
Association for Information Systems
AIS Electronic Library (AISeL)
UK Academy for Information Systems Conference
Proceedings 2009 UK Academy for Information Systems

3-31-2009

A Systems Thinking Approach to Domain-Driven
Design
Mohammed Salahat
Ajman University of Science and Technology, UAE & University of Huddersfield, UK, abac.hasan.m@ajman.ac.ae

Steve Wade
Informatics Department, School of Computing and Engineering, University of Huddersfield, UK, s.j.wade@hud.ac.uk

Follow this and additional works at: http://aisel.aisnet.org/ukais2009

This material is brought to you by the UK Academy for Information Systems at AIS Electronic Library (AISeL). It has been accepted for inclusion in
UK Academy for Information Systems Conference Proceedings 2009 by an authorized administrator of AIS Electronic Library (AISeL). For more
information, please contact elibrary@aisnet.org.

Recommended Citation
Salahat, Mohammed and Wade, Steve, "A Systems Thinking Approach to Domain-Driven Design" (2009). UK Academy for Information
Systems Conference Proceedings 2009. 44.
http://aisel.aisnet.org/ukais2009/44

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fukais2009%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2009?utm_source=aisel.aisnet.org%2Fukais2009%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2009?utm_source=aisel.aisnet.org%2Fukais2009%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais?utm_source=aisel.aisnet.org%2Fukais2009%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2009?utm_source=aisel.aisnet.org%2Fukais2009%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2009/44?utm_source=aisel.aisnet.org%2Fukais2009%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A SYSTEMS THINKING APPROACH TO

DOMAIN-DRIVEN DESIGN

Mohammed Salahat

Ajman University of Science and Technology, UAE

abac.hasan.m@ajman.ac.ae, & University of Huddersfield,

UK m.salahat@hud.ac.uk

Steve Wade

Informatics Department, School of Computing and Engineering,

University of Huddersfield, UK s.j.wade@hud.ac.uk

Abstract

This paper builds on our earlier work in the construction of a systemic framework

for developing information systems. In this paper we apply the framework to the

development of a Peer-Tutoring System (PTS) for Introductory Programming courses

in our Universities. The framework supports the full development life cycle from

business process modelling to software implementation. We use Soft Systems

Methodology (SSM) as a guiding methodology within which we have embedded a

sequence of design tasks based on the Unified Modelling Language (UML) and

Domain-Driven design techniques h Naked Objects Pattern is used as DDD

approach. This leads to the implementation of a prototype software application using

the Naked Objects framework. We have involved developers and management in

reviewing the software system and the approach taken to develop it. The results

suggest that the framework can lead to improved business process modelling and

software implementation.

Keywords: Peer-Tutoring, Workflow, SSM, UML, Naked Objects,
Multimethodology, Domain-Driven Design

 2

1.0 Introduction

 One of the main reasons for information systems failure is a tendency to concentrate

on the technical aspects of design rather than understanding the business needs (Alter,

S, 2007). This suggests a need to bridge the gap between business process modelling,

information systems modelling, and implementation. There is a need for a systematic

framework or methodology to explore all issues related to the problem situation, and

to capture the information required by business processes (Sewchurran, K. & Petkov

D, 2007).

A number of software systems development methods have been widely used since the

seventies. Some of these, such as SSADM (Structured Systems Analysis and Design

Method) (Ashworth and Goodland, 1990) have a reputation for being bureaucratic and

have not been generally popular with programmers. This is partly because the

inspiration for such methods has come from engineering disciplines such as civil or

mechanical engineering. These disciplines put a great deal of emphasis on the need to

spend a lot of time planning before you construct anything. The engineering approach

is characterised by work on a series of models that precisely indicate how a software

system should be constructed. This approach can be attractive to management because

it allows for the identification of tasks that need to be carried out and of the

dependencies between these tasks, suggesting the possibility of a predictable schedule

and budget for systems development. A key argument against this approach is that it

encourages the project manager to plan out a large part of the software development

process in great detail for a long time ahead, this makes both the approach and the

software developed using the approach, resistant to change.

In more recent years there has been a great deal of interest in lightweight or “agile”

methods that attempt to compromise between no development process and an overly

prescriptive process, providing “just enough” process for a given project (Ambler,

2002). Agile methods have been heavily influenced by the rise in popularity of object-

oriented programming languages, such as C# and Java supported by object-oriented

and object-relational databases. These tools allow programmers to develop software

solutions quickly, hence the reduced need for detailed design steps in the development

process. The ubiquity of object technology at the programming level is represented at

 3

the design level by the Unified Modelling Language (UML) (Fowler and Scott, 2000)

which has been widely adopted as a standard notation for software design.

The UML defines a number of diagrams that can be used to describe an evolving

software system; it does not describe a method for actually building the software. A

number of development methods have been proposed that use the UML with varying

degrees of agility. Amongst the least agile of these the Unified Software Development

Process (USDP) (Jacobson et al, 1999) and the Rational Unified Process (RUP)

(Kruchten, P., 2000) have attracted a great deal of attention. Amongst the more

explicitly agile methods, Alistair Cockburn’s Crystal family of methods (Cockburn,

2002), Jim Highsmith's Adaptive Software Development methods (Highsmith, 2001)

and Peter Coad's Feature Driven Development (Coad, 2002) have been influential.

Agile methods are usually documented in terms of a base method that can be tailored

on a project-by-project basis. The process of configuring the base method involves

comparing a conceptualised model of a generic software development process with

the specific technical and cultural requirements of a particular project. The use of a

conceptualised model in this way resonates with a popular approach to analysing

systems known as Soft Systems Methodology (SSM).

SSM (Checkland, 1981; Checkland and Scholes, 1990; Checkland and Howell, 1998)

is an established means of problem solving that focuses on the development of

idealised models of relevant systems that can then be compared with real world

counterparts. The approach can be applied in a wide range of situations including

requirements analysis for information systems design. The majority of work in this

area relates to attempts to integrate SSM with the type of structured development

methods that preceded object oriented technology (Mingers, 1988; Avison and

Wood-Harper, 1990; Keys and Roberts, 1991; Miles, 1992; Prior, 1990; CCTA, 1993;

Stowell and West, 1994). Some researchers have explored the relationship between

SSM and object oriented analysis and design techniques in general (Bustard, D et al,

1996; Lai, L.S. 2000) but less has been written about the application of these

techniques in the context of the UML.

However agile they may be, all modern development methods recognise that business

software requirements are highly volatile. In the past there was a tendency for

 4

methodologists to address this problem by spending a long time obtaining a detailed

picture of requirements and then getting the customer to sign-off to these

requirements before proceeding to the design and construction phases. This approach

is flawed because users increasingly find themselves in changing business situations

and are therefore unable to identify unalterable requirements. The model of software

development as an adaptive process, in which detailed requirements emerge

iteratively as a project progresses and are modified as learning takes place, seems

much more appropriate. There is however a problem with this approach because all

other software tasks are driven by requirements. If we cannot get stable requirements

we cannot get a predictable plan. This raises the question of how we might exert some

control over unpredictability. The response to this question, adopted by virtually all

modern development methods, has been an increased emphasis on “use cases” and

“iterative” development techniques.

A “use case” might be defined as a piece of functionality that provides meaningful

value to a user. For example, “check spelling of selected word” might be a suitable

use case for a word processor. In an iterative approach, development is organized into

a series of short, usually fixed-length (for example, four-week) mini-projects called

“iterations”. The outcome of iteration should be a tested, integrated and executable

system that delivers a subset of the required features of the whole system. Specific

iterations are likely to relate directly to a group of closely related use cases.

We argue that there are certain types of project where requirements are so unclear that

the use case approach is insufficient as a means of identifying suitable iterations. The

conclusion that techniques from Soft Systems Methodology (SSM) should be added

to the developer’s armoury is in keeping with the pragmatic nature of agile

development methods. We have reached this conclusion by reflecting on our own

experiences of developing information systems to support the activities of the schools

in which we are employed.

The key aim of the research discussed in this paper has been to investigate ways of

integrating techniques from SSM (Soft Systems Methodology) into the requirements

elicitation stage of an agile system development method based on the UML (Unified

Modelling Language) and techniques from Domain Driven Design (Naked Objects).

 5

We argue that used alone UML models can encourage early design decisions before

opportunities for improvement have been agreed and that SSM lacks the detailed

information required by designers developing domain models. This leads to the

conclusion that there could be some advantage in using the techniques together.

In developing an integrated method we have been influenced by the recent trend

towards agile systems development. This represents a move away from seeing

software development methods as codified practices focusing on specific artifacts

within a prescribed lifecycle. Instead emphasis is placed on the provision of a

framework of development activities, products and workflows together with guidance

for applying these to a particular application area.

2.0 Research Methodology

This research aims to answer the following research question:

How can we formulate a multimethodology framework that combines soft and hard organizational

models in order to model, design, and implement internal business process in a

workflow system?

The design of the research is as follows:

1. A series of Information Systems Development (ISD) projects are being carried

out using SSM, UML and Domain-Driven techniques to make

recommendations about the design of our School’s intranet. These are being

written up as case studies.

2. The domain models developed in these case studies are being used in the

development of prototype applications using the Naked Objects Framework.

These applications are then being evaluated for usability.

3. The case studies are being used to reflect upon and develop a hybrid method

(or development framework) and a supporting CASE (Computer Assisted

Software Engineering) tool also developed using the Naked Objects

Framework.

To answer the above research question and to apply the research as it's designed, the

following methodology followed:

1. Review the current situation of business process and workflow modelling,

design, and implementation status.

 6

2. Compare and construct business process and workflow modelling, design, and

implementation approaches.

3. Formulate and propose a multimethodology framework considering soft and

hard organizational aspects.

4. Evaluating the framework through different practical case studies (Peer-

Tutoring System, Work Placement Operations Mgt. System, and University Students

Associations System). This will be done by performing the following operations on

all case studies:

a-Explore the business situation problems using SSM as a guiding

methodology.

 b- Model the business process as a workflow system using UML

 c- Design and Implement the workflow system using DDD (Ii.e Naked

Objects Pattern is selected)

5. Reflect on the implementation and record learning from the methodology

application in order to guide further applications.

The discussion of how the proposed framework emerged from our practical

experience is punctuated with UML and other types of model that relate to the design

of the supporting CASE tool.

3.0 The Systemic Soft Workflow Modeling and Implementation

(SSWfMI)

SSWfMI framework is developed in our previous work (Salahat et al, 2008) and it

can be used to investigate the problematic situation, model, design, and implement

any system required a deep investigation and lead to practical software solution. SSM

will be applied first to investigate the problematic situation, UML will be used to

model and design the system, and Naked Objects Framework will be used for

implementation. The framework consists of four phases: Pre-SSM, SSM, Post1 SSM,

and Post2 SSM. This framework is different from others since it’s the first framework

combined soft and hard system concerns with a complete system life cycle up to the

implementation. As stated before, many systems failed because of a lack of detailed

investigation for both hard and soft systems concerns. It is essential to identify the

changes required for the investigated domain before starting further stages which may

 7

lead to inappropriate implementation. The proposed framework avoids these problems

and tries to explore the investigated systems properly. For more details about the

adapted model see (Salahat et al, 2008). The framework represented in Figure (1) and

Figure (2) is a flowchart showing the logical processes embedded in the framework.

In Section3 we will discusses the experience of applying this approach in two case

studies.

Figure 1: Systemic Soft Workflow Modelling and Implementation

1. Initial problem identification

 9. Exit

10. Reflect on the process and record learning

 9. Exit

10. 10. Reflect on the process and record learning

 2. Stakeholder roles analysis

 3. Evaluating the problem using SSM
 6. Rethink
 2-5 4. Workflow System Modelling using UML

 5. Generate a proposal about the improved Soft Workflow
Modelling produced during this phase. This will be used in the
implementation phase, and it will include the whole models developed
during the previous phase and how to use them in the implementation
phase. The report will be refined by matching it with previous stages
output until considered adequate for implementation

7. Workflow Design and Implementation using Naked Objects Pattern

as (DDD) Approach

8. Rethink (6-7)

 8

Figure 2: The logical processes in the framework

4.0 The Case Studies

We have been engaged in an information systems development project using SSM

and UML techniques within an agile framework to make recommendations about the

development of an intranet for the academic school in which we are employed. At the

beginning of the project the department had an operational intranet but this was not

widely used. An information system strategy was initiated to investigate ways in

Stakeholders Analysis

Initial Problem Identification
Pre-SSM
Phase

Create rich picture, root
definition, conceptual model,
and compare CM with the
organizational process

SSM Phase

Report adequate
for impl. ?

Generate the changes proposal

N

The final refined changes report

Design and Implement the system
based on the final refined changes
report using Naked Objects
Pattern as DDD Approach

Y

Adquate
Impl?

EXIT

Reflect on the framework Application

Workflow Modelling using
UML

Post 1-
SSM Phase

N

Post 2-
SSM Phase

Y

 9

which the intranet could be developed to support the university mission and

departmental goals. Initially we used use cases as the primary fact-gathering

technique but certain limitations in this approach led us to a more thorough SSM-

based analysis of the situation.

We argue that the techniques of SSM can help the developer to identify a richer set of

use cases than would otherwise be possible but developers with a full use case model

still have many challenges ahead of them. We are interested in object oriented design

and the view that all business behaviour identified in the use case model should be

encapsulated as methods on domain objects. Thus, a Student object should not just be

a collection of data about the Student; it should encapsulate all the behaviours that we

need to apply to a student. In Domain-Driven Design these are often referred to as

'behaviourally-rich' domain objects.

A number of software frameworks have been developed to allow programmers to

build prototype applications directly from a behaviourally rich domain model

implemented in an object oriented programming language. Prominent amongst these

is the Naked Objects Framework. This is the one that we have chosen to use to

implement our prototype applications.

In the next section we present a quick superficial description of how the method might

be applied to a relatively simple project, the design and implementation of a peer-

tutoring system.

4.1 A Peer-Tutoring System

One of the current problems facing students and lecturers in university is the difficulty

of understanding and mastering the skills required to write and run computer

programs successfully. A number of researchers have suggested that peer tutoring can

be particularly useful to support this type of learning because it allows learners to

learn and support each other (Goodlad and Hirst, 1989), and it is beneficial to help

students learn and practise the required skills more actively in a setting that

encourages them to be more active and intellectually engaged (Gardner 1993).

 10

Iwona Miliszewska and Grace Tan (2007) reported about the problems of teaching

programming course at Victoria University in Australia and they proposed an

approach to enhance the delivery of this module.

Hu Xiaohui (2006) raised the difficulties of teaching programming course in Chinese

universities and discussed different modern incorporating strategies, to solve this

problem, which includes “Concept Mapping”, “Peer-learning” and “E-learning”

methods.

The proposed solutions to recap the difficulties of teaching programming unit by the

mentioned researchers concentrating on the delivery methods only without

investigating all soft and hard systems issues that can cause such a problem(Hu

Xiaohui ,2006 , Iwona Miliszewska and Grace Tan, 2007). In this work, we proposed

Peer- tutoring system as an improvement of the teaching process and to enhance the

students understanding which may be reduce the percentage of failures. In the next

sections we will show how the method is applied.

4.1.1. Pre-SSM Phase

The problem identification

The Department of Informatics in the School of Computing and Engineering at the

University of Huddersfield in UK and Information Technology College at Ajman

University of Science and Technology in UAE both offer introductory programming

modules for their first year computing students. These modules focus on Java

programming; lecturers face certain difficulties related to students understanding of

the subject because of the nature of the required problem-solving skills. Students

require more tutoring and practical sessions to help them practise different exercises

in order to enhance their understanding and practical skills. Both Universities expect

that implementing a peer-tutoring system will reduce the failure rate. The departments

want to know how to select tutors among good students and how to reward them.

Stakeholder Determinations

The stakeholders of the required system were determined to be peer tutor, peer tutee,

lecturer, and management. The stakeholders have different expectations of the system.

Peer tutors are generally looking for teaching experience to be added to their CVs.

 11

Peer tutees are looking for extra help. Lecturers are looking to reduce their workload,

and to determine which students most require tutoring sessions. Management look to

reduce the number of failures on programming modules.

4.1.2 SSM Phase

Investigating the problem situation using a rich picture

In order to develop a rich picture of the situation under study, a number of

information sources were used to capture views of the introductory programming unit

from the perspective of the management (the school & the college in both

universities), lecturers, and students. Interviews with the school (or college)

administration and groups of students were conducted to understand the problematic

situation of teaching introductory programming course and set out suggestions to

solve the problems. Rich pictures were used as a tool used in this investigation. A

number of different pictures were drawn the following is a simple early example.

Figure (3) Peer-Tutoring System Rich Picture

 Modelling the relevant system

The relevant system was modelled using a root definition and conceptual models. Our

initial root definition was as follows:

“a peer-tutoring system for the informatics department will help in the selection of

peer- tutees and peer-tutors, the scheduling of tutoring sessions based on the

availability of rooms, tutors, and tutees. The system will also monitor the perceived

 12

benefit to tutors and the progress of tutees in increased self-confidence as well as

measure the impact on failure rates.”

A variety of conceptual models were then developed to model the key activities in the

system. From these a simple Consensus Primary Task model (CPTM) was developed

identifying the core activities that the first version of the system would need to suppot.

 Figure (4) CPTM of Peer-tutoring System

Compare the conceptual model to the real world:

SSM required the investigator to compare the produced conceptual model with the

actual real life work. There is no real life PTS available to be compared with the

developed conceptual model. In this case, the conceptual model will be considered the

base to model the PTS system as a workflow system as indicated by other related

work (Al Humaidan, F, 2006). The CPTM, as a combination of all conceptual models,

will be used in the next phase for modelling, design, and implementation of PTS as a

workflow system using Domain-Driven Design approach. Naked Objects will be used

as a DDD approach for this purpose.

4.1.3 Post1- SSM Phase

Workflow modelling using UML

This section consists of three parts: converting CPTM into use cases, use case

modelling using UML, and Class diagram development.

Converting CPTM into use case

Any activity required software support will be selected as a use case. The stage of

moving from an SSM conceptual model to a use case model is not as straightforward

Identify Tutors Identify Tutees

Identify Room

Schedule sessions

Run
Tutoring

Reward Tutors

 13

as this high-level discussion would suggest. In thinking this through we have been

pushed towards making a clear distinction between stakeholder goals, business

activities and use cases. The following model (Figure 5) shows the relationship

between these key abstractions:

Use Case

Business Activity

Name

Description

Conceptual Model (image)
nn nn

nn

Goal

Priority (Low, Medium, High)

Description

n

n

n

n

Stakeholder

Name

Description nn nn

Figure (5) Moving from an SSM conceptual model

The model suggests a hierarchy of business activities related to stakeholder goals that

are taken to be the primary reasons for developing the system. The business activities

would be represented in a hierarchy of conceptual models with the lowest models

containing more primitive, elementary business activities than the higher ones. An

individual business activity is represented in context in the image of the conceptual

model of which it is a part. Some of the determined use cases are presented in the

following Use Cases Diagram (Figure 6):

 14

Figure 6: Use case diagram

 Developing the class diagram of PTS

Each use case presented using textual template, activity diagram, sequence diagram,

and all use cases are combined in a use case diagram. The next step in the process is

to take the business logic identified in the use cases and associate it with classes in a

class diagram. We have followed the guideline that all important business logic must

be implemented in classes in the domain model. An initial class diagram is presented

below. (Figure 7)

Figure(7) PTS Class Diagram

 15

Change report generation and refinement

As shown in the framework (SSWfMI), there is a draw back to the previous stages to

refine what’s done during Pre-SSM, SSM, and Post1-SSM. This refinement is

essential to be sure that the exact changes required already modelled well as a

workflow system. As a guiding methodology, SSM focus on the generation of the

required change report as a result to be recommended for the management for further

actions (Checkland, P., and Poulter J, 2006, Checkland, P., 1999, Checkland, P. and

Holwell, S.E ,1998). SSWfMI extended SSM further step to include implementation

as a major action to be taken as part of the improvement change to enhance the

investigated situation. This indicate that the implementation will be started after the

completion and the refinement of the change report (includes the workflow model) to

facilitate the implementation process and eliminate the possibility of system failure

since all soft and hard system concerns are investigated, modelled, refined, and

included in the workflow system for implementation.

4.1.4 Post2-SSM Phase

 Prototype Design, Implementation, Refinement

The class diagram is used to design the domain objects which lead to a domain model

which was implemented in Java and the Naked Objects framework, As DDD, was

used to generate an initial prototype where the interface allows users to interact

directly with the domain objects. A screenshot is provided below to give an idea of

what the initial prototypes looked like: (Figure 8)

Figure(8) Naked Object Screenshot from PTS Prototype

 16

More improvement and work is going on to enhance the productivity of the prototype

to be a real system. Currently, we are Naked Objects .Net to get a real live software

product, and may domain-driven design features added to this version. The new

output of the current work and further enhancement on the proposed framework will

be a target of a new publication.

4.2 The Placement Unit

In the previous case study (PTS) we presented detailed about the application of the

proposed framework to real case studies. In this case study the work is still going on

and we will present it shortly as other parts still to be completed.

Many of our courses include a twelve-month industrial placement which needs to be

carefully integrated into the curriculum. This is only possible when the placement is

well-managed incorporating assignments that promote self-assessment and personal

development. The MaPPiT system was developed to support this. The system has

been developed to support the following root definition:

A system owned by the placement unit to secure, develop and monitor rich learning

experiences (on placement) that build on students' current skills and knowledge, in

line with their career aspirations; enhance their employability through experience

in the workplace; and increase their skills and knowledge, subsequently enabling

higher levels of achievement.

An initial conceptual model developed from this root definition included the

following high-level activities:

• liaise with placement providers

• prepare students for placement

• find and vet placements

• match students to placements

• plan the placement programme

• monitor the placement

 17

• help employers to supervise and appraise the placement

• equip students to reflect on and analyse the placement learning

• assess/accredit the placement achievements

Each of these activities was then decomposed into a more detailed conceptual model

containing more specific business activities in the hierarchical manner suggested

earlier. For example the process “liaise with placement providers” is concerned with

looking after liaison with key companies. Some companies will be important to the

Placement Unit, and the unit will have a greater knowledge of these companies and

what they are looking for. It is recommended that the unit should proactively seek

suitable students for these companies in order to maintain the relationship with them.

This process is represented as a conceptual model below.(Figure 9).

Review key

companies list

Cont act com panies

re next year

Brief s tuden ts on

key companies

Council appropriate

students

Organise event

Review and update list of companies identified as key

Understand any requirements for next year.

Ob tain any feedback.

Brief well-ahead of deadlines.

 Counc il uns uit able st udent s w ho have appl ied /

 Approach suitable students who have not applied

Op en day - presentations from last years st udents et c.

Figure (9) Work placement Unit Management System Conceptual model

Once this type of model had been developed for each of the key processes identified

above we had a clear understanding of the problem situation and were able to identify

some concrete use cases (e.g. “retrieve key company records”, “email key companies”

etc.) and domain classes (e.g. company, student etc). A system developed from this

analysis is currently being developed and should form the basis for a more detailed

evaluation of the method than that presented here.

 18

5.0 Issues in documenting and supporting the proposed framework

In the examples presented above we have come close to prescribing a step-by-step

procedure for converting relevant parts of root definitions and SSM conceptual

models into use case models. The diagram below communicates an idea of how this

step-by-step process is currently conceived (Figure 10).

Aims

 + Explore the problem s ituation

 + Record and understand different views of people

 + Develop c learer pic tures of the s ituation and factors that influence the s ituation.

 + Determine the difference between what is conceptually desirable and how that differs from

 what can be done within the culture (what is culturally feasible).

Tools/ Techniques/ Methods

 + Interviews with the actors, p roblem owners, c l ients and other s takeholders

 + Observation of organisational activities, behaviours and processes

 + Col lection of s econdary data

 + Brainstorming

 + Root Definit ions (RDs)

O utcomes

 + Rich pictures/mind maps representing stakeholders/ key players views

 + An improved understanding of the problem s ituation

 + Conceptual models of desired future systems (and sub-systems) as described in the root

 defin itions

Define the P roblem

Situation: Unstructured

Ex press the

Problem Situation

Identify Relevant Human Activity Systems

(HAS) and construct Root Definitions for these

Build Concep tual

M odel for each HAS

Analyse Conceptual Model and

identify Candidate Use Cases

Document primary and alternative

paths fo r each Use Cases

Develop Collaboration

Diagrams for each Us e Case

Develop Class Diagram consistent

with full set of Collaboration Diagrams

Aims

 + Identify use cases in terms of user goals and business processes

 + Map use cases to an iterative development plan for proposed software system

 + Develop object collaboration from use cases

 + Model object col laboration using UML sequence diagrams

 + Cross check between sequence diagrams and UML c lass diagram

Figure (10) Step-by-step moving from SSM to Use Cases

Presented in this way the method seems prescriptive but this is not the intention. The

above diagram should be interpreted as an SSM conceptual model. The

appropriateness of this model should be discussed on a case-by-case basis. For

example for each activity we should ask, with respect to a specific project or iteration

within a project, the following questions: How will this activity help to meet the goals

 19

of this project/iteration? How will I assess the impact that this activity is having on the

achievement of those goals? It is anticipated that the entire method would only be

applied in situations characterised by uncertainty and confusion at the outset.

In an attempt to support our framework of techniques we have been developing a

simple CASE tool that does not impose a specific step-by-step method. The following

diagram gives an idea of the principle abstractions that will be manipulated by the tool

and how they are related, Figure(11).

Figure (11) Proposed Case TOOL to support the framework

At present we have a prototype tool in which data about these abstractions and the

relationships between them are held in an MS Access database. We want to develop

this tool into a Naked Objects application that will allow the user to explore the

relationships between various classes. For example we should be able to select a use

case and see how it is supported by the behaviourally-rich classes we have identified

in our class diagram.

The concept of“iteration” is not represented in the above model but we might expect

the choice of iterations to be influenced by earlier identification of relevant systems.

 20

For example software to support our “peer tutoring system” could be developed in a

single iteration. Development of software to support more complex system (such as

the “industrial placement system”) would be accomplished through a series of closely

related iterations.

In contemplating the figures above some people may be concerned about the highly

participative nature of our approach and the demand for documentation which can

make it very time-consuming. It has been argued that web-based software systems

should be developed in a software culture that is simpler, faster and more responsive

to users than the one suggested here (Beck, 2000). The argument is concerned with

our requirement for a large up-front commitment. In the full version of the method,

stakeholders must engage in lengthy discussions based on SSM techniques and be

interviewed by process experts who are able to develop formal use cases, from which

the developer can produce UML class and collaboration models. The choice between

unmanaged chaos and over-managed process is a long-standing one in software

design. We argue that in situations such as the one discussed here, where the benefits

of developing an intranet are unclear and possibly unquantifiable, linking the

development process to fundamental business activities is self-evidently important.

5.0 Conclusion

The key aim of the research discussed in this paper has been to evaluate our previous

proposed and published framework(SSWfMI) which integrated techniques from SSM

(Soft Systems Methodology) into the requirements elicitation stage of an agile system

development method based on the UML (Unified Modelling Language) and

techniques from Domain Driven Design (Naked Objects Pattern) for business process

modelling and implementation as a workflow system.. We argue that used alone UML

models can encourage early design decisions before opportunities for improvement

have been agreed and that SSM lacks the detailed information required by designers

developing domain models. The work presented the evaluation results through the

development of two real systems (Peer-Tutoring System, Work placement

Management System which is still going on). This leads to the conclusion that there

should be some advantage in using the technique together. To support the framework,

 21

a CASE tool has been developed and the work is going on to present it in a Naked

Objects application that will allow the user to explore the relationships between

various classes. Further applications (University Students Associations System and

Module Selection System) are started to have further improvement and refinement of

the proposed model. All systems selected from our environments as an action research

required to apply the framework.

References
Al Humaidan, F., (2006) Evaluation and Development Models for Business

processes”, PhD thesis, University of Newcastle, UK.
Al-Humaidan, F., & Rossiter, N. (2204) Business Process Modelling with OBPM

combining soft and hard approaches, in Proceeding of 1st Workshop on
Computer Supported Activity Coordination (CSAC), 6th International
Conference on Enterprise Information Systems, Porto, , pp 253-260.

Alter, S., (2007) The work system method: Connecting people, processes and IT for

business results”, Work System Press, Larkspur, CA.
Ambler, S.W. (2002) Agile Modeling: Effective Practices for Extreme Programming

and the Unified Process. John Wiley & Sons
Ashworth, C. and Goodland, M. (1990) SSADM: A practical approach. McGraw-Hill.
Avison, D.E. and Wood-Harper A.T. (1990) Multiview: An exploration in Information

Systems Development. Blackwell Scientific Publications.
Beck, K. (2000) eXtreme Programming Explained. Addison Wesley, 2000
Bustard, D. W., Dobbin, T. J., and Carey, B. N. (1996) Integrating Soft Systems and

Object-Oriented Analysis, IEEE International Conference on Requirements
Engineering, Colorado Springs, Colorado, pp. 52-59.

Carroll, M. (1996) Peer Tutoring: Can Medical Students Teach Biochemistry?
Biochemical Education, 24, 13-15.

CCTA (1993) Applying Soft Systems Methodology to an SSADM Feasibility Study.
HMSO, London.

Checkland, P. and Holwell, S.E. (1998) Information, Systems and Information

Systems, Making sense of the field, John Wiley and Sons Ltd, West Sussex,
England.

Checkland, P., (1999) Systems Thinking, Systems Practice, John Wiley and Sons Ltd,
West Sussex, England.

Checkland, P., and Poulter J. (2006) Learning for Action. A short Definitive Account

of Soft Systems Methodology and its use for Practitioners, Teachers and

Students”, John Wiley and Sons Ltd, West Sussex, England.
Checkland, P., and Scholes (1990) J, Soft Systems Methodology in Action, John Wiley

& Sons, New York,

Coad P., et al (2002) Java Modeling In Color With UML: Enterprise Components and

Process Prentice Hall
Cockburn A. (1997) Structuring use cases with Goals. Journal of Object Oriented

Programming. Sep-Oct and Nov – Dec. SIGS Publications.

 22

Cockburn A. (2001) Writing Effective use cases. Addison Wesley.
Cockburn, A. (2002) Agile Software Development. Addison Wesley Professional
D. Georgakopouls , M. Hornick, and A. Sheth. (1995) An overview of Workflow

Management: From Process modelling to workflow Automation

Infrastructure, Distributed and Parallel Databases, vol. 3, Springer, online
publishing, pp. 119-153.

D. Platt. (1994) Process Modelling and Process Support Environment to Design

Management, Department of Civil Engineering, Faculty of Engineering,
University of Bristol, UK.

Dunican, E. (2002) Making the analogy: Alternative delivery techniques for first year

programming courses. In J. Kuljis, L. Baldwin & R. Scoble (Eds),
Proceedings from the 14th Workshop of the Psychology of Programming
Interest Group, Brunel University, 89-99.

Erikksonn, H. E., & Penker, M. (2000) UML business process modelling at work,
John Wiley and Sons, New York.

Fowler, M. and Scott, K., (2000) UML Distilled. Reading, M.A.: Addison-Wesley.
Gardner, H. (1993) Multiple intelligences: the theory in practice. New York,

NY:Basic Books.
Goodlad, S. and Hirst, B. (1989) Peer Tutoring: A Guide to Learning by

Teaching,London: Kogan Page; New York: Nickols Publishing.
Highsmith, J. (2001) Agile Software Development Ecosystems. Wiley.

Höysniemi, J., Hämäläinen, P., & Turkki, L. (2003). Using peer tutoring in evaluating

the usability of a physically interactive computer game with children.
Interacting with Computers, 15, 203-225.

Hu Xiaohui. (2006) Improving teaching in Computer Programming by adopting

student-centred learning strategies, China papers, issue 6. 46-51.

Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The Unified Software Development

Process. Addison-Wesley.

Jo Mynard , Iman Almarzouqi. (2006) Investigating peer tutoring, ELT Journal

Volume 60/1; doi:10.1093/elt/cci077. Published by Oxford University Press.
Keys, P. and Roberts, M.,(1991) Information Systems Development and Soft Systems

Thinking: towards and improved methodology. In Systems Thinking in

Europe, Plenum, London.
Lai, L.S. (2000) An integration of systems science methods and object oriented

analysis for determining organisational information requirements. Systems

Research and Behavioural Science 17, 205-228.
Krutchen, P. (2000). The Rational Unified Process – An Introduction. 2nd Edition.

Addison-Wesley.
Miles, 1992; Prior, 1990; CCTA, 1993; Stowell and West, 1994).
Miliszewska Iwona , Tan Grace (2007) Befriending Computer Programming: A

Proposed Approach to Teaching Introductory Programming. Issues in
Information Science and Information Technology, volume 4, 277-289.

Mingers, J., (1988) Comparing conceptual models and data flow diagrams. The
Computer Journal 31 (4) 376-379.

Mingers, J., (2001) Combining IS Research Methods: Towards a Pluralist

Methodology, Information Systems Research, 12, 3, Institute for Operations
Research and the Management Sciences (INFORMS), pp. 240-259.

 23

Miles, 1992; Prior, 1990; CCTA, 1993; Stowell and West, 1994).
Prior, R., (1992) Linking SSM and IS development. Systemist 14 (3) 128-132.

Pawson R. & Mathews R. (2002) Naked Objects, John Wiley and Sons Ltd, West

Sussex, England.
Salahat et al. (2008) A systemic Framework for Business Process Modelling and

Implementation, In the proceeding of 5th International Conference on
Innovations of Information Technology (Innovations’08), UAE University, Al
Ain, UAE, in IEEE xplore 978-1-4244-3397-1/08.

Sarah loos, et, al.(2006)Three Perspectives on Peer Tutoring for CS1, in the
proceedings of the Midwest Celebration of Women in Computing
conference.28-31.

Sewchurran, K. & Petkov D (2007) A systemic Framework for Business Process

Modelling Combining Soft Systems Methodology and UML, Information Re-
sources Management Journal, 20, 3, IGI Publishing, PA,USA, P. 46-62.

Stamouli, I., Doyle, E., & Huggard, M. (2004). Establishing structured support for

programming students. Proceedings of the 34th ASEE/IEEE Frontiers in
Education Conference, Savannah, GA.

Stowell, F. and West, D. (1994) Client-Led Design. McGraw-Hill.

Svatopluk Štolfa, Ivo Vondrák, (2006) Mapping from Business Processes to

Requirements Specification, Retrieved on 7th Aug, 2008 from
85.255.195.219/conf/esm/esm2006/abstract.pdf

Wade, S. and Hopkins, J., (2002) A Framework for Incorporating Systems Thinking

into Object Oriented Design, Seventh CAiSE/IFIP8.1 International Workshop
on Evaluation of Modeling Methods in Systems Analysis and Design
(EMMSAD’02), Toronto, Canada, 27-28.

Warboys, Brian, Kawalek, Peter, Robertson, Ian, and Greenwood, Mark. (1999)
Business Information Systems-A process approach, McGraw-Hill, UK.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	3-31-2009

	A Systems Thinking Approach to Domain-Driven Design
	Mohammed Salahat
	Steve Wade
	Recommended Citation

	Microsoft Word - UKAISPaper2009_Wade.doc

