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ABSTRACT 

Online social networks allow for information to rapidly propagate throughout the world, and opinions expressed on 

such platforms can influence people’s decisions. During the COVID-19 pandemic, many influential public figures 

used these social networks to share their opinions about the vaccines developed to combat the virus. Many 

influencers encouraged vaccination, and a considerable number also expressed doubt and skepticism over the 

efficacy of the vaccines. This study modeled the impact that eleven influencers’ statements had on the overall 

sentiment towards COVID-19 vaccines, as expressed on Twitter. Sentiment is measured by collecting a series of 

publicly-available tweets made regarding the vaccine during the pandemic, and assigning each a sentiment score 

based on the VADER lexicon. Several models were used to analyze the impact of the influencers’ statements, 

including linear, sequential and tree-based models. The results were obtained by constructing a Bayesian structural 

time series model based on each model’s counterfactual estimate. The results found that influencers who share 

messages encouraging vaccination generally tend to increase the number of ”pro-vaccination” tweets over the next 

20 days. Influencers sharing ”anti-vaccination” messages sometimes resulted in a decrease in anti-vaccine tweets, 

and other times in an increase over the next 20 days. The results from this study provide an introductory look into 

the complex issue of vaccine hesitancy and the effect of influencers on vaccine messaging, and inform public health 

strategy regarding this issue.  

Keywords 

COVID-19, Vaccine, Celebrity, Influencer, Vaccine hesitancy, time-series forecasting, vaccines, COVID, machine 

learning, celebrity influence, BSTS, sentiment analysis, VADER lexicon, Twitter, Endorsement, Influence 

INTRODUCTION 

The SARS–CoV–2 virus was first detected during December of 2019 in Wuhan, China (Zhu et al. 2020). The virus 

has since spread to most of the world and was declared a global pandemic by the World Health Organization on 

March 1, 2020 (Carvalho et al. 2021). To end the pandemic, governments around the world funded the development 

of a vaccine – the U.S. government alone spend roughly $13 billion on vaccines as of February 2021 (Bloom et al. 

2021). mRNA–based COVID–19 vaccines, such as the COMIRNATY vaccine (developed by Pfizer inc., BioNTech 

SE, and Shanghai Fosun Pharmaceutical Co., Ltd.) and the Moderna vaccine, function by injecting a small amount 

of genetic material into the body, which instructs cells to produce a harmless replica of the target virus. The immune 

system then recognizes this foreign protein as a potential threat and develops a defense by producing antibodies, 

providing protection against future infections (Park et al. 2021). However, if governments are to achieve the goal 

of herd immunity (i.e., a state when a large part of a population has developed immunity to a disease), they need 

large proportions, an estimated 67%, of their populations to take the vaccines (Randolph & Barreiro 2020). 

However, many individuals are hesitant to take the vaccine, citing beliefs (often based on misinformation) about 

the safety and efficacy of the vaccine to support their views (Afifi et al. 2021). Vaccine hesitancy leads to a delay 

in achieving herd immunity status despite enough vaccines having been produced – leading to further spread and 

mutation of the virus, and eventually even greater loss of life (MacDonald et al. 2015). Indeed, in 2019, the World 

Health Organization included vaccine hesitancy in the list of the top ten major threats to global health (Sweileh 

2020). One approach governments around the world employed to promote vaccinations was to utilize the voice of 

prominent figures in popular culture to spread accurate information and encourage the public to get vaccinated 

(Rzymski et al. 2021). For instance, the Biden administration invited pop–star Olivia Rodrigo to the White House 

in mid–July, and conducted interviews with multiple internet personalities (e.g., Christina Najjar) to encourage 

young people to get vaccinated (Chansolme 2022); in Uganda, some prominent religious leaders were involved to 

achieve the same goals (Ssanyu 2022). 

1

Shah et al.: Modeling Impact of Celebrity Messages on COVID Vaccine Sentiment

Published by AIS Electronic Library (AISeL), 2024



Celebrity Influence Celebrities have long held influence among the public, especially among younger age groups, 

i.e., adolescents and young adults, who are one of the most vaccine–hesitant groups (Adams et al. 2021). Celebrity 

advertising, for instance, has been a popular method of marketing used by companies for decades to reach these 

groups (Yannopoulos 2012). With the rise of social media platforms such as Twitter, Instagram, Facebook, Reddit, 

and others, celebrities have been able to spread their views further than ever before, due to the rapid diffusion rate 

of messages posted on their relatively massive networks (Selkie 2022). Recently, many popular celebrities and 

social media influencers have used their platform to push out statements supporting the vaccine, both independently 

and by partnering with public health authorities; however, a considerable number of celebrities have also pushed 

statements against the vaccine (Calac et al. 2022), potentially leading to increased vaccine hesitancy amongst their 

followers. This study set out to explore how celebrities and social media influencers have affected the public 

sentiment, as expressed on Twitter1, regarding COVID–19 vaccines. 

Theoretical Foundations The study was built on two foundational theories: the theory of planned behavior 

(Fishbein & Ajsen 1975) and the source credibility model (Hovland & Weiss 1952). The theory of planned behavior 

is a generalization over the theory of reasoned action (Fishbein 1979), which describes the factors that affect human 

decisions and behaviors. In its simplest state, the theory posits that behavioral intention, the likelihood of a specific 

behavior being performed, as being a linear combination of two factors: 

1. Attitudes: The individual’s behavioral belief of how probable possible outcomes are in response to 

performed behaviors and their evaluation of how favorable each outcome is evaluation. 

2. Subjective norms: The individual’s normative beliefs as to how each behavior would be perceived by 

society (which would include their peers as well as celebrities and people of importance), as well as that 

individual’s motivation to comply with those perceptions. 

This linear combination can be expressed by the following equation: 

 𝐵𝐼 = 𝑤𝐴𝐴 + 𝑤𝑆𝑁𝑆𝑁, (1) 

where BI denotes the behavioral intention, A denotes the individual’s attitudes, SN represents the subjective norms 

and wA and wSN represent the weights associated with each factor. However, the Theory of Reasoned Action assumes 

that the individual making the decision has complete volitional control over their behaviors, and that the individual 

perceives every possible behavior as being equally difficult to perform, which does not hold here. For instance, 

since many employers required their employees to be vaccinated in order to continue work, workers did not have 

complete volitional control over the vaccination decision. The theory of planned behavior arose as a solution to this 

limitation, which adds the following factor to the model: 

3. Perceived behavioral control, the individual’s perception of their ability to perform a behavior. The 

perceived behavioral control is determined by control beliefs, an individual’s belief about factors that 

make some behaviors easier to perform than others, and the individual’s perceived power for each control 

belief. The perceived behavioral control is related to the concept of self–efficacy (Bandura 1977), which 

describes an individual’s belief of their own ability to perform a behavior.  

With this addition, the model now expands to 

 𝐵𝐼 = 𝑤𝑎𝐴 + 𝑤𝑆𝑁𝑆𝑁 + 𝑤𝑃𝐵𝐶𝑃𝐵𝐶, (2) 

 

1 As of August 2023, Twitter has rebranded to X under X Corp., but will still be referred to as Twitter in this paper, 

staying consistent with the name of the platform when the study’s data was collected. 
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where PBC denotes the perceived behavioral control, wPBC denotes the weight associated with the PBC, and all 

other terms are unchanged from above. The three factors, A, SN and PBC are themselves proportional to the 

individual’s behavioral, normative and control beliefs, respectively: 

 

 𝐴 ∝ ∑ 𝑏𝑖𝑒𝑖 ,

𝑛

𝑖=1

              𝑆𝑁 ∝ ∑ 𝑛𝑖

𝑛

𝑖=1

𝑚𝑖,               𝑃𝐵𝐶 ∝ ∑ 𝑐𝑖

𝑛

𝑖=1

𝑝𝑖 , (3) 

where, for behavior i, bi denotes the strength of the behavioral belief associated with that behavior, ei denotes the 

individual’s evaluation of that behavioral belief, ni denotes the strength of the normative belief associated with that 

behavior, mi denotes the individual’s motivation to comply with that normative belief, ci denotes the strength of the 

control belief associated with that behavior and pi denotes the perceived power of that control belief. Influencer 

messages on social media sites can affect all of these factors: prominent celebrities trusted by the public may change 

the public evaluation of these vaccines, a majority of popular figures sending messages one way or another may 

change people’s normative beliefs, and influencers sharing their stories of the vaccination process may change 

individuals’ perception of their self–efficacy (thereby affecting their control beliefs). This interaction is better 

explained by source credibility theory, which states the following: 

1. The credibility of a message is dependent on the perceived credibility of the communicator. 

2. Credibility is in turn dependent on the perceived honesty of the communicator and whether or not the 

audience considers them to be a valid source of information (Ohanian 1990). 

Therefore, when social media users see posts by celebrities that they admire, or look up to, they trust the information 

provided and can be persuaded to believe in the celebrity’s message. The more influence the account making the 

vaccine–related post has over the individual, the higher credibility the account has in that individual’s lens; as a 

result, this study looks only at accounts with a large following (with “large” being more formally defined in “Data”) 

on their social media platform since people tend to follow accounts/influencers whom they admire (Morton 2020). 

The following section will discuss relevant literature to this topic and this study’s contribution to the field. The 

process for collecting the tweet database and selecting influencers will then be described in “Data”, and the models 

built to estimate each influencer’s impact will be explained in “Models”. The findings of this study will be examined 

in “Results” and “Discussion” and the conclusions and limitations of this study will be shared in “Conclusions and 

Future Work”. 

RELATED WORK 

The emergence of social media platforms has revolutionized information dissemination and opinion formation on 

a global scale. Of particular importance is the role of platforms like Twitter in shaping public sentiment towards 

critical health issues, such as vaccine hesitancy. A study by Salathé and Khandelwal (2011) showed that analyzing 

sentiments on social media can help predict vaccination rates and even disease outbreaks in various communities. 

More recent studies, such as that by Bonnevie et al. (2020a) found that vaccine opposition posts increased 

significantly from late 2019 to mid–2020. However, since the first COVID–19 vaccine was not available until late 

2020 (Webster 2021), the vaccine discussion on Twitter may have changed considerably since. Sutrave et al. (2021) 

also analyzed the sentiment on Twitter toward COVID–19 vaccines and found the overall sentiment on the platform 

was found to be positive, yet still with a considerable number of negative sentiment posts regarding the efficacy 

and adverse reactions caused by vaccines.  
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Many previous studies have shown that celebrities have the potential to play an important role in shaping the health 

landscape. An analysis by Hoffman and Tan (2013) concluded that celebrity messaging should be further examined 

as a tool to help public health authorities discredit misinformation and promote positive health practices. In a more 

specific context, the authors of Robinson (2003) examined AIDS in the African American community and found 

that in many cases, celebrities were indeed effective at promoting safe practices to avoid contracting HIV/AIDS. 

Alatas et al. (2019) examined a case study in Indonesia and found that certain elements of celebrity campaigns can 

make them very effective at promoting vaccinations and other positive health practices. 

More recently, studies have also begun to look at how influencers fit into the vaccine sentiment landscape described 

earlier, although most focused on posts by anti-vaccine celebrities or posts sharing misinformation. Bonnevie et al. 

(2020b) showed that misinformation regarding vaccines has identifiable, upstream origins but has not been 

satisfactorily handled by health authorities. The authors of White et al. (2023) showed that most tweets referencing 

particular anti–vaccine celebrities during the COVID-19 pandemic had an overall negative tone and concluded that 

further research into the public response to celebrity messages is needed. One of the few studies to focus on both 

pro-vaccine and anti-vaccine influencers, Scannell et al. (2021) found that sharing references to celebrity statements 

was a common persuasive technique used by both pro–vaccine and anti–vaccine social media groups, although the 

impact of these references was not measured.  

The above examples show that past research has looked at celebrity impacts on significant health decisions, 

examined how the public perception toward COVID–19 vaccines has changed over time, and even begun to study 

the origins and sentiments of anti–vaccine messages. However, there has been little research on studying the impacts 

of such messages from prominent figures, and especially on comparing the impacts of pro–vaccine and anti–vaccine 

influencers in the same context. This study aims to fill this gap, and in the process, provide valuable insight to public 

health officials as to how public health campaigns can be shaped by public figures. 

DATA 

In order to quantify the public opinion toward COVID–19 vaccines, messages regarding these vaccines posted on 

the Twitter platform (tweets) were collected using the Python package “snscrape”. The following query was used: 

“vaccine OR vaccines OR vaccinate OR vaccinated OR vaccination OR vaccinations OR vaccinated OR dose OR 

doses OR inoculate OR inoculation OR inoculations OR inoculated OR booster OR boosters OR vax OR anti–vax 

OR anti–vaxx OR antivax OR antivaxx OR antivaxxer OR anti–vaxxer OR antivaxer OR "breakthrough infection" 

OR "breakthrough infections" OR moderna OR pfizer OR biontech OR astrazeneca” The following three constraints 

were applied on the query: 

1. All collected tweets must have been written in English. 

2. Tweets must have been posted in the United States.  

3. The tweets included were allowed to include media, but in that case, the tweet must also have had some 

textual content that matched the query above.  

By the end of the scraping process, 1,948,191 were scraped from as early as November 1, 2020, through to March 

11, 2022 (with an upper limit of 4,133 tweets per day to ensure that data collected was distributed as evenly as 

possible throughout the relevant time period; otherwise, impacts would be tough to quantify since influencers’ posts 

may have over or under–estimated impacts due to more or less data collected in the following days). Once this data 

was collected, each tweet was cleaned by removing all hashtags, mentions, URLs, media, special formatting 

characters embedded in our database’s tweet representation (e.g., “\n” for a newline, or “U+0026” for an 

ampersand), non–ASCII characters, emojis and punctuation. 
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To classify a tweet as pro–vaccination or anti–vaccination, a sentiment score was assigned to each tweet based on 

its processed text; tweets sharing messages promoting vaccines tend to express positive sentiments, whereas tweets 

sharing messages against vaccinations tend to express more negative sentiments (the actual boundary between the 

sentiments is formally defined below). To determine the sentiment scores, the rule–based model VADER (Valence 

Aware Dictionary and sEntiment Reasoner) was used (Hutto and Gilbert 2014). VADER’s approach uses a 

dictionary, known as a lexicon, that stores a list of lexical features (words, emojis and other elements commonly 

found in text) with a sentiment score between 4 and –4 assigned to each feature (with higher scores representing 

increasingly positive sentiments). The VADER lexicon is optimized for abbreviated phrases, emojis, slang and 

other elements commonly found in tweets or other social media platform posts. To determine the sentiment score 

of a tweet, the score for each feature (known as the valence score for that feature) is determined from the lexicon 

and then summed according to five heuristic rules (that take into account words such as “not” that can change the 

entire meaning of the phrase, punctuation such as “!” that can indicate a more intense feeling, words written in 

uppercase for emphases, etc.). The sum is then normalized to compute the compound score, which is denoted here 

as C according to the following function: 

 𝐶 =
𝑥

√𝑥2 + α
 (4) 

where x = sum of each valence score and α = normalization constant, which is usually 15 (Hutto 2013). Note here 

that although each word’s score can vary from –4 to 4, the score of a tweet ranges only from –1 to 1 after the sum 

of the scores of its words is normalized as shown above. Once these compound scores were computed, tweets were 

then labeled as follows: 

1. “Positive” tweets, where 𝐶 > 0.2, which are likely to express pro–vaccination sentiments. 

2. “Negative tweets, where 𝐶 < −0.2, are likely to share messages against vaccinations or mandates. 

3. “Neutral” tweets, where −0.2 ≤ 𝐶 ≤ 0.2, tend to be factual statements expressing no clear sentiments or 

opinions, and are of no interest to this study (although they can potentially be useful and can still ignite 

responses which are quite “positive” or “negative”). 

These boundary/threshold values were chosen by randomly sampling nearly 1000 tweets from our dataset and hand 

labeling each as pro–vaccine, anti–vaccine, or neutral. After trying a series of boundary values (from ±0.01 to ±0.5 

in increments of 0.01), –0.2 and 0.2 were found to result in the highest correlation between the hand–labelled 

classifications and the VADER generated ones.  
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Figure 1. A chart showing the numbers of positive, negative and neutral tweets found in the database after applying the sentiment 

analysis. All three classifications had relatively similar numbers, with slightly more positive tweets than negative. 

 

 

Figure 2. Word clouds displaying common words in both “positive” (left) and “negative” (right) tweets; the frequency of each word 

in the dataset is portrayed by its size and color intensity; some important differences are highlighted in red. These word clouds 

serve as a “proof of concept” that the sentiment analysis approach is fairly effective at identifying pro–vaccination and anti–

vaccination tweets, as many of the differences highlighted are what would be expected between these two groups. 

Two new datasets were built based on the collected tweets with one storing those with “positive” sentiment and one 

storing the “negative”. Both datasets were formatted as time series of the number of tweets expressing each 

sentiment shared per day – this count was standardized and a log–transformation was applied. 36 calendar features 

were also added to each dataset, such as the month of year and the day of the week. These features encode 

information about seasonal patterns possibly present and aid the forecasting models (described in “Models”) in 

better understanding the data – for instance, perhaps there tend to be more positive tweets on Saturdays. By the end 

of this process, both the positive and the negative datasets were 495 x 38 matrices, storing the date and tweet count 

with the 36 calendar features for 495 consecutive days.  
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Figure 3. Plot showing the evolution of the number of positive (solid, in cyan) and negative tweets (dashed, in magenta) per day 

throughout the time window of the study. 

 

The data collection phase also involved identifying influencers that have made statements in the past regarding 

COVID–19 vaccines that may have affected the public opinion. An influencer is, for the purposes of this study, 

defined as a social media account on either the Twitter or Instagram platforms (since many posts by prominent 

figures posted on Instagram heavily affected the conversation on Twitter, influencers were allowed to be on both 

platforms despite the responses being measured on Twitter) that meets the following criteria: 

1. Wide reach: The account must have at least 100,000 followers on its respective platform and had been 

granted “verified” status on their platform as of the date of the study. According to source credibility theory 

(Hovland & Weiss 1952), the credibility of a message is directly dependent on the individual’s perceived 

credibility of the individual sharing the message. The figures who tend to have a high perceived credibility 

among large segments of the population are celebrities and social media influencers (Hoffman & Tan 2015), 

and so we use the account’s number of followers as a metric to determine their credibility and influence 

over the public. 

2. Strong opinion: The account must have made a post relevant to COVID–19 vaccines, that, according to the 

same model described above, is categorized as either “pro–vaccine” or “anti–vaccine”. If the post is 

categorized as “pro–vaccine”, the influencer is said to be positive (regardless of whether or not other posts 

by the influencer express different opinions). Similarly, if the post is categorized as “anti–vaccine”, the 

influencer is said to be negative. 

3. Within window: The post described above must have initially shared between January 1, 2021, and 

February 20, 2022, inclusive, in order for the models (described in “Models”) to have sufficient data before 

the post to build forecasts, as well as at least 20 days after the post to evaluate its impact.  
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4. No political involvement: The individual that the account represents must not be a politician or politically 

appointed, to minimize the effect of political polarization from affecting our results (of course, some 

political influence is unavoidable – some cases of this will be described in “Discussion”). This would 

exclude all U.S. senators, U.S. representatives and public health officials (such as Dr. Anthony Fauci). 

This study tracked a total of eleven influential figures – six “positive” accounts: @SteveMartinToGo on Twitter, 

@BillGates on Twitter, @DollyParton on Twitter, @BigBird on Twitter, @johnlegend on Instagram and 

@americaferrera on Instagram, as well as five “negative” accounts: @evangelinelillyofficial on Instagram, 

@RobSchneider on Twitter, @chethanx on Instagram, @NICKIMINAJ on Twitter and @doutzen on Instagram. 

@SteveMartinToGo, @BillGates, @BigBird and @NICKIMINAJ were the only four influencers found within the 

tweet database that also met the three criteria above, and so the other seven influencers were chosen by examining 

well–publicized vaccine–related statements. The number of posts chosen and the manner of choosing were done 

similarly to White et al. (2023).  

MODELS 

To model the impact of a post by an influencer on the recorded sentiment scores, the following process was adopted: 

1. Using only data prior to the selected influencer’s post, a collection of 5 models (described below) were 

trained on the dataset matching the post’s sentiment (i.e., models for a pro–vaccine post’s impact are trained 

on the “positive” dataset, and vice versa). 

2. Based on these models, 5 forecasts were generated for the next 20 days after the post (producing a separate 

forecast for each model). These forecasts are labelled counterfactuals i.e., estimates of what “would have 

happened” in the absence of the post. These counterfactual forecasts are, themselves, time–series with 20 

time points (days) of data – they estimate the likely trajectory of public sentiment in the days following the 

post had it not been shared (for positive influencers, they represent a forecast of the number of positive 

tweets over the next 20 days, and vice versa). 

3. The counterfactual along with the observed trajectory of the time series (“what actually happened” over the 

next 20 days) was then used as inputs to the “CausalImpact” R library to perform a Bayesian analysis on 

the two time–series and return distributions of the average and total difference between the counterfactual 

prediction (the predicted number of tweets matching the influencer’s sentiment) and the observed values 

(the actual number of tweets matching the influencer’s sentiment) over the next 20 days. It also computes 

the probability that the effect computed could have been observed due to chance. 

With this methodology in mind, the impact analysis phase of this study boils down to a time–series forecasting 

problem to build the counterfactual estimates. Five different models were built, chosen by examining previous 

studies that benchmarked model performances on datasets similar to ours. Each model was evaluated based on its 

root mean squared error (RMSE). 80% of the data before the influencer’s post was used to train the models, and the 

last 20% was used to evaluate their performance using the RMSE; after RMSE values were obtained for a model, 

the model was retrained on the full dataset (the 80% training set and the 20% testing set combined), and the forecasts 

for the period after the post were obtained. The RMSE was calculated in the following manner: 

 𝐽 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1 , (5) 

where �̂� denotes a 20–element vector of the model’s counterfactual estimates, and y represents a 20–element vector  

of the true values of the tweet counts over the next 20 days. The following models were used to generate the 

counterfactuals (denoted y in the equations below): 
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1. A multiple linear regression model: 

 𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ + 𝑏𝑛𝑥𝑛 = 𝑏⊺𝒙 (6) 

where 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 denote the regressors (in this instance, the 37 features described earlier). This 

approach was found to yield good results when used on a corpus of tweets similar to this study by Asul et 

al. (2010).  

2. A Prophet model with regressors (Taylor and Letham 2018): 

 𝑦 = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + ε(𝑡) (7) 

where g(t) denotes non–period trends visible throughout the data, s(t) represents seasonal patterns, h(t) is 

used to account for the effects of holidays, and 𝜀(t) denotes the error term, storing noise unaccounted for 

by the model. If the data seems to exhibit “non–linear, saturating growth” (which levels out at some carrying 

capacity C), g(t) can be most easily modeled by the equation: 

 𝑔(𝑡) =
𝐶

1 + 𝑒−𝑘(𝑡−𝑚)
 (8) 

where C denotes the carrying capacity, the growth rate is represented by k, and m denotes an offset. For 

non–logistic trends, below is a piece–wise linear trend model with S change–points (sj, where j = 1,…,S) at 

which the growth factor changes: 

 𝒈(𝒕) = (𝒌 + 𝒂(𝑡)⊺𝛅)𝑡 + (𝑚 + 𝒂(𝑡)⊺𝛄), (9) 

where  𝒂(𝑡) ∈ {0,1}𝑆, such that 𝑎𝑗(𝑡) = 1 for all t ≥ 1 and 𝑎𝑗(𝑡) = 0 otherwise. The change in the growth 

rate at sj is denoted by δj and included in the vector δ; to ensure the function is continuous, γ is defined 

where γ𝑗 = −𝑠𝑗δ𝑗. As before, the growth rate is represented by k and the offset parameter is denoted m. In 

this study, extra regressors were also added to the linear component of the model (the process for generating 

these regressors is described in more detail in the “Data” section). Due to the nature of the model, Prophet 

is exceptionally good at finding seasonal patterns in the data provided, as has been demonstrated with 

seasonal datasets in the past (Yasaman et al. 2022). As there is a high probability of seasonal patterns being 

present in this dataset, Prophet was chosen in this ensemble as well. 

3. An Extreme Gradient Boosting (XGBoost) model: 

Unlike the previous models, XGBoost builds an additive ensemble of k trees to compute the following 

prediction: 

 𝑦 = ϕ(𝒙) = ∑ 𝑓𝑘(𝒙),        

𝐾

𝑘=1

𝑓𝑘 ∈ ℱ (10) 

Here, CART (the space of trees), is represented by ℱ = {𝑓(𝒙) = 𝑤𝑞(𝒙)}, where q : 𝑅𝑚 → 𝑇 represents the 

tree structure, mapping a group of features to their leaf index, T represents the tree’s leaf count and fk.  

represents a tree with structure q and weights 𝑤 ∈ 𝑅𝑇. To update the model’s functions based on previous 

examples, XGBoost works to minimize the following objective: 

 ℒ(ϕ) = ∑ 𝑙(𝑦�̂�, 𝑦𝑖)

𝑖

+ ∑ [γ𝑇 +
1

2
λ||𝑤||

2
]

𝑘

, (11) 
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and γ𝑇 +
1

2
λ||𝑤||

2
 is commonly abbreviated Ω(𝑓). Here, 𝑙(𝑦�̂�, 𝑦𝑖) =

1

2
(𝑦�̂� − 𝑦)2, but any differentiable l is 

acceptable. λ is the regularization parameter and γ controls the pruning of model, with both parameters 

working together to penalize extra complexity. This model is introduced and described extensively in Chen 

and Guestrin (2016), and various studies have shown that XGBoost performs at the level of, and often even 

better than, many state–of–the–art models for time–series forecasting problems (Alim et al. 2020; Gupta et 

al. 2022), including for social media time–series (Mubang and Hall 2022). 

4. A Prophet model with gradient boosted errors: 

This model uses a two–pronged approach toward modeling the time series. First, a Prophet model as 

described above is used to approximately represent the time series (ignoring all extra regressors). Then, an 

XGBoost model is applied to the residual terms of the Prophet model. In this way, approaches (2) and (3) 

above are combined to generate a fourth model. This model is shown to perform better than many 

standalone, single models by Wang et al. (2022). 

5. A ranked/weighted ensemble combining all four previous models based on their RMSE on the test set: 

 𝑦 = θ1ℎ1 + θ2ℎ2 + θ3ℎ3 + θ4ℎ4, (12) 

where hi represents the predictions of the ith model, and θ𝑖 ∈ {0.1; 0.2; 0.3; 0.4} represents the weight of 

the ith model receives in the ensembled prediction. These weights were assigned in a manner where the 

model with the lowest RMSE (the best–performing model) receives a weight of 0.4, the model with the 

second lowest RMSE receives a weight of 0.3, the model with the second highest RMSE receives a weight 

of 0.2 and the model with the highest RMSE (the worst–performing model) receives a weight of 0.1 (so 

that ∑ θ𝑖 = 1). This basic approach is shown and found to achieve higher accuracies than component 

models in Adhikari et al. (2015). 

 

Figure 4. Plot showing the process to compute the impact for an imaginary influencer post on 12/01/2021 — all data points prior to 

this date (of which only the most recent 200 are shown in solid cyan for visibility purposes) would be used to train the models 
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described above, which generate the counterfactual shown (in orange). It is then compared to the observed data (dashed cyan) to 

generate the impact estimates. 

 

To perform the intervention analysis, two distinct time periods were defined: if d represents the date of an influence 

post regarding the vaccine, the 1) pre–intervention period is defined to run from November 1, 2020, to d – 1, and 

the 2) post–intervention period is defined to run from d to d + 20. Then, using the “CausalImpact” R package 

(Broderson et al. 2015), the information from these counterfactuals were combined with a Bayesian structural time 

series model. A structural, or state space, time series model takes the following form: 

 𝑦𝑡 = 𝑍𝑡
𝑇α𝑡 + ε𝑡               ε𝑡 ∼ 𝒩(0, 𝐻𝑡) (13) 

 α𝑡+1 = 𝑇𝑡α𝑡 + 𝑅𝑡η𝑡      η𝑡 ∼ 𝒩(0, 𝑄𝑡) (14) 

where yt represents the observed data, and αt represents the unobserved latent state. The parameters Ht and Qt denote 

the variances of εt and ηt, respectively (Ht = σε
2, Qt = ση

2). The former of the two equations is referred to as the 

observation equation (as it depicts the relationship between the observed data and the latent state), while the latter 

is referred to as the transition equation, representing the relationship between lags of the unobserved state. A variety 

of models can be represented in state–space form, including ARIMA and Holt–Winters models. For more 

information on Bayesian structural time series and state space models, see Scott and Varian (2013). The priors for 

the Bayesian model were the distributions of model parameters, which were chosen to be Gaussian random walks 

with standard deviation 0.01 (This is the “CausalImpact” recommendation for relatively stable time series). 

“CausalImpact” was used to estimate 3 values over the next 20 days: 1) the average impact, which was computed 

as the average daily difference between the observed number of tweets sharing the influencer’s sentiment and 

models’ estimates throughout post–intervention period; 2) the total impact, which was computed as the sum of the 

differences between the observed data and counterfactual estimate over the post–intervention period; and 3) the p–

value, which represents the Bayesian one–sided tail area probability of obtaining the computed differences by 

chance. 

RESULTS 

Before interpreting the model results, it is important to make a few distinctions: 

1. An influencer is said to have a positive impact when the estimated average and total impacts for an 

influencer are greater than 0. If the impact estimates are below 0, the influencer is said to have had a negative 

impact. This means that a “negative” influencer (based on the sentiment their vaccine–related post 

expresses) may have a positive impact (implying that the number of negative tweets increased overall in 

the post–intervention period), and vice versa. 

2. An influencer is said to have had a significant impact when the p–value (Bayesian one–sided tail area 

probability) of their impact is below 0.050, i.e., significance value (α) = 0.05. 

“Positive” influencers 

The summary results (which are the results from the weighted ensemble described above) for the six “positive” 

influencers are shown below, with the model results for each individual influencer shown in Appendix A. 

Influencer RMSE Average Impact Total Impact p–value 

@SteveMartinToGo 0.785 620.02 12400.32 0.022 
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@BillGates 0.690 238.59 5671.80 0.001 

@BigBird 0.665 12.10 241.97 0.013 

@johnlegend 0.612 14.204 284.079 0.003 

@DollyParton 0.709 51.317 1026.334 0.001 

@americaferrera 0.614 45.685 913.692 0.001 

Table 1. Weighted ensemble estimates for influencers sharing pro–vaccination messages. 

For @SteveMartinToGo and @BillGates, all models agree that they have significant, positive impacts, albeit to 

varying degrees (for possible explanations for this variation, see Discussions).  

The results for @BigBird and @johnlegend (see next page) were subject to slightly more variation than the 

preceding two influencers. For @BigBird, four out of five models seemed to agree on the tweet having a positive 

impact, and four out of five models also showed that the tweet had a significant impact. For @johnlegend, only 

three out of five models believed the post had a significant impact, although every model showed that the impact 

was positive (note however that the XGBoost counterfactual estimated an imperceptible impact of just 2 more pro–

vaccine tweets over the 20–day period following his post). 

“Negative” influencers 

For each influencer in this category, all models predicted a significant impact (i.e., p < 0.05) — furthermore, each 

impact was fairly large in magnitude (note that not all of these impacts were in the positive direction, meaning that 

some influencers’ anti–vaccine posts led to fewer anti–vaccine tweets over the next 20 days – possible explanations 

are explored in Discussions). Here, the weighted ensemble performed near the best in every case, as would be 

expected given that it is the most robust of all the models built. The summary results (which are the results from the 

weighted ensemble described above) for the five “negative” influencers are shown below, with the model results 

for each individual influencer displayed in Appendix A. 

Influencer RMSE Average Impact Total Impact p–value 

@evangelinelillyofficial 1.256 352.94 7058.87 0.001 

@chethanx 0.905 –162.603 –3252.053 0.001 

@RobSchneider 0.742 48.99 979.85 0.001 

@NICKIMINAJ 0.487 –123.84 –2476.88 0.001 

@doutzen 0.447 –89.974 –1799.484 0.001 

Table 2. Weighted ensemble estimates for influencers sharing anti–vaccination messages. 
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Figure 5. Plot showing the weighted ensemble’s estimated average impacts for pro–vaccine influencers (left and in green) and anti–

vaccine influencers (right and in red). The anti–vaccine influencer estimates are more volatile with @NICKIMINAJ even having a 

negative impact (i.e., there were roughly 123 fewer anti–vaccine tweets over the next 20 days as a result of her post). 

 

DISCUSSION 

Both @SteveMartinToGo and @BillGates were estimated to have statistically significant, positive impacts 

unanimously by all models. Based on these results, it seems as though at this stage of the vaccination campaign, 

influencer positive statements about the vaccines may have large, positive effects. It is interesting to note that, in 

both cases, the linear model predicted significantly larger values — on the order of 20 or more times larger — than 

the other three standalone models (the ensemble is excluded as it factors in the predictions of the linear model). 

This may be due to the fact that the positive time series displays a sharp downward trend towards the first quarter 

of the dataset, shortly before both influencers shared their posts. This trend has a heavier effect on the linear model 

than the others, leading to a more pessimistic counterfactual (far lower than other models), and consequently a 

larger difference. The linear models also had relatively high (worse) RMSEs in both incidents, with only the base 

Prophet model performing worse. The XGBoost model performed surprisingly well, surpassing even the Weighted 

Ensemble in both instances. 

The results from @BigBird and @johnlegend were subject to slightly more variation among the models. Here, 

interestingly, the XGBoost models performed considerably worse than others, while the far simpler linear models 

had significantly better performances. In both instances, the weighted ensemble performed near the best; the 

ensemble is typically the most reliable for predictions based on longer–term data, as is the case here. However, in 

both instances, the impact estimates, regardless of the chosen model, were far lower than for @SteveMartinToGo 

and @BillGates. There may be many possible reasons for this difference, including that the latter two posts were 

shared toward the end of 2021, by which point the global focus on vaccines had decreased compared to the earlier 

months. Indeed, the estimated impacts only seem to decrease as one moves through the “positive” influencers 

chronologically. 

@DollyParton and @americaferrera had results between those of the other four “positive” influencers discussed 

thus far. While their impacts were not as high as @SteveMartinToGo’s or @BillGates’, they were certainly higher 

and more consistent than those of @BigBird and @johnlegend. @DollyParton, in particular, had posted one of the 

most popular pro-vaccine tweets during the window of the study, with over 145,000 likes and nearly 30,000 reposts, 

which may have contributed to a result that is on neither extreme (since more popular tweets are likely to be seen 

by more people who agree and more people who disagree). 
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Overall, the results for the “negative” influencers were more volatile than the “positive” influencers, with the 

different models providing contrasting results for many of the influencers. However, the patterns found amongst 

these influencers imply that “negative” posts made by influencers did indeed affect the conversations Twitter users 

had regarding the vaccines. In fact, in almost every model in the “negative” section, the estimated cumulative 

impacts were on the order of 103 or greater. However, not all of these impacts were positive. In fact, in multiple 

instances, a “negative” post by an influencer was able to significantly increase the number of “positive” tweets in 

the following days. This phenomenon can be directly observed by reading selected “negative” posts by influencers 

on a selected platform — many users, in response to the statements in the original post, begin to provide their own 

counterarguments in favor of the vaccine. This generates a “counter–effect”, where a “negative” post leads to a 

higher influx of “positive” tweets. Some influencers (specifically, @NICKIMINAJ and @doutzen) fell victim to 

this counter–effect according to all models, whereas others (e.g., @evangelinelillyofficial) had conflicting results 

between models. This counter–effect is, in fact, also present (to a far lesser degree) in “positive” influencers’ posts 

as well (where users against the vaccines share their thoughts in response to the original post). Another point of 

interest is that in each category, the posts by the two influencers who performed worst (@BigBird and 

@NICKIMINAJ) had significantly more involvement from political figures than did the others (for instance, the 

account @POTUS replied to @BigBird’s tweet) — from this, it seems that tweets with more political interference 

have a lessened impact. 

CONCLUSIONS AND FUTURE WORK 

This study aimed to evaluate the effect influencers had on the public sentiment of COVID–19 vaccines during the 

vaccine roll–out period. The public sentiment was determined using the VADER lexicon, and the impact was 

evaluated using Bayesian structural analysis with the help of the CausalImpact library. Based on the results, pro–

vaccination messages sent out by influencers tend to increase the number of pro–vaccination tweets in the following 

days by measurable, statistically significant amounts. On the other hand, influencers that send out anti–vaccination 

or anti–mandate messages have large, statistically significant impacts, although sometimes in the opposite direction 

as intended. 

Future studies in this area may attempt to quantify the diffusion rate of a statement on social media networks by 

using benchmarks such as the retweet/like count, and then use this value as an additional feature for each model. 

After all, a post that diffuses through networks rapidly enough to reach considerable viewership levels within a few 

hours will likely have a larger impact than a post that takes days. Of course, one limitation of this work is that we 

only examined eleven influencers, and future work should add more influencers to the analysis, to develop a more 

comprehensive picture of the impact. Finally, this study did not establish any form of causality — although the 

CausalImpact library was used, the counterfactuals were not built using synthetic controls (as the name of the library 

suggests), but by using forecasted predictions based solely on the prior data. Designing a randomized experiment 

to determine whether or not a post actually causes the observed differences should be explored in the future. For 

instance, an experiment may show individuals tweets that either support, or don’t support, COVID-19 vaccination 

and then measure changes in knowledge and attitudes. 

This paper’s findings have a significant impact on the information systems (IS) community and the world at large. 

Firstly, these findings could provide valuable insights into social media’s dynamics (i.e., how information spreads 

and how sentiment is shaped on online social networks); Also, the analysis of public sentiment from a large database 

is an important problem in IS (Yue et al. 2018), and the techniques used and presented here could be valuable to IS 

researchers. The results of this study also provide a clearer picture to IS practitioners and the world at large of the 

impact prominent figures have on the public perception of vaccines. These findings will also help inform IS 

practitioners who are communicating public health strategy findings to health officials in better understanding 
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vaccine hesitancy; this will be crucial as information — and misinformation — spread even faster with the growth 

of social media.  
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APPENDIX A 

The following eleven tables display more detailed results than those discussed above, with each celebrity’s model 

results displayed individually. 

“Positive Influencers” 

Model RMSE Average Impact Total Impact p–value 

Multiple Linear Regression 0.891 1242.55 24850.95 0.001 

Prophet with Regressors 1.005 64.17 1283.49 0.001 

XGBoost 0.752 44.39 887.80 0.001 

Prophet with Boosted Errors 0.845 22.36 447.30 0.022 

Rank Ensemble 0.785 620.02 12400.32 0.013 

Table 3. Model results for tweet by @SteveMartinToGo 

 

Model RMSE Average Impact Total Impact p–value 

Multiple Linear Regression 1.111 864.52 17290.35 0.001 

Prophet with Regressors 1.183 43.92 878.34 0.001 

XGBoost 0.520 38.34 766.74 0.001 

Prophet with Boosted Errors 0.838 53.51 1066.18 0.022 

Rank Ensemble 0.690 283.59 5671.80 0.001 

Table 4. Model results for tweet by @BillGates 

 

Model RMSE Average Impact Total Impact p–value 

Multiple Linear Regression 0.649 6.85 136.99 0.096 

Prophet with Regressors 0.694 20.04 400.71 0.001 

XGBoost 0.819 –17.72 –354.35 0.001 

Prophet with Boosted Errors 0.796 19.88 397.56 0.001 

Rank Ensemble 0.665 12.10 241.97 0.013 

Table 5. Model results for tweet by @BigBird 

 

Model RMSE Average Impact Total Impact p–value 

Multiple Linear Regression 0.675 9.19 183.87 0.001 

Prophet with Regressors 0.609 24.08 481.53 0.001 

XGBoost 0.786 0.105 2.106 0.488 

19

Shah et al.: Modeling Impact of Celebrity Messages on COVID Vaccine Sentiment

Published by AIS Electronic Library (AISeL), 2024



Prophet with Boosted Errors 0.713 7.50 150.09 0.085 

Rank Ensemble 0.612 14.204 284.079 0.003 

Table 6. Model results for Instagram post by @johnlegend. 

 

Model RMSE Average Impact Total Impact p–value 

Multiple Linear Regression 0.675 71.076 1421.517 0.001 

Prophet with Regressors 0.609 37.586 751.734 0.001 

XGBoost 0.786 42.166 843.322 0.001 

Prophet with Boosted Errors 0.713 23.952 479.043 0.007 

Rank Ensemble 0.612 14.204 284.079 0.001 

Table 7. Model results for tweet by @DollyParton 

 

Model RMSE Average Impact Total Impact p–value 

Multiple Linear Regression 0.727 42.461 849.210 0.001 

Prophet with Regressors 0.581 64.379 1287.581 0.001 

XGBoost 0.792 –11.191 –223.815 0.015 

Prophet with Boosted Errors 0.737 40.187 803.738 0.001 

Rank Ensemble 0.614 45.685 913.692 0.001 

Table 8. Model results for Instagram post by @americaferrera 

“Negative Influencers” 

Model RMSE Average Impact Total Impact p–value 

Multiple Linear Regression 1.294 782.43 15648.65 0.001 

Prophet with Regressors 1.364 –622.61 –12452.21 0.001 

XGBoost 1.714 –40.29 805.86 0.001 

Prophet with Boosted Errors 1.620 –104.02 –2080.51 0.001 

Rank Ensemble 1.256 352.94 7058.87 0.001 

Table 9. Model results for Instagram post by @evangelinelillyofficial. 

 

Model RMSE Average Impact Total Impact p–value 

Multiple Linear Regression 0.783 –63.852 –1277.048 0.001 

Prophet with Regressors 1.106 –221.564 –4431.271 0.001 

XGBoost 1.112 –109.019 –2180.387 0.001 
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Prophet with Boosted Errors 1.472 –181.980 –3639.604 0.001 

Rank Ensemble 0.905 –162.603 –3252.053 0.001 

Table 10. Model results for (now deleted) Instagram post by @chethanx. 

 

Model RMSE Average Impact Total Impact p–value 

Multiple Linear Regression 0.803 –90.15 1802.92 0.001 

Prophet with Regressors 1.034 –104.58 –2091.64 0.001 

XGBoost 1.188 142.44 2848.74 0.001 

Prophet with Boosted Errors 1.404 119.96 2399.19 0.001 

Rank Ensemble 0.742 48.99 979.85 0.001 

Table 11. Model results for tweet by @RobSchneider. 

 

Model RMSE Average Impact Total Impact p–value 

Multiple Linear Regression 0.482 –100.15 –2003.04 0.001 

Prophet with Regressors 0.727 –264.97 –5299.39 0.001 

XGBoost 0.802 –24.87 –497.42 0.004 

Prophet with Boosted Errors 0.712 –104.53 –2090.60 0.001 

Rank Ensemble 0.487 –123.84 –2476.88 0.001 

Table 12. Model results for tweet by @NICKIMINAJ. 

 

Model RMSE Average Impact Total Impact p–value 

Multiple Linear Regression 0.519 –79.264 –1585.278 0.001 

Prophet with Regressors 0.954 –258.359 –5167.185 0.001 

XGBoost 0.599 –16.938 –338.761 0.017 

Prophet with Boosted Errors 0.561 –102.15 –2043.14 0.001 

Rank Ensemble 0.447 –89.974 –-1799.484 0.001 

Table 13. Model results for Instagram post by @doutzen. 
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