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Abstract: The research on the tie-generative mechanism in network is conductive to explore the factors affecting network 

evolution and provide theoretical supports and decision-making suggestions for promoting (restraining) the formation 

(disappearance) of network edges. Based on the analysis of the current situation and development trend of ERGM from 2015 

to 2020, this paper presents the research progress and limitations of ERGM. It has made good progress in the fields of 

network dynamic evolution mechanism, capturing network node heterogeneity, multi-layer network formation mechanism 

and Research on large (small) scale network formation mechanism. However, it must be admitted that the problems such as 

extending ERGM to obtain connection weighted information, modeling the heterogeneity of nodes in the network, detecting 

the multicollinearity that may exist in ERGM, studying the dynamic evolution mechanism of multi-layer network and using 

ERGM to deal with network missing data have not been well solved, waiting for further exploration. 
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1. INTRODUCTION 

Social network analysis radically changes quantitative analysis by shifting the focus from individuals to 

their relationships and interactions [1]. The traditional regression model is often used for social network analysis, 

which is based on the assumption of independence and unable to consider endogenous structural effect of the 

network [2]. However, this effect, that is, the relationship between nodes can be formed by the self-organization 

of the network, will affect the probability of edge generation [3]. Taiye Luo and Cuichang Ma also pointed out 

the formation of social network is the result of the joint influence of endogenous structure and exogenous 

variables. [4] Therefore, the relevant conclusions obtained from the traditional regression model which can’t take 

the endogenous structure effect into account will be biased to some extent. Compared with the limitations of the 

independence assumption set by the traditional regression model for the observation object, the advantage of 

ERGM is that it can simultaneously consider endogenous structure and exogenous variables of the network to 

more comprehensively study tie-generative mechanism and evolution process of the network [5], which makes 

the analysis based on ERGM more rigorous and reliable. Guancan Yang, Tong Liu et al. [6] pointed out that 

ERGM can be well applied to analyze the influencing factors of citation relationship formation. Ghosh A , 

Ranganathan R also recognized ERGM as a network analysis tool in their research and stated ERGM should be 

an important part of the standard toolkit for future network tie-generative mechanism research. [7] 

Understanding the formation mechanism of network could provide theoretical supports and 

decision-making suggestions for promoting (restraining) the generation of edges. Due to the advantages of 

ERGM, many scholars have applied ERGM to the research of network tie-generative mechanism in recent years. 

Helian Xu, Tianyang Sun et al. [8] studied the influence of endogenous structural variables, actor attribute 

variables and network covariables on the formation of high-end manufacturing trade network along the "One 

Belt and One Road" through ERGM. Song H discussed the factors affecting the generation of personal political 
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discussion network’s edges by using ERGM. [9] Anna Llupià, Puig J et al. used ERGM to evaluate the role of 

homophily and individual characteristics in social network. [10] Dang-Pham D, Pittayachawan S et al. also 

explored the formation mechanism of security consulting network by using ERGM. [11] Wenlong Yang and 

Debin Du studied the factors that affected the formation of investment network by comprehensively considering 

endogenous structural effect, actor-relationship effect and binary covariates. [12] Moreover, Guancan Yang, 

Zhanlin Liu et al. also analysed the tie-generative mechanism of the Nelarabine Drug patent citation network by 

using ERGM. [2] 

However, although ERGM provides a series of flexible and highly scalable methods for network analysis, 

there is still a lack of an ERGM method that can take into account unobserve heterogeneity. [13] In addition, 

ERGM based on binary networks can’t be used to simulate networks with weighted edges, which leads to the 

model unable to capture the network information of link strength between different nodes. [14] ERGM can only 

analyze static or cross-sectional data. The MCMCMLE algorithm for ERGM estimation and verification is very 

complex, which leads to the limited network scale that the model can simulate. This is consistent with the 

difficulty of directly estimating the ERGM parameters of very large scale networks proposed by stivala A and 

robins G.[15] These are new challenges that ERGM faces.From the perspective of literature, this paper will 

summarize the relevant concepts and development history of ERGM, as well as the present situation and future 

prospect of the research on the mechanism of network formation carried out by ERGM, so as to provide 

reference for future studies. 

 

2. THE DEVELOPMENT OF ERGM AND RELATED CONCEPTS 

The development of ERGM (Exponential Random Graph Model) can be traced back to the simple random 

graph model proposed by Erdos P and Renyi A [16] in 1959. The model contains the assumption that the 

relationships among network members are generated independently of the relationships among other members. 

Although the simple random graph model can not grasp the structural characteristics of the observed network 

well, it can provide a baseline for the comparison of other more complex models. In 1981, Holland P W and 

Leinhardt S developed a binary independent model to estimate the differences caused by reciprocation and 

differential attractiveness. [17] After that, Frank O , Strauss D introduced Markov dependence assumption into the 

model in 1986, and put forward a binary dependency model which assumes edges containing the same node are 

not independent of each other. [18] In 2006, Davidrh and Marksh extended the Markov model into p* model, 

which has a broader conditional dependence relationship, that is, the probability of the simultaneous existence of 

any two lines in the network is not equal to the probability combination of the respective existence of two lines.  

[19] Most ERGMs based on dependency assumptions can be regarded as p* models. However, p* model still has 

a series of problems such as the problem of degeneration. In order to solve these problems, Hunter D R put 

forward a method including GWD (Geometrically Weighted Degree Distribution), GWESP (Geometrically 

Weighted Edge Shared Partners), GWDSP (Geometrically Weighted Dyadwise Shared Partners) and other 

statistical items replace the complex structure and dependency conditions in observation network. [20] The 

current p* model, known as ERGM, has been able to incorporate high order dependence conditions into the 

analysis framework. In 2013, Wang P，Robins G extended ERGM to multilevel networks and demonstrated it 

with the collaboration network of the French Institute for Cancer Research. [21] Since then, multilevel networks 

have attracted the attention of many scholars. Brennecke J , Rank O studied the influence of enterprise 

knowledge network on inventor interaction network through the multi-level network that based on ERGM.  

[22]Smith M , Gorgoni S pointed out that a complete multi-level network includes networks at the micro, meso 

and macro levels, and applied multi-level ERGM to the study of complex interactions between activities at the 

enterprise level and international trade patterns. [23] At the same time, with the deepening of network research, 
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academics are no longer satisfied with only statically studying the formation mechanism of networks. As 

proposed by Linqing Liu and Ziruo Chen, existing studies are mainly completed by analyzing static or 

cross-sectional network data, which makes it difficult to effectively reveal the dynamic evolution mechanism of 

the network. [24] People hope to analyze the evolution process of network dynamically so as to understand the 

formation mechanism of network more deeply. In 2014, Krivitsky P N , Handcock M S extended ERGM to 

STERGM (Separable Temporal Exponential Random Graph Mode). [25] STERGM is able to distinguish between 

newly created and previously existing relationships in the network, and longitudinally study the evolution 

process of the network. [26] Bjorklund P, Daly A J used ERGM and STERGM to study the influence of 

homogeneity and proximity dimension on the generation of social connections in pre-service teacher 

identification network. [27] At present, ERGM is still in the period of rapid development, and its flexible 

expansibility endows it with strong vitality. As Peng, Tai-Quan said, ERGM has a bright future. [28] 

ERGM is a dynamic network model based on network binary relations. Different from traditional 

measurement models, ERGM emphasizes more on the dependence of relationships in the network [14]. According 

to the observation network, ERGM generates a random network graph, and through the steps of estimation, 

diagnosis, simulation, comparison and improvement, the generated network is more and more close to the 

observation network, so as to check which factors significantly affect the generation of the network [8]. 

As an innovative statistical inference method, ERGM allows a variety of deformation and expansion, and 

can include multiple factors that may affect network formation, including exogenous node attributes, 

endogenous structural effects and binary covariates, into the model [2],[3]. King S, Lusher D et al. used ERGM to 

study the influence of endogenous network features, attribute based exogenous features and geographical 

proximity dimensions on network formation. [29] Among them, exogenous node attribute refers to that the 

probability of linking between two nodes is affected by the node attributes itself. When the nodes have a certain 

attribute (refers to binary variables) or the larger the value of a node's attribute (refers to continuous variables), 

the higher the probability of link between nodes. The sender effect, receiver effect, homogeneous effect and 

heterogeneous effect all belong to node attribute effect. The sender effect refers to possess some properties of 

nodes are more likely to send a link to other nodes, correspondingly, the receiver effect refers to a certain 

attribute nodes are more likely to accept links from other nodes. Homophily (heterogeneity) means that the 

probability of forming a connection between nodes with the same (different) property is higher than the 

probability of forming between two nodes selected at random. In addition, as a complex system, the emergence 

of some relationship come from the internal process of the network relational system. Such self-organizing 

effects are usually called "endogenous structural effects". Cao Q, Liao L et al. pointed out that the social 

network among the residents of the treatment community of women was mainly generated from the endogenous 

structural factors of the treatment community itself. [30] The transitive effect, connectivity effect, preferential 

attachment effect and sparsity effect all belong to the self-organizing effect of network. The transitive effect 

refers to the influence of transitive closure structure on the formation of relationships in a network and the 

connectivity effect refers to the influence of 2-path structure. Preferential attachment can be divided into two 

types: convergence and expansion which refers to the influence of the in-degree (out-degree) distribution of 

network nodes on the relationship formation. The research on the effects of endogenous structure is 

indispensable, because it’s influence is stable and strong, and far beyond expectations. [31] Network synergistic 

effect refers to that in addition to generative node variables and endogenous structure, duality attributes can also 

affect the generation of the network. For example, the similarity of patent content will affect the generation of 

patent reference relationship. 
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3. RESEARCH STATUS AND LIMITATION OF TIE-GENERATIVE MECHANISM IN NETWORK 

USING ERGM 

3.1 Research on the formation mechanism of different topic networks. 

From 2016 to 2020, there are a lot of researches on the formation mechanism of different topic networks 

including transnational student exchange network [33], terrorist organization alliance network [34], strategic 

literature alliance network [6], healthy community network based on users’ replies [35], patent technology 

diffusion network [31], patent collaborative innovation network [4], academic social network [36], patent citation 

network [37], scientific cooperation network [38], pyramid selling organization network [39] and the urban network 

based on the perspective of China's top 100 electronic information companies [14]. 

In addition to discussing tie-generative mechanism in network from common perspectives such as 

reciprocation, preferential attachment and preferential selection, some scholars have also studied from the angles 

of similarity and social factors. Qingfeng Duan and Xiaohuan Pan discussed the influence of similarity in social 

attributes of literature on citation preference. [40] In addition, Lee S K , Kim H [41]，Anna Llupià, Puig J [10] also 

pointed out that not only the purely academic factors, but also many complex and diverse factors such as 

political background, economic level, cultural atmosphere, individual psychology and intelligence may affect 

the formation of the network, which should be paid attention to in future research.   

3.2 Studying the network tie-generative mechanism longitudinally. 

In order to explore the evolution mechanism of the complex network, Peng, Tai-Quan [28] divided the 

journal citation network into four time series and skillfully studied the evolution of the network. Xiaoyan Liu, 

Jinpeng Li et al. also used a similar method to explore the evolution mechanism of technology trading network 

in the integrated circuit industry. [42] In 2014, Krivitsky P N , Handcock M S extended ERGM to STERGM. [25] 

The emergence of STERGM makes it more convenient to analyze the mechanism of network formation 

longitudinally. Linqing Liu and Ziruo Chen studied dynamic evolution mechanism of Chinese dominant 

industrial combination by TERGM. [43] Xiaoyan Liu and Jing Wang also discussed the different influences of 

exogenous node attributes and endogenous structure on the formation and dissolution of cooperation in different 

growth stages of OLED technology innovation network based on TERGM. [44] 

3.3 Expolring network formation mechanism through multi-level ERGM. 

The connections of different organizational levels in the network are not completely independent. They are 

interdependent at all levels and affect each other in a complex way. [45] The networks of different organizational 

levels and the connections between them constitute a multi-level network. The complex causal relationship in 

the multi-level network is not simply one-way. For example, the long-term transaction network between 

companies affects the relationship between companies, which in turn will bring new business opportunities and 

constraints to their companies. [46] Liu Xuan, Wang Linwei and others also pointed out in their research that 

there may be a great correlation among friend network, user access network and reply network in online health 

community, and it is of great significance to pay attention to the relationship and interaction between these 

networks. [35] ERGM was originally developed for single-level network. In 2013, Wang P , Robins G and others 

extended ERGM to multi-level network, and used the cooperative network of French cancer research elites and 

their affiliated institutions as an example to prove that a full understanding of the network requires cross level 

parameters. [21] This study was later seen as the beginning of multilevel network analysis using ERGM. Since 

multi-layer ERGM can capture the relationship that cannot be explored by a single network [47], and more fully 

reproduce the observation network, it has been widely concerned by the academic community since then. 

Brennecke J , Rank O used multi-level ERGM to research the influence of enterprises' knowledge network on 

inventors' interactive network [22], and Hollway J , Koskinen J also discussed how to embed bi-edge cluster into 

multi-level interdependent network system based on this model.[48] Smith M , Gorgoni S applied multi-level 
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ERGM to explore the complex interaction between enterprise-level activities and international trade. [23] In 

addition, Wang P, robins G et al. also proposed SSM (social selection model) as an extension of multi-level 

ERGM in 2016 [49], this model integrates the information about nodes into the modeling framework, which may 

help to determine the degree of homogeneity and other attributes that may affect the affiliation within and 

between levels and the structure of the whole multilayer network, so that people can have a more detailed and 

complete understanding of the network structure and basic network process. 

However, as a developing model, multi-level ERGM has many limitations. Multi-level ERGM can only 

deal with binary data, which means that the observation network fitted by multi-level ERGM loses the important 

information of edge weight. [23] This model can not simulate the dynamic evolution mechanism of observation 

network vertically, which is also one of the limitations of the model. As Brennecke J and Rank O mentioned, the 

future vertical research should investigate the co-evolution of social network and knowledge network within the 

enterprise. [22] In addition, Wang P., Robins G. also pointed out that they often find that the homogeneity 

assumption under ERGM may be too strong, especially for large empirical networks. [49] 

3.4 Extending ERGM to capture the heterogeneity of network nodes. 

To understand the "unobserved heterogeneity" and what impact this heterogeneity will have on the research, 

we use a passage from Box-Steffensmeier J M , Christenson D P [13] to explain: 

“However, we may suspect that there are other, intangible factors specific to each individual that are 

difficult if not impossible to measure, such as “friendliness” or “charisma,” that are also related to network 

structure (people that are friendlier are likely to have more friends, increasing the centrality of friendly 

individuals above what we would expect given their other, known attributes). In other words, the observed and 

measured characteristics are not sufficient for explaining the network we observe. Further, because these 

unobserved characteristics may be correlated with both the outcome (network structure) and the other 

explanatory variables, there is the potential for mistaken inferences when such heterogeneity is not accounted 

for.” 

In order to fit the observation network more accurately, researchers begin to study how to extend ERGM to 

capture the heterogeneity existing in the network. Thiemichen S , Friel N [50] ameliorated ERGM to capture the 

heterogeneity of network nodes. Henry T R , Gates K M [51] also modeled the unobserved heterogeneity. 

Box-Steffensmeier J M , Christenson D P [13]and Koskinen J , Wang P [52] all discussed how to extend ERGM to 

alleviate the dilemma caused by failure to model  heterogeneity. In 2020, Henry T R , Gates K M [51] developed 

SRFM-ERGM (Sender/Receiver Finite Mixed Exponential Random Graph Model) that can capture 

heterogeneity. 

3.5 Extending ERGM to accommodate networks of different sizes. 

Monte carlo estimation of ERGM parameters is a computationally intensive process, which results in strict 

limits on the size of the network that ERGM can fit [53]. Due to the difficulty of parameter estimation, the 

practical application of this kind of model is limited to relatively small networks, up to several thousand nodes, 

usually only a few hundred nodes (such as online social networks) or fewer nodes (such as church social 

networks). [15] It is rarely applied to the research of small networks (6 or less nodes in directional networks) from 

team or home  [54] and very large-scale networks. 

Most of the researches on small networks are based on descriptive statistics. The main limitation of this 

work is the availability of network models. ERGM, which is often used to fit large and medium-sized networks, 

can not be used because the problem of maximum likelihood estimation is more obvious in small networks. [54] 

In addition, there are a series of problems in it’s application to the research of ultra large scale network. From a 

conceptual point of view, with the expansion of the network scale, the MCMLE (Monte Carlo maximum 

likelihood estimation) commonly used by ERGM requires that the nodes need to fully understand the 
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assumption that all other nodes are connected when looking for the nodes that establish the connection, which 

makes it impractical. Stivala A and Robinson G also pointed out that it is very difficult to directly estimate the 

parameters of ERGM for a very large network. [15] From a technical point of view, a series of operations such as 

loading large-scale network data, estimation and testing have high requirements for computer memory, network 

analysis software and other related technologies. All of these restrict the application of ERGM in very large 

scale network. 

Aiming at the problem, people have done some research. Yon G G V，Slaughter A et al. proposed the 

“ergmito” method based on ERGM extension to realize the fitting of small networks. [54] Weihua also pointed 

out that when modeling large-scale network, the key is to achieve a good balance between accuracy / 

consistency and speed / stability. [1] He elaborated two broad methods and seven large-scale network fitting 

methods based on ERGM, explained the advantages and disadvantages of each method, and provided 

suggestions for researchers to choose methods. AADS，BJHK demonstrated how to use snowball sampling and 

conditional estimation method to estimate ERGM parameters of large undirected networks, and verified the 

feasibility of this method. [53] In 2019, Stivala A , Robins G et al. demonstrated the EE (equilibrium expectation) 

algorithm, which can estimate the ERGM parameters of a social directed network model with more than one 

million nodes, and applied it to an online social network with more than 1.6 million nodes. [15] At present, the 

research on the application of ERGM in different scale networks is still in the development stage, and we 

believe that more scholars will join the research in the future. 

 

4. FUTURE PROSPECTS OF TIE-GENERATIVE MECHANISM IN NETWORK BASED ON ERGM 

Compared with the traditional regression analysis method, the advantage of ERGM is that it gets rid of the 

constraint of independent hypothesis and comprehensively considers the influence of network structure, node 

attributes and covariables on the network formation. At present, this research area has made good progress in the 

aspects of model extension and influence factors exploration, but there are still many troubles waiting for further 

research. 

4.1 Extending ERGM to capture information on connection strength. 

The weakness of ERGM is that it can only process binary network while can’t capture the information on 

connection strength, which makes scholars have to convert the weighted network into the binary network for 

research, this operation leads to the loss of rich information in the weighted network. [28] Extending ERGM to 

capture connection strength information in weighted networks is a topic worthy of further discussion. 

4.2 Research on the dynamic mechanism of network formation. 

Although there are TERGM and STERGM which can consider time dependence, there are still many gaps 

in this filed. BraillyJ, Favreg et al. pointed out that the influences among different levels of networks are not 

unidirectional, in fact, they influence and depend on each other. [46] However, current researches based on 

cross-sectional data can’t enable them to explore complex causal relationships among multi-level networks, 

which limits people's understanding of the evolution process of networks. Shaohua Shi and Yehong Sun also 

proposed the interaction between networks of different levels would be the future research direction. [55] In 

addition, the differences in the effects of influencing factors at different stages of network development also 

need to be further explored. [44] 

4.3 Extending ERGM to capture heterogeneity. 

Heterogeneity refers to the intangible factors that are not observed or difficult to measure in the research 

but have an impact on the formation of the network, such as personal charm and corporate culture. Some 

scholars have shown that this unobserved heterogeneity may be the main reason for the inappropriate fitting of 

the network model. [50] At present, although some academics have proposed SRFE-ERFM to alleviate the 



52              The Twenty Wuhan International Conference on E-Business－Big Data and Business Analytics 

dilemma caused by heterogeneity, this model still has some limitations. The research object of this model must 

be a directional network and the receiver and sender can’t be modeled simultaneously. Furthermore, this model 

is only applicable to cross-sectional data, and can’t be userd for longitudinal research on the network. All of 

these limit the further application of SRFM-ERGM. How to extend the model so that it can broadly model 

various influencing factors while capturing the heterogeneity of nodes will be the focus of future research. 

4.4 Developing methods to detect multicollinearity in ERGM. 

Multicollinearity is when there is at least one independent variable in the model that changes as a function 

of the other independent variables. The undetected collinearity in ERGM would cause problems in the inference 

of model parameters, resulting in model degradation or non-convergence. In addition, the increasing number of 

structural items in the network also increases the possibility of collinearity [56] and eventually leads to the model 

being unusable. Unfortunately, multicollinearity has not received enough attention and is often not examined 

effectively. Although Duxbury S W proposed a method proved to be valid in detecting multicollinearity in 2017  

[56], in general, few studies have been conducted on how to detect and eliminate multicollinearity in ERGM, and 

further studies are needed in the future. 

In addition to the above outlook, such as exploring how to estimate and impute the missing data of the 

network based on ERGM [57], comparing ERGM with other models to discuss their respective advantages, 

disadvantages and applicable network types [58], extending the concept of network formed from the formation of 

the edge to the formation and disappearance of the edge [41], [44], and so on are all research points that should be 

paid attention to in the future. 

 

5. CONCLUSIONS 

This paper takes the literature that discussing network formation mechanism based on the ERGM as the 

research object, mainly analyzes the research progress and limitations in this field from the perspective of the 

ERGM algorithm expansion (modeling node’s heterogeneous, proposing longitudinally ERGM model, appling 

ERGM in different scale network) and the complex factors that affect the formation of the network (the research 

on multistage network, the influence of multiple social factors on the network) during the five years from 2015 

to 2020, and puts forward the future prospects in this field, which provides reference for future research. 
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