Association for Information Systems

AIS Electronic Library (AISeL)

European Conference on Information Systems

ECIS 2000 Proceedings (ECIS)

2000

An Intelligent Interactive Knowledge Model for
Decision Support in Real Time Trafhc
Management

JosefaZ. Hernandez
Technical University of Madrid

Juan M. Serrano
Universidad Rey Juan Carlos

Follow this and additional works at: http://aisel.aisnet.org/ecis2000

Recommended Citation

Hernandez, Josefa Z. and Serrano, Juan M., "An Intelligent Interactive Knowledge Model for Decision Support in Real Time Traffic
Management" (2000). ECIS 2000 Proceedings. 72.
http://aisel.aisnet.org/ecis2000/72

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact

elibrary@aisnet.org.

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2000%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000/72?utm_source=aisel.aisnet.org%2Fecis2000%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

An Intelligent Interactive Knowledge Model for Decision Support in Real-Time
Traffic Management

Josefa Z. Herndndez
Department of Artificial Intelligence
Technical University of Madrid
Campus de Montegancedo s/n
Boadilla del Monte, 28660 Madrid, Spain

Abstract- This paper proposes the use of advanced
knowledge models to support real time decision for
management problems as an adequate response to the current
needs and technology. The new conditions for human operation
created by the telematics technology are discussed and a general
architecture using knowledge modelling techniques is proposed.
Then, the application of the approach to support real time
management of the private traffic in the city of Turin is
described.

1. INTRODUCTION

The development of telematics systems in the last decade
has made feasible to build up applications integrating
sensors, communications and real time data bases to provide
raw information about the state of a natural or artificial
installation such as a chemical plant, a traffic network or a
watershed. In this way, a great amount of information is
available that should be used to improve the management of
the system, which generally means to take the adequate
decisions in the right moment. In complex installations,
evaluating decisions requires in many cases to use complex
models integrated with human reasoning. So, a new type of
support has to be enabled to ensure that both theoretical and
common sense knowledge are adequately available to the
human operators responsible for the installation management.

In this context, the European Commission research
project FLUIDS (Future Lines of User Interface Decision
Support) proposes a design methodology for the development
of advanced decision support systems (DSS’s). The
methodology makes a strong commitment towards the role
that human-computer interaction features play in the final
specification of such kind of systems, and defines a
knowledge-based architecture aiming to support DSS’s with
higher interaction capabilities. In addition, three sample
demonstrators were implemented to show the feasibility of
the design approach in the traffic management domain
(though the methodology is not constrained to this particular
domain).

First, general human-computer interaction requirements
for DSS’s are identified. In particular, a domain-independent
set of questions relevant in the management process followed
by the responsible people is defined. Next, the proposed
knowledge-based architecture for a DSS capable to support
the required user-system dialogue is described whose main
components are a Conversation Manager, a Problem Solving
Environment and a Presentation Manager. This paper is
focused on the first two components, stating the need to
consider a collection of alternative problem-solving methods

Juan M. Serrano
ESCET
Rey Juan Carlos University
Independencia 12
Méstoles, 28931 Madrid, Spain

capable to flexibly support the interaction requirements. The
adequate problem solving methods for generating an answer
are dynamically selected by a metalevel reflective model
included in the Problem Solving Environment. Relevant
aspects of the design process of these architecture
components are considered. In addition, the KSM tool [1] is
proposed as an adequate framework to implement those
elements. Finally, the application of this approach is
illustrated with the FLUIDS/CRITIC application, a DSS for
private traffic management in the city centre of Turin.

II. ON HUMAN-COMPUTER INTERACTION IN DECISION
SUPPORT SYSTEMS

This section describes the main characteristics of the
interaction between a DSS and its potential users from two
perspectives: from a strategic view, the main goal and
principles to be satisfied by the interaction are sketched; and
from a more specific point of view, some common generic
questions for any kind of DSS are proposed. In this way,
some guidelines, concerning the interaction capabilities of a
DSS system, to be supported by any development
methodology of such kind of systems are established.

With regard to the strategic level, the supporting role of
the application should be emphasised. It means that its main
goal is not to fully achieve the management of the system by
itself, but to support the operators and engineers to get their
management goals more efficiently. This abstract principle
can be further elaborated on the following points:

e From the perspective of a co-operative working model
between the system and the operator, the system should
act as an assistant that keeps the operator informed about
the behaviour of the monitored system and suggests the
more suitable control actions to be taken according to the
observed situation, but leaving the final responsibility on
the management to the operators.

e In order to achieve the highest possible level of mutual
intelligibility, the system should try to emulate as much
as possible the reasoning processes and conceptual
terminology of the control operators providing in this
way a common decision language. In addition, due to the
dynamic character of the domains where DSS are usually
installed, this model of the operator’s expertise should be
easily accessible and modifiable.

e Since the operators are the final responsibles for the
impact produced by the control actions, the system must

provide justifications of the suggested actions explaining
the reasoning line followed to reach such conclusions. In
addition, in order to take into account the inherent
uncertainty pervading the management process, several
alternative answers should be provided when possible.
Similarly, the user should be given the possibility to
obtain new alternative answers by providing different
values for the underlying default hypothesis. In this way
the flexibility and confidence of the operators in the
system conclusions may be improved.

e Furthermore, due to the usual time constraints to be
taken into account when making the decisions, it is
necessary to attain a fluid communication between the
operators and the system understood as the transmission
of the right information in the right moment and mode of
presentation. In this sense, the system should be capable
of adapting its answers to the characteristics of the user
and the evolution of the dialogue.

More specifically, some common features of the
interaction with a DSS at the semantic level (i.e. concerning
the kind of information which should be communicated), can
also be considered by analysing the reasoning process
followed by the expert people in the problem domain.
Basically, this process is oriented towards the elaboration of
action plans to control the system, so the users may want to
ask the application what kind of control actions are
recommended. In addition, the plans are elaborated on the
basis of the problems currently happening, together with their
diagnosis. The foreseeable problems may be relevant as well,
together with the variables affecting the state of the system:
environmental and control actions. Thus, it should be
possible for the user to ask for the current and foreseeable
problems detected by the application. So, the following
classes of questions should be considered:

e What is happening questions: i.e. detection of significant
current and recent events or problems. If the knowledge
model is on-line connected with a telematics system
providing basic state information abnormal or undesired
situations can be detected and presented to the operator,
who may ask for additional derived questions and
explanations, e.g. with a why did the problems happen
question.

e What may happen questions. This type of questions may
be answered using the behaviour models assuming the
current scenarios of external actions. These questions
may be also conditionally formulated in the form What
may happen if <hypotheses>, assuming different
scenarios of external actions and management decisions
of the system, that may inform the operator about the
potential short-term evolution of the situation.

e What should be done questions, to be answered using
knowledge models for planning control actions oriented
to solve or alleviate the problems previously detected.
These questions may also have a conditional expression:

What to do if <hypotheses>, implicitly assuming in that
way different short-term scenarios of the monitored
installation.

III. AN ARCHITECTURE FOR INTERACTIVE DECISION-SUPPORT
SYSTEMS

The design of an generic architecture for DSS’s capable
to support a dialogue-based user-system interaction in the
previous terms can be faced using two different kind of
technologies taken from the Knowledge Engineering and
Artificial Intelligence fields:

e On the one hand, the recent knowledge modelling
techniques provide the facilities to build highly
structured knowledge architectures where the different
problem solving methods applied by the expert people
can be explicitly expressed in a declarative fashion
allowing to incrementally improve the expertise model
by means of an open architecture [1], [2]. In this way,
the requirement for a common decision language would
be achieved, ensuring that both the domain experts and
the application reason in similar and understandable
ways. In addition, given the high level of abstraction of
the problem-solving approach and its non-deterministic
nature, meaningful explanations and alternative answers
can be provided as well. This last characteristic can be
also supported by the possibility of providing several
alternative problem-solving methods for some given
task. Thus, the people responsible for the management of
the system can assume the DSS’s proposals, as they are
able to fully understand the reasoning line followed by
the application.

e On the other hand, user interface's development
techniques have evolved to intelligent planners of co-
ordinated multimedia presentations supported by
knowledge-based architectures using specialised
knowledge on different aspects of the presentations
design [3], [4], [5]. In this way, the application can
significantly improve its expressive capabilities,
dynamically configuring the presentation of the
information to be conveyed according to the user’s
preferences and characteristics.

In our view, a reasonable approach for a general decision
support architecture is to combine both kind of technologies
(mainly due to the fact that sophisticated presentations can
only be efficient if the content of the information they present
is relevant enough). However, although both solutions give
support to advanced user-system interaction models, in this
paper we focus our interest in the second one, to support the
kind of conversation required in decision support scenarios in
line with the interaction requirements outlined before.

Starting from the classes of questions previously
mentioned a relationship between these queries and a
knowledge-based component of the target architecture may
be defined as follows. Every question is directly related to a
class of problem or task that needs to be solved in order to

obtain an answer. The solution of any of these tasks may be
in principle obtained by different problem solving methods,
offering in this way the possibility of getting different
answers for the same question. In its turn, the performance of
the selected method may require the solution of several
subtasks that again may be realised by different methods and
so on, defining the problem solving structure that describes
the reasoning process required to generate the answer. In this
way, every relevant question for a DSS is related to a
particular hierarchical structure of tasks-methods-subtasks.
The major tasks associated to questions that the designer of
the application may consider would be problem detection and
problem diagnosis (for what is happening questions),
prediction (for what may happen questions), and evaluation
of control actions or suggestion of plans to solve problems
(for what should be done questions). Thus, this kind of
interaction requirements acts as a heuristic to guide the
knowledge engineer in the design of a DSS in a specific
domain.

Given that several methods may be used to solve the
same task (e.g. heuristic vs. model-based methods for the
classification task), the dynamic selection of the most
adequate method to perform a task should be the result of a

reflective process on the problem solving capabilities
available. This reflection has to consider the information
context when the query is made. However, in order to
achieve higher levels of user-system interaction, the selection
of the appropriate problem solving methods should be also
guided by criteria based on conversational aspects [6]. These
aspects refer interaction features such as the level of
abstraction and/or precision required in the answer, the type
of user, time constraints in the answer generation, etc..
Actually, several kind of users can usually be considered in
decision support scenarios ranging from low-level operators
specialised in concrete aspects of the system (e.g., the
operator of reservoir gates), which require information on a
high level of detail, to high-level managers that are interested
in global evaluation and strategic aspects. Consequently,
different methods for classification or planning would be
selected to generate the proper answer depending on the user
needs and the evolution of the dialogue. As this reflective
knowledge consists on knowledge about the problem solving
knowledge/methods available it defines a metalevel
knowledge model.

From the above description, an architecture supported by
three main components may be defined (see Fig. 1):

X 7. 7.
o 8 o 0 o & o

| PRESENTATION MANAGER |

¢ onversation

Properties of the problem CONVERSATION
solving components MANAGER

requirements
high level
tasks related

Conversation
model
to questions ; ;

PROBLEM

optional
methods for

the same task

SOLVING
MEDIUM

=

basic subtasks
performed by
the methods

optional
methods for

the subtasks

=

performing the

basic methods Iil
more simple subtasks

T=T

and knowledge bases supporting the basic methods

Domain structure containing conceptual vocabularies |

/ UNDERLYING INFORMATION SYSTEM

—

Figure 1: General architecture of the interactive knowledge model for decision support

e a Presentation Manager specialised in the input-output
activities of the system,

e a Conversation Manager which plays the role of an
intelligent interpreter between the user needs and the
system capabilities. It infers the interaction features,
relevant for the user and the current state of the dialogue,
from the metalevel model deciding on the fly the
elements of the Problem Solving Medium that should be
applied to obtain the required answers.

e a Problem Solving Medium that contains a structured
collection of automatic tools implementing the problem

solving functionalities of the system usable to generate
the answers.

This architecture and the framework for DSS proposed in
[7] share some common features: a presentation component
is regarded in both cases, and the Language system could be
related to the Conversation Manager. On the other hand, the
functionality of the Knowledge and Problem Processing
systems may be covered by the Problem Solving Medium.
The differences are related to the emphasis given in the

proposed architecture on the metalevel model, and its impat
on human-interaction features.

In summary, the reasoning line followed to support a
user-system conversation may be the following (see Fig. 2,
below):

e the Presentation Manager translates the question
formulated by the user to the problem solving language,
that means, to the generic task that needs to be solved in
order to get the answer.

e the Conversation Manager makes an analysis of the
recent dialogue with the user and defines a set of
conversation requirements that should guide the
selection of the methods in the Problem Solving
Medium.

e attending to these requirements, a top-down selection
process is applied in the Problem Solving Medium to
define an inference structure whose execution generates
the answer.

e finally, the Presentation Manager takes this answer and
elaborates an adequate presentation, using a combination
of different modalities (texts, graphics, etc.)

CONVERSATION MANAGER

Analysis of the| Cmgne: t(? 5 i T
) navigate in xecution of thel
; conversation
| | Presentation| d} the PSM q problem solving

Manager structure

Problem
solving
structure

Problem Solving Medium

Y199

Generic tasks
associated to
the question

Figure 2: Reasoning line followed to generate the answers to the

user questions

IV.DESIGN METHODOLOGY

Some considerations on the design process and tools for
the development of a DSS supported by the previous
architecture are now outlined. The first step is the design of
the conversation model in terms of the main questions and
interaction features that the DSS should take into account. In
this way, human-computer interaction requirements establish
the basis for the design of the next components. The second
step is the design of the problem-solving environment, which
can be divided into two different parts: the design of the
metalevel reasoning model and the Problem Solving
Medium. The third step, which can be actually run in parallel
with the second one and is not described, is the design of the
presentation model. Lastly, the KSM tool is proposed as an
adequate means to support the implementation of the
designed components.

A. Design of the Conversation Model

First, the specific instances of the generic classes of
questions considered for decision-support need to be
identified, according to the characteristics of the problem

domain and the requirements of the potential users. In order
to get a full description of the possible questions and
answers, the conceptual vocabularies of basic variables and
their corresponding domain values should be defined. These
include: (i) the basic or raw variables characterising the state
of the system; (ii) the complex evaluation variables
describing the possible situations of the system; (iii) the set
of possible control decisions, from those that specify general
strategies or control policies to the detailed ones defined as
the aggregation of different steps characterised by simple
control actions; and (iv) the set of hypothesis that define
alternative formulations of the questions and characterise
different features of the environment affecting the state of the
system.

Then, a conversation may be structured as a sequence of
questions, answers and explanations expressed using the
previous definitions. However, in order to adequately
characterise the communicative goals of the user, the relevant
interaction features concerning the context of the interaction
should be defined as well. As commented in the last section,
these characteristics of the interaction will affect the selection
of the problem-solving methods that will provide the required
output. In this sense, some domain-independent features can
be identified that are potentially useful in any kind of DSS,
thus providing again some heuristics for the design of this
component of the application. These include, for instance, the
required level of abstraction and level of detail for the
answer, the requirement for further explanations, the type of
user, and the possible time constraints imposed in the answer
generation. Some of these features could be inferred from the
context of the conversation, in such a way that the user may
not need to explicitly declare his/her communicative
intentions.

B. Design of the Problem Solving Medium

This part of the design applies conventional techniques of
knowledge acquisition that take advantage of the knowledge
level structuring paradigms. The design of this environment
may require the following steps:

1) Identification of the
components

Problem-Solving ~ Medium

First, the key element in the specification of this stage of
analysis is the identification, for every type of question, of
the main tasks to be performed in order to obtain an answer.
This relationship between questions and tasks may be
deduced from the parsing of the questions structure.
According to the classes of questions previously identified
for any kind of DSS, classification, predictive and planning
tasks may be considered, respectively.

Even though in the initial version of any system usually
only one problem solver may be provided for every task, the
experience in the use of the model and a deeper
understanding of the problem domain may lead to introduce
additional methods to solve the same kind of problems. Thus,
for every major task, the alternative problem solving

approaches that could be applied should be defined,
obtaining in this way several supporting subtasks for each
problem-solving method. For every subtask, the previous
step should be applied, until a tree-like structure of
alternative problem solvers for every task and subtask is
identified. For instance, several versions of problem solvers
may be designed for efficiency reasons with different
conceptual granularity providing in this way different levels
of accuracy and detail in the answers.

Finally, the basic inference methods supporting the
bottom level subtasks should be described on the basis of
their corresponding domain model, i.e. in terms of the
conceptual vocabulary and knowledge bases. This knowledge
and the task-method-subtask structure in general, may be
obtained from different knowledge sources, whose
availability depends on the nature of the problem domain,
such as the following ones:

e The expertise of the people responsible of performing
the activities in the problem domain used to support the
decision making.

e Data mining processes applied to databases with
registered information about the behaviour of the system
that provide more abstract knowledge.

e Mathematical or physical theories that support the
dynamics of the system.

e Common sense knowledge derived from the experience
with previous versions of the application that makes
possible to update the knowledge model.

2) Specification of the metalevel model

Given that the use of the last components is oriented to
configure reasoning structures capable to satisfy users
queries, it is necessary to characterise the peculiarities of the
methods that would make them eligible for being part of
these structures. The metalevel model includes the criteria to
dynamically select the problem solving methods that will
participate in the generation of an answer. These criteria may
be defined according to the interaction-related properties of
the methods and the state of the dialogue, making possible
the selection of the methods that satisfy as many
requirements as possible.

For instance, if a what should be done? question needs to
be answered with a high level of abstraction, a low level of
assistance and with the possibility of providing explanations,
then the Conversation Manager may decide that the most
appropriate way to answer this question is to use a heuristic
planner that uses a forward chaining procedure to select
general strategies for solving problems.

C. Operationalisation of the Conversation Model and

Problem Solving Medium

The two main components of the proposed architecture
were implemented using the KSM tool [1]. The KSM
software environment supports the definition and
implementation of complex structured knowledge models by
means of three main elements: the CONCEL language (that

supports the specification of the conceptual vocabularies of
the model), the LINK language [8] (used in the specification
of the problem-solving methods), and a set of primitives of
representation (that provide a symbolic representation
language and related inference mechanisms, such as frames,
rules, bayesian networks, etc., to define and use basic
knowledge bases). Besides the task-method-subtask
structure, the knowledge model can be structured on the basis
of the more aggregated concept of knowledge area, which
groups tasks related to some particular body of knowledge. A
primary knowledge area is one that can not be further
decomposed in new subareas, and so groups tasks
implemented with the basic inference mechanisms of a
primitive of representation, which operate on a knowledge
base implemented with the representation language of the
primitive. An important characteristic of the KSM framework
in the context of the DSS development is that provides the
experts in the DSS domain the possibility to inspect and
modify the knowledge stored in the model by their own. This
is possible since the languages used to express this
knowledge (CONCEL, LINK, those offered by different
types of primitives) allow expressing the domain concepts
and knowledge in a more declarative way.

Concerning the Conversation Model, the specific
terminology and interaction features of the questions
identified may be declared in the conceptual vocabularies of
the model. Those interaction features that can be inferred
from the context of the dialogue can be obtained using the
knowledge, expressed in frames for instance, specified in
(possibly several) primary knowledge areas. The task(s)
necessary to be executed to answer a given question could be
simply specified with the LINK method of the corresponding
answer question task.

With regard to the metalevel component of the
Conversation Model, the main goal is the selection of the
more suitable methods to satisfy a given collection of
interaction features. In this context, the reflective capabilities
of the LINK language are relevant since the selection of the
right method requires to reason on the problem-solving
capabilities available. The relationship between desirable
interaction features and method’s characteristics can be
represented in primary knowledge areas. A possible strategy
is to dynamically configure the specific problem-solving
structure, as the tasks are needed to be launched. In this way,
each time a task is fired the outcome of the reflective method
associated to the task provides the problem-solving method
that best fit the current interaction requirements. This process
may be repeated for the execution of every subtask of the
selected problem-solving method.

V. APPLICATION IN THE TRAFFIC MANAGEMENT DOMAIN

In order to illustrate the proposal described in this paper,
this section presents an example of DSS in the domain of
private traffic management in the city centre of Turin. This
system was developed within the European Commission
financed research project FLUIDS. First, the particular needs

of human-computer interaction in this domain are outlined
and, then the solution provided by the proposed architecture
is described focusing the attention in the problem-solving
model, i.e. the Conversation Manager and the Problem
Solving Medium. Information regarding the Presentation
Manager component may be found in the FLUIDS project
web site [9].

At present, the management of private traffic in the city
centre of Turin is performed by means of the UTOPIA
control system [10]. UTOPIA provides general control
directives to a collection of subsystems, called SPOT units,
responsible of automatically and dynamically regulate the
control devices in the intersections of the traffic network. The
role of the FLUIDS system in this context was to help an
operator in supervising not only the state of the traffic but
also the performance of these SPOT units. Currently, the
control system operator monitors the functioning of the
SPOT units and, when it is required, manually adjusts some
of its internal parameters in order to ensure an adequate
performance.

The FLUIDS tool may automatically supervise the state
of the traffic network and the SPOT units and alert the
operator about the presence of current or foreseeable
problems, the possible causes of these problems, and
adequate control action proposals oriented to solve these
problems. Therefore, the FLUIDS tool for private traffic
management plays a role of an automatic assistant for
supervising the state of the traffic network and the operation
of the SPOT units, working as a critic that evaluates its
performance and suggests modifications to improve their
operation. For this reason it was named the FLUIDS/CRITIC
system.

A. Conversation Manager

According to the general goals of the FLUIDS system for
the Private Traffic System previously described, and the
generic types of questions described above, the operator-
system conversation model needs to support the following
specific classes of questions:

e What is happening questions related to the state of the
traffic network at different levels: areas, links and
intersections. These questions ask for the presence of
congestion problems, incidents and/or excess demand
situations. In addition, this kind of question can refer to
the evaluation of the current performance of the control
system as well. These evaluations can be also useful for
the diagnosis of the congestion or excess demand
problems. For instance, an unbalanced control policy
may not take into account the high incoming flow of an
incoming link in the green split of the control cycle.

e Why did it happen questions asking for the diagnosis of
causes which explain the problems currently happening.
The goal in this case is to find the causes of abnormal

situations. In general, causes can be internal to the SPOT
application (a low-level performance of the control
system, which usually means that there are some internal
parameters that are not well tuned) or external (e.g.,
problems of communications, detectors, etc.). Other
possible causes may be independent of the UTOPIA
control system, such as incidents or excess demand
traffic problems.

e What may happen questions looking for estimations of
the potential short term evolution of the traffic network
under specific environment conditions (traffic demand
and turning ratios) or as an impact of the application of
particular a control action proposed by the SPOT units in
the past (modification of the nominal flow value for a
specific carriageway).

e What to do questions asking for suggestions of control
actions that improve the current or foreseeable situation
under different scenarios of resources availability. For
instance, if a congestion problem is caused by a control
problem the application may provide recommendations
oriented to change or to reset particular numerical
parameters of SPOT, or actions that isolate a particular
malfunctioning device (e.g., a detector).

Furthermore, the previous questions may be followed by
Why type questions, asking for explanations which support
the results supplied by the application.

B. The Problem-Solving Components

In the domain of Private Traffic Management the
following main basic tasks and methods may be considered:

e Classification task. The input to this task are raw data
obtained from the telematics network. The output
consists of the problems detected in the traffic network.
Two methods can be considered: (i) heuristic
classification and (ii) lookahead classification. For the
heuristic classification method three subtasks can be
defined: abstract data, which receives the real time data
sent by the information system, mainly consisting of
vehicle counts, speeds, queues, saturation flow, turning
percentages, and signal timing values. From these data, it
generates abstract and aggregated measures such as: the
estimated delay, the capacity of the links, etc. Validate
data that is described next. Match problems: The pattern
of congestion of the links, intersections and the whole
area network are matched against the current traffic
conditions. For the lookahead classification method, the
same subtasks of the heuristic method are included but
also a new subtask for the detection of potential short-
term problems.

Validation task. The real time data supplied by the
information system, and the values returned by the
abstract data task, are analysed in order to identify their
validity. Two different methods may be considered: (i)
(heuristic) local validation and (ii) model-based
validation. The local validation method uses a set of
heuristic rules to identify those variables with different
values for the same concept, and hence possibly
incorrect. These rules are mainly based on the difference
between the estimated and the historical or optimum
values. For the model-based validation method a local
validation task is initially solved. Then, a consistency
validation task looks for inconsistencies between the
values of the variables describing the state of the traffic
situation.

Diagnose traffic problems task. Given a congested link,
and the past evolution of the system, this task returns as
output the possible causes of the current congestion. In
general, the causes can be local to the system (e.g. an
incident in some downstream link) or external (an excess
demand). Two methods can be considered: (i)
classificative diagnosis, and (ii) model-based diagnosis.
Both methods differ in the depth of the knowledge used:
a set of prototypical evolutions of the traffic state leading
to congestion problems, for the first one; and a traffic
behaviour model, for the second one.

Diagnose control problems task. This task diagnoses the
causes of the problems in the active control applied by
the SPOT units: an unbalanced signal plan, or a
significant difference between the estimated and
expected delay. The output is the quality level of the
input data used by the automatic control system:
estimated data that represent the current state of the
intersection, nominal data that model the topology and
default traffic behaviour, or control parameters specified
by the area control module. The task is solved by a
heuristic method that reflects the expertise of the
operators in the control centre of Turin.

Manage traffic signals task. The goal of this task is to
modify the unbalanced traffic signal control of the
intersections. The input to the task is the description,
diagnosis and forecast of the current situation. A
generate & test method is applied. The generate traffic
signal plan returns a modification of the signal timing
that distributes the green time of the control cycle
proportionally to the index of saturation of the critical
links. A knowledge base of heuristic rules is used. The
next test stage of the method perform two subtasks:
predict evolution and accept signal proposal, which
return an assessment of the control proposal in terms of
its impact in the short-term evolution of the traffic
conditions.

Manage SPOT control units task. The diagnosis and
description of the low performance of the control units at
intersections is given as input. A planning method is
used. The method applies a forward reasoning method to

TASK SPECIALIST: validate data
METHODS: heuristic validation &
model-based validation

SELECTION KNOWLEDGE:
time constraint = no AND flexibility = no AND
possibility of additional questions = yes AND
recency constraint = yes

-> model-based validation

time constraint = yes AND flexibility = yes AND
abstraction level = high
-> heuristic validation
METHODS DECOMPOSITION:
heuristic validation: local validation
model-based validation: local validation,
global validation

Figure 3: Metalevel knowledge of the validation task

a knowledge base composed of heuristic rules. The
method proposes different modifications to the nominal
parameters of the SPOT unit (saturation flow, turning
percentage, flow, etc.) and different warnings to the
maintenance groups (check loop detectors,
communication line, etc.).

C. Metalevel Issues

The metalevel knowledge consists of frames associated to
each task that define the interaction parameters to be
considered for each of the alternative methods associated to
the task. For instance, the frame in Fig. 3 is used to select the
more convenient method for the validation task.

The local validation method is a heuristic method that
only uses the difference with respect to the average or
expected value to conclude that a given measure is incorrect.
So, in case that the answer is quickly required, with no matter
on the quality of the input data (since the analysis is not very
strict) nor the level of detail of the answer, this method may
be preferred. But, if there is no problem with the time of
response and an in-depth analysis is required, the model-
based method should be selected. In addition, more detailed
explanations could be given with the answer.

D. Implementation Issues

This section presents a brief overview on the main
implementation issues concerning the problem-solving model
of the FLUIDS/CRITIC system. Figure 4 shows the
knowledge model developed with the KSM tool.

The entire knowledge for decision support is represented
by one knowledge area called UTC (urban traffic control
knowledge). The tasks for answering what is happening,
what to do, etc., questions are associated with it. This
knowledge area is in turn decomposed into four major
knowledge areas: classification, validation, diagnosis and
control. Each knowledge area includes a set of tasks that can
be solved using the corresponding type of knowledge. In
some cases these tasks can be performed by several problem-
solving methods, using knowledge of the sub-areas in which
are decomposed. For instance, the validation knowledge area
is decomposed into the local validation and consistency
knowledge areas, which support the two different methods
available to perform the validation task. The reflective
validation knowledge area provides the metalevel knowledge

required to select the right method according to the
interaction features established.

[0 5]
o ot [Pt Bl
L3
g By
] e
- . -~

2 i) - TSl TYm s
|| ueraestons __— - -~ M s
= 0o - B s/ s

g : &) casencatoimoviesge de9nesis owiedge N

— system data
Y vallgation knowledge

o /
x| /

Jsystern data set

renective validation fnowieoe control proposals

data source)
systern propusals

local valldation knowledgel

absiraction knowledge control diagnosis

control problems patierns

alnal valdafion knawia dge system diagnosis

data ermors influence.

Figure 4: Problem-solving model of the FLUIDS/CRITIC

Regarding the basic knowledge areas, the problematic
situations like congestion, incidents, and so on, are
represented with frames, and a pattern-matching procedure is
used as the basic inference mechanism. Other primary
knowledge areas such as the control proposals use rules
instead. In addition, this type of knowledge areas has
conceptual vocabularies associated, defining the components
of the topology (e.g. intersections, carriageways, links, etc.)
and their basic attributes (e.g. delay, number of stops for
links). A primary knowledge unit does not have to be a
knowledge-based module. It may be a neural network, a
conventional database or even a conventional program with
an algorithmic approach. This is the case of the utopia system
data area, which is used to obtain the raw data collected by
the telematics network installed in the traffic network.

Last, figure 5 shows the main window of the
FLUIDS/CRITIC system, with the presentation manager’s
output to a question over the current situation of a particular
area.

28 FLUIDS - UTC: Torino Urban Traffc Control Demonstrator v3.09.98

What happens in area 7 ?

555555

iicio] E3 TibunaPuyecif. | s \Lovntcevn. | B MicosotWord .. | ERUNVERSIDAD P | (3 -l _| M3CWINNT\S o, [FLUDS -0TC... [1872

Figure 5: Main window of the FLUIDS/CRITIC system

VI. CONCLUSIONS

In summary, the current generation of telematics
applications for on-line traffic management requires an
advanced operation scenario that may be supported by
intelligent tools capable to provide a flexible and adaptive
communication between systems and operators. This type of
communication may be based on human-computer dialogues
where the system acts as an assistant to support the operator
decisions. The complexity required by these dialogues
suggests the use of recent results in the field of intelligent
user interfaces. According to this, this paper proposes a
knowledge model that supports this type of interaction whose
basic idea lies in the use of a reflective architecture. Two
main components are distinguished: a meta-level component
whose goal is to decide the appropriate way to solve
problems according to the needs of the conversation,
included in the Conversation Manager, and an object-level
component composed of a structured collection of problem
solvers responsible of producing the corresponding answers,
included in the Problem Solving Medium. The experience
with this approach in the FLUIDS project allows considering
the proposal presented in this paper an appropriate technical
answer to the needs of control rooms on real time transport
management.

REFERENCES

[1] J. Cuena and M. Molina, “KSM: An environment for design of
structured models”, Knowledge Based Systems: Advanced Concepts,
Techniques & Applications, pp. 497-524, World Scientific Publishing,
1997.

[2] B.J. Wielinga, A.T. Schreiber and J.A. Breuker, “KADS: A modeling
approach to knowledge engineering”, Knowledge Acquisition, 4 (1),
1992.

[3] E. André, W. Finkler, W. Graf, T. Rist, A. Schauder, W. Wahlster,
“WIP: The automatic synthesis of multimodal presentations”, M.T.
Maybury (ed.), Intelligent Multimedia Presentations, MIT Press, 1993.

[4] M. Bordegoni, G. Faconti, S. Feiner, M.T. Maybury, T. Rist, S.
Ruggiery, P. Trahanias, M. Wilson, “A standard reference model for
intelligent multimedia presentation systems”, Journal of Computer
Interfaces & Standards, Special Issue on Intelligent Multimedia
Presentation Systems, 1997.

[5] M.T.Maybury, “Planning multimedia explanations using communicative
acts”, M.T. Maybury (ed.), Intelligent Multimedia Presentations, MIT
Press, 1993.

[6] J. Herndndez and M. Molina, “Advanced human-computer interaction
for decision support systems using knowledge modelling techniques”,
15™ International Federation on Information Processing (IFIP) World
Computer Congress, IFIP’98. IT&kKNOWS Conference, Information
Technology and Knowledge Systems, pp. 400-414, Austrian Computer
Society, 1998.

[7]1 C. W. Holsapple and A. B. Whinston, Decision Support Systems: A
Knowledge-Based Approach, West, St. Paul, 1996.

[8] M. Molina, J.L. Sierra and J.M. Serrano, “A language to formalise and
to operationalise problem solving Strategies of structured knowledge
models”, 8th Workshop on Knowledge Engineering: Methods &
Languages (KEML'98), Karlsruhe, 1998.

[9] FLUIDS, Future Lines of User Interface Decision Support Systems,
Telematics Applications Programme, IV Framework Programme,

Commission of the European Communities, 1996. URL:
http://www.dfki.de/fluids.
[10]V. Mauro and C. Di Taranto, “UTOPIA”, IFAC/IFIP/IFORS

Conference on Control, Computers and Communications in Transport,
Paris, 1989.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	An Intelligent Interactive Knowledge Model for Decision Support in Real Time Traffic Management
	Josefa Z. Hernandez
	Juan M. Serrano
	Recommended Citation

	Microsoft Word - Ecis.doc

	search: search

