches of tags, which in turn makes
them appear to have committed the most files.

We can use this type of results also to discuss the nature of the distribution of work carried out by
developers. An important observation is that, in this initial stage, there doesn’t seem to be an exclusive
predominance of one action. Developers spread their contribution among several actions relating to all
aspects, not showing a high degree of specialization.

More specifically, it is interesting to see that the three actions relating to the traditional LOC (CADD,
CREM, CCGN), are not as dominant as would be expected. Indeed we see that not all participating
developers contribute to these actions and that developers that do, also devote a substantial portion of
their work in other actions, too. This supports our argument that strictly measuring code only speaks for
a fraction of a developer’s contribution and that this information needs to be combined with activity in
other domains of the process.

We have also used our data to check whether a Pareto-like principle applies to the set of projects that
we have reviewed so far. For this purpose, we have prepared a diagram (Figure 4) that shows the total
contribution percentage of the highest-ranking 30% of developers in each project.

The Pareto principle states that for many events, roughly 80% of the effects come from 20% of the
causes, and has been found to apply to many software engineering processes [Boehm, 1987] and
artifacts (Louridas et al., 2008). Used for large sets of participants this can take the form of various
combinations (60-40, 70-30 e.t.c). In our case we can see that for the set of all developers (both resolved
and not), on average 70% of contribution comes from 30% of developers.

608

Figure 2. Positive (up) and negative (down) action distribution for various project developers

609

Figure 37. Total contribution from the top 30% of developers for various projects

7 LIMITATIONS AND FURTHER RESEARCH

One limitation of our research relates to possible validity threats of the discussed methods. Firstly, our
individual methods of calculating activities are not the only ones available. We have reviewed
alternatives and have chosen those that are closer to our data types and organization. Although these
may not be considered optimum, they are commonly applied to all projects and all involved developers,
thus rendering no consistency problems.

Secondly, we have used in our data sets only those developers that we have successfully matched to all
assets. Currently, there is no process that leads to more accurate results than manual matching. Due to
the lack of an automated process and since manual matching is unlikely for such large numbers, we have
relied on heuristics. Our methods provide satisfactory results, in some cases even better that previous
methods, but still the developer sets we obtained are only 10% of the actual developers. We are
currently investigating automated methods that will improve the ratio of matching to total developers
so that we don’t lose significant amounts of information.

There is an additional consideration regarding matching developers. We have assumed that only
developers that are matched across all assets should be retained as valid data. This assumption poses
the threat that developers that are indeed active in only one aspect of the development process will be
disregarded. In our view, however, such an assumption will not heavily distort the data as developers
that are exclusively involved in only one asset are not common. A final validity threat is posed by the
fact that people have the ability to tailor their behaviour to things they are measured against. Hence,
some distortion is possible (Austin, 1996, Weinberg & Schulman, 1974).

As it was mentioned earlier, we plan to further verify our method of calculation. For this purpose we will
address our model as a formative model of measurement (Diamantopoulos & Winklhofer, 2001) and
test it through a Partial Least Squares (PLS) model testing. Also, our approach with positive and
negative-effect contribution is debateable and we will review it further.

An additional goal regarding this research is to develop suitable techniques in order to mine data for
additional actions and a larger number of projects, thus broadening our view of developer contribution
with enriched information. The results offered by our proposed method and tool can be used to analyze
and discuss patterns of developer contribution in a variety of contexts. An interesting aspect would be

610

to incorporate the element of time and discuss how developer contribution levels change at different
time intervals or between project milestones (e. g. releases). Finally, we plan to investigate the relative
influencing power of actions as well as any parameters outside projects that may affect contribution.

8 CONCLUSION

In this paper, we have presented our work concerning the calculation of individual developer
contribution to the software development process. We have formed a method for measuring
contribution that encompasses actions of participation to the source code repository, the mailing lists
and the bug tracking systems of software projects and applied this initially to several projects of the
gnome ecosystem. The resulting information, here demonstrated for a selection of projects, can be used
to better our understanding regarding the nature of the distribution of work done by developers and
enhance the research agenda in OSS. Future research activities include the use of this information on a
larger scale of projects and its combination with additional data for clusters of projects for performing
analyses.

The full source code for the Alitheia Core and contribution metric plug-in can be found online at
http://www.sqo-oss.org.

Acknowledgements

This work was partially funded by the European Community’s Sixth Framework Programme under the
contract IST-2005-033331 “Software Quality Observatory for Open Source Software (SQO-OSS)”. Project
contributors include the Aristotle University of Thessaloniki, Prosyst Software GmbH, Sirius plc,
Klaralvdalens Datakonsult AB and members of the KDE project community. The authors would like to
thank Stavros Grigorakakis for his work in organizing the mirrored project data.

References

Amor, J. J., Robles, G., and Gonzalez-Barahona, J. M. (2006). Effort estimation by characterizing
developer activity. In The 8th international workshop on economics-driven software engineering
research. ACM.

Asundi, J. (2005). The need for effort estimation models for open source software projects. In 5-WOSSE:
Proceedings of the fifth workshop on Open source software engineering, pages 1–3, New York, NY,
USA. ACM.

Austin, R. D. (1996). Measuring and Managing Performance in Organizations. Dorset House Publishing
Company, Incorporated.

Boehm, B. W. (1987). Industrial software metrics top 10 list. IEEE Software, 4(9):84–85.
Diamantopoulos, A. and Winklhofer, H. M. (2001). Index construction with formative indicators: An

alternative to scale development. Journal of Market Research, 38(2):269–277.
Gousios, G., Kalliamvakou, E., and Spinellis, D.(2008). Measuring developer contribution from software

repository data. In MSR ’08: Proceedings of the 2008 international working conference on Mining
software repositories, pages 129–132, New York, NY, USA. ACM.

Gousios, G. and Spinellis, D. (2009). Alitheia core: An extensible software quality monitoring platform. In
Proceedings of the 31rst International Conference of Software Engineering – Research Demos Track,
Vancouver, CA. IEEE. To appear.

Hertel, G., Niedner, S., and Herrmann, S. (2003). Motivation of software developers in open source
projects: an internet-based survey of contributors to the linux kernel. Research Policy, 32(7):1159–
1177.

Kan, S. H. (2003). Metrics and Models in Software Quality Engineering, chapter 12.3 Productivity
Metrics. Addison-Wesley.

http://www.sqo-oss.org/

611

Kaner, C. and Bond, W. (2004). Software engineering metrics: What do they measure and how do we
know? In 10th International Software Metrics Symposium (METRICS 2004). IEEE, IEEECS Press.

Koch, S. and Schneider, G. (2000). Results from software engineering research into open source
development projects using public data. Diskussionspapiere zum Tatigkeitsfeld
informationsverarbeitung und informationswirtschaft, Wirtschaftsuniversitat Wien.

Koch, S. and Schneider, G. (2002). Effort, cooperation and co-ordination in an open source software
project: GNOME. Information Systems Journal, 12(1):27–42.

Louridas, P., Spinellis, D., and Vlachos, V. (2008). Power laws in software. ACM Transactions on Software
Engineering and Methodology, 18(1):1–26. Article 2.

Maxwell, K. D. and Forselius, P. (2000). Benchmarking software-development productivity. IEEE
Softw.,17(1):80–88.

Mockus, A., Fielding, R., and Herbsleb, J. (2002). Two case studies of open source software
development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol., 11(3):309–346.

Mockus, A. and German, D. (2003). Automating the measurement of open source projects. In
Proceedings of the 25th Workshop on Open Source Software Engineering (ICSE ’03), Portland, Oregon.

Roberts, J. A., Hann, I.-H., and Slaughter, S. A.(2006). Understanding the motivations, participation, and
performance of open source software developers: A longitudinal study of the apache projects.
Manage. Sci., 52(7):984–999.

Spinellis, D. (2006). Global software development in the FreeBSD project. In Kruchten, P., Hsieh, Y.,
MacGregor, E., Moitra,D., and Strigel, W., editors, International Workshop on Global Software
Development for the Practitioner, pages 73–79. ACM Press.

Walston, C. E. and Felix, C. P. (1977). A method of programming measurement and estimation. IBM
Systems Journal, 16(1):54–73.

Warsta, J. and Abrahamsson, P. (2003). Is open source software development essentially an agile
method? In Feller, J., Fitzgerald, B., Hissam, S., and Lakhani, K., editors, Proceedings of the 3rd
Workshop on Open Source Software Engineering, pages 143–147. International Conference on
Software Engineering.

Weinberg, G. and Schulman, E. (1974). Goals and performance in computer programming. Human
Factors, 16(1):70–77.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	Measuring Developer Contribution From Software Repository Data
	Eirini Kalliamvakou
	Georgios Gousios
	Diomidis Spinellis
	Pouloudi Nancy
	Recommended Citation

	tmp.1315933934.pdf.CLUjY

