
Association for Information Systems
AIS Electronic Library (AISeL)

MCIS 2017 Proceedings Mediterranean Conference on Information Systems
(MCIS)

9-2017

Method For Information Systems Automated
Programming
Ivan Stanev
University of Sofia, instanev@fmi.uni-sofia.bg

Maria Koleva
University of Sofia, mkoleva@fmi.uni-sofia.bg

Follow this and additional works at: http://aisel.aisnet.org/mcis2017

This material is brought to you by the Mediterranean Conference on Information Systems (MCIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in MCIS 2017 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Stanev, Ivan and Koleva, Maria, "Method For Information Systems Automated Programming" (2017). MCIS 2017 Proceedings. 9.
http://aisel.aisnet.org/mcis2017/9

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fmcis2017%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2017?utm_source=aisel.aisnet.org%2Fmcis2017%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2017%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2017%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2017?utm_source=aisel.aisnet.org%2Fmcis2017%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2017/9?utm_source=aisel.aisnet.org%2Fmcis2017%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017

METHOD FOR INFORMATION SYSTEMS AUTOMATED

PROGRAMMING

Research full-length paper

Track N°08

Ivan Stanev, University of Sofia, Sofia, Bulgaria, instanev@fmi.uni-sofia.bg

Maria Koleva, University of Sofia, Sofia, Bulgaria, mkoleva@fmi.uni-sofia.bg

Abstract

The suggested method is based on experience gained during the development of three large state ad-

ministration programs, namely Bulgarian e-Customs (BeC), Bulgarian e-Health (BeH), and Bulgarian

e-Government (BeG). Both technological and organizational problems during the realization of these

programs are identified. A Common Platform for Automated Programming (CPAP) is developed in

order to address and solve the identified problems. A method for information systems (IS) automated

programming based on KBASE (Knowledge Based Automated Software Engineering) is proposed.

Widely used international standards for system specification and generation are selected, including

Business Process Model and Notation (BPMN), Case Management Model and Notation (CMMN), Uni-

fied Modelling Language, Decision Management and Notation (DMN), Ontology Web Language

(OWL), natural language (NL) combinatorial dictionaries, Contextual design (CD). CPAP Development

environment architecture is designed including server area, data base area, security area, Enterprise

service bus, and specialized NL- based, context- based, event- based, process- based, message- based,

service- based, object- based, rule- based, and ontology-based tools. The advantages of several KBASE

CPAP prototype realizations are presented.

Keywords: e-Customs, e-Health, e-Government, Common Platform for Automated Programming,

Knowledge Based Automated Software Engineering, automated programming, BPMN, CMMN, DMN,

OWL, natural language processing, knowledge processing, contextual design, context-based technique,

event-based technique, process-based technique, message-based technique, service-based technique,

object-based technique, rule-based technique, ontology-based technique.

1 Motivation

The process of Enterprise Information Systems (EIS) development is still less effective and more re-

source consuming than the software industry and their clients would require.

This has been demonstrated by two facts that persist in software development in recent years, namely:

(1) the software industry experiences a permanent shortage of IT professionals; (2) there is a turbulent

discussion of what methods and technologies shall be used for the various IT projects.

These facts unambiguously show that automated programming shall be considered the main solution to

existing problems. As a result, the demand for software specialists will gradually reach an acceptable

level. Automation will certainly reduce the development and maintenance cost of the software products,

improve their quality and reduce their design and development time.

Less obvious, however, are the decisions that need to be made when selecting a method, techniques, and

a platform for automated programming.

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 2

2 Background and related work

This article is part of a series of works related to the elaboration of the KBASE Method, which includes:

(1) Analysis of the problems in the development of EISs, namely Bulgarian e-Customs ([20]), Bulgarian

e-Health ([19]), and Bulgarian e-Government ([22]); (2) The idea of the KBASE method ([16]); (3)

Architecture prototypes of EISs (BeC [21], BeH [19], BeG [23]) in the KBASE context; (4) A Common

platform for automated programming (CPAP, [18]).

The KBASE method is developed as result of the domain area problems analysis, based on 85 software

products developed by the KBASE team. Most of the KBASE realization techniques used to automate

or improve the programming process are partially or fully implemented and verified in one or more of

these developments.

Data demonstrating the benefits of the technologies selected for the KBASE method are obtained from

project records. EISs developments are performed in the following roles: (1) researcher (21 research

prototypes); (2) contracting authority (53 projects implemented mainly under the BeC, BeH and BeG

programs); (3) contractor (established a high-tech software company which designed and developed 11

EISs in partnership with leading companies in the software development industry).

In this section are presented some problems and successful solutions in building EISs (sub-section 2.1)

and knowledge processing (KP) systems (sub-section 2.2). The results of the cloud computing platforms

comparative analysis are presented in sub-section 2.3. The choice of the Rational Unified Process (RUP,

[6]) as a base of the KBASE method is justified in sub-section 2.4.

2.1 Related work in the Enterprise IS area

This section presents the results achieved during the realization of three large state administration pro-

grams – Bulgarian e-Customs, Bulgarian e-Health, and Bulgarian e-Government. They are detailed in

[19], [21], and [23].

Each of the three programs at present has more than 15 business modules, 5000 workstations in intranets,

and between 500 000 and 3 000 000 end users in internet. They are an integral part of the trans-European

solutions developed and operated by the EU Commission, EU member states and partner countries.

The technological development of BeC, BeH and BeG spans over a long period of time that could be

partitioned generally in three stages.

Stage 1 by the end of 2006 - first version of the information systems is developed following the (1)

RUP, UML, JEE, XML standards; (2) object oriented, multi-tier, web-based, distributed software archi-

tecture; (3) UML, JEE XML, EJB; Application Server, DB Server technologies. The first modules using

SOA are developed and the centralization of computing resources is started. No active services are

available to business and citizens, the interoperability concept is not working smoothly in practice, and

a common software architecture is still to be elaborated.

Stage 2 by the end of 2013 - include the reengineering of these information systems following SOA and

CC concepts. The single window technology is introduced together with centralized identification and

authorization management. The Enterprise service bus is established. A centralized service repository is

put in place but the implementation of reusable components remains relatively low and changes to the

system require a considerable amount of time and effort. The interoperability concept based on state

registers is realized. The underlying infrastructure is virtualized but remains insufficient to cover the

needs of the software developments. Selected software development process is difficult to be imple-

mented in practice.

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 3

Stage 3 by the end of 2020 - include the creation of Strategies, and Roadmaps of BeC, BeH and BeG.

The suggested architectures are similar to those proposed in [19], [21], and [23]. The realizations of the

proposed architectures is started.

During the realization of these programs two types of problems are recognized: (1) organizational, such

as: lack of single access point with a centralized authorization solution, inefficient infrastructure use,

low level of standardization of processes and objects, insufficient IT staff to develop new systems and

support existing ones, low competence of business staff for business processes description and func-

tional testing, lack of guidelines for collection and interpretation of information, huge resources are

allocated to the development of inefficient business models, low competence for requirements gathering

and elicitation, chaos in requirements definition, low level of business specific activities quality; and (2)

technical, such as: big volume of not digitized data, low quality of digitized data, low level of semantic

interoperability, implementation of reusable components to a minimum, resulting in frequent rewrite of

existing functionality, lack of scalability, low level of software development automation, lack of flexi-

bility and instruments for fast information systems adaptation to rapidly changing legal base, lack of

centralized identification, relatively low quality of the developed software products, lack of standardi-

zation of processes and objects, low test coverage.

2.2 Related work in the Knowledge Processing area

This section presents the results achieved in the Knowledge Processing area. A detailed description is

presented in [16].

Some of the useful results are: (1) prototyped 3 specification techniques (formal language, graphical

user interface, natural language processing); (2) prototyped 5 AI techniques (non-formal specification,

code generation, self-verification, self-monitoring, self-tuning); (3) prototyped 4 KBASE components

(knowledge processor, product generator, problem solver, knowledge base manager); (4) prototyped 5

technological processes (SOA interpretation process, knowledge engineering process, domain custom-

ization process, system customization process, runtime operation process).

2.3 Cloud Computing Platforms comparative analysis results

The industrial platforms Amazon AWS, Microsoft Azure, Google App Engine; VMWare vCloud, IBM

Bluemix, HP Helion, and Oracle OCPaaS are analyzed in [17].

As a result of this analysis a set of requirements ([17]) for the KBASE platform CPAP is prepared

including: (1) CPAP should combine techniques for automated programming from SOA, CC, the

KBASE method and the Method for Automated Programming of Robots ([15]); (2) CPAP should pro-

vide for incomplete and incorrect specification of the problem to be solved using language and tools

familiar to the end user or “man in the street”; (3) The platform should enable knowledge acquisition

and knowledge interpretation (e.g. knowledge based systems, ontologies and fuzzy sets) for automated

removal of deficiencies and inaccuracies in the specification and for software generation; (4) The plat-

form should ensure automated software generation from complete and accurate specification; (5) CPAP

should allow the use of automated techniques such as Contract Testing and Quality of Service Testing

to fine tune the software, to check on software performance and integration with third party components;

(6) Emphasis should be given to the automated generation of user identification components.

The Software Architecture of the Common Platform for Automated Programming is designed in [18] to

cover the above mentioned requirements.

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 4

2.4 Arguments for selection of RUP as base of KBASE

Several methods for management of the software engineering (SE) process are studied. The selected

methods can be organized in three groups: (1) methods covering only the management aspects of the SE

process, including “shell” methods such as: PRINCE2, or Projects IN Controlled Environments ([2]),

developed by the UK Cabinet Office; TEMPO, or the TAXUD Electronic Management of Projects

Online, developed by the European Commission Directorate General Taxation and Customs Union;

PMBOK, or Project Management Body of Knowledge ([14]), developed by the US Project Management

Institute; (2) methods covering partially the management and technological aspects of rapid SE pro-

cesses (the Agile family of methods, [1]); (3) methods covering to a great extent the management and

technological aspects of SE processes such as the Rational Unified Process (RUP, [6]), developed by

Philippe Kruchten, Ivar Jacobson and others at Rational Corporation.

The Shell group of methods does not describe in details the roles, objects and actions in the SE process.

This is often the reason for serious misunderstanding between clients and developers, as well as between

different developers. The low level of standardization makes these methods inappropriate for automated

programming.

The Agile group of methods has two important problems: (1) the short and often incomplete design

reduces to minimum the possibilities for reuse; (2) as a results of the rapid and imprecise development

process, the lifetime of the realized products is too short. Thus the Agile group of methods is not appro-

priate for the realization of EISs.

Only the RUP group of methods is suitable for EIS development. However RUP hinder a smooth de-

velopment process due to the following problems: (1) roles, objects, and actions are defined in detail,

thus making the software process too heavy and difficult to customize; (2) the development team training

time is too long and expensive; (3) the complexity of the process makes it difficult to be followed by the

client. These problems could be solved after simplification of RUP and extension with automated pro-

gramming and knowledge processing methods and techniques.

2.5 Requirements for KBASE realization

As a result of the existing platforms and methods analysis the following important problems could be

identified: (1) IS domain area low level of standardization (both IS components and development pro-

cesses); (2) Low quality of IS design caused by the gap between clients and developers professional

language and culture; (3) IS realized with inefficient development methods; (4) Low level of reusability

of IS components due to partial design and early implementation; (5) IS deployment after low level of

Contract and Quality of Service testing due to selected inappropriate test cases, and very limited test

coverage.

The standards, technologies and tools used for the development of BeC, BeH, and BeG demonstrate

limited capabilities to solve the relevant problems. For this purpose new development method and tech-

nological solution need to be sought with regard to their evolution in order to guarantee that these sys-

tems meet the following requirements: (1) have a high degree of standardization; (2) allow the use of

cloud technologies for the integration of new hardware and software resources into a common structure

for collaborative use; (3) allow intelligent data and knowledge processing; (4) ensure interoperability

with partner information systems; (5) provide high quality automation of software programming.

3 KBASE Method definition

The KBASE method is defined partially in [16] (concept, key terms, platform, and 5 case studies). The

KBASE term definitions are extended in this article with the description of the KBASE framework

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 5

(section 3.1), disciplines (section 3.2), specification language (section 3.3) and development environ-

ment (section 3.4).

3.1 KBASE Framework

The KBASE Framework (presented in Figure 1) is an integrator of the software development methods

(M) RUP and KBASE. This Framework supports the technologies (T) Software Engineering (SE), Ser-

vice Oriented Architectures (SOA), Automated Programming (AP), and Knowledge Processing (KP).

These methods and techniques are realized in the context of the platforms (P) Cloud Computing (CC)

and Common Platform for Automated Programming (CPAP).

In this Framework the techniques SE and SOA are realized for devel-

opment of EISs in the context of RUP. The CC platforms typically

integrate the components and applications of these techniques.

The techniques SE and SOA could be enriched and/or upgraded in all

possible combinations by AP and KP. The platform CPAP enriches

and/or upgrades CC for the realization of all programming techniques.

The method KBASE enriches and/or upgrades RUP for the realization

of all programming techniques and their interpretation in the presented

platforms.

Figure 1. KBASE Framework

This Framework is designed to: (1) generate EIS from formal and non-formal design specifications; (2)

complete and determine the fuzzy and incomplete non-formal specifications (when required) using

KBASE knowledge base, and ontologies; (3) verify the complete and determined specifications through

comparison with domain area models defined beforehand; (4) generate EIS by pre-designed, pre-devel-

oped and pre-tested reusable components and services; (5) integrate the pre-defined components and

services with new ones; (6) standardize the EIS specification, EIS components, EIS generation process

and EIS integration process.

The KBASE method realizes the automated programming of EIS in three large groups of actions:

1. Specification of developed IS

This process includes the actions outlined in Table 1 following the RUP and KBASE methods. These

actions represent a simplification of RUP to KBASE.

2. IS specification validation

In this group are validated new IS components (such as dictionary articles, ontology objects and rela-

tions, semantic and syntactic constructs, and objects of the specific IS). The objects which are not vali-

dated successfully are returned to knowledge engineers for more detailed and more precise specification.

3. IS generation

This group covers the generation of the software components required for the IS operation. Most actions

are performed automatically by the CPAP tools. In case of complex tasks or need for further information

about the domain area, the knowledge engineers intervene and support the process with their expertise.

3.2 KBASE Lifecycle Disciplines

The automated programming process modifying RUP is presented in Table 1 below. The disciplines

names are presented in the “Discipline” column. The work performed within each discipline is described

in the “Discipline action” column. The specification technique/s used for the relevant action is indicated

KBASE

RUP

SE

SOA

AP KP

CPAP

CC

T

T TT

M

M

P

P

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 6

in the last column “Specification technique” and further described in section 3.3. The resulting model is

presented in the “Model” column.

Discipline Model № Discipline action Specification technique

management SDP 1. project management and realization SPEM

management SDP 2. configuration and change management and re-

alization

SPEM

management PQP 3. quality management and realization SPEM

management TM 4. test management and realization BIT

management IM 5. infrastructure management and realization event based

requirements SRS 6. gather and analyze relevant legal base context based, NL based, on-

tology based

requirements SRS 7. build organization hierarchy object based

requirements SRS 8. define functional areas context based

requirements SRS 9. build roles hierarchy for each functional area object based

requirements SRS 10. develop software architecture concept event based

requirements SRS 11. gather functional requirements context based, NL based, on-

tology based

requirements SRS 12. gather non-functional requirements context based, NL based, on-

tology based

requirements SRS 13. categorize, classify and prioritize functional

requirements

context based

requirements SRS 14. categorize, classify and prioritize non-func-

tional requirements

context based

analysis BM 15. selection of control structure (business pro-

cess / state engine / multi-agent system)

process based / object based /

event based

analysis BM 16. control structure description process based / object based /

event based

analysis BM 17. high level description of control structure ser-

vices (service type, input, output and system

objects, interfaces, interactions, messages, re-

ports, security, actors, preconditions, post

conditions)

service based, rule based

analysis DatM 18. identify primary data objects - documents,

forms, reports, messages

object based, rule based

analysis DatM 19. develop data objects hierarchy object based

analysis BM 20. select candidate services event based

analysis BM 21. select services event based

analysis BM 22. refine control structure with candidate ser-

vices to control structure with services

event based

analysis UCM 23. define use cases for each service service based

analysis UCM 24. define input and output data objects for each

service and select data objects storage options

object based, rule based

analysis UCM 25. define input and output messages for each ser-

vice and select messages storage options

object based

design SA 26. develop software architecture component dia-

grams

event based

design SA 27. define system architecture components event based

design SA 28. define interfaces of system architecture com-

ponents

interface based

design SA 29. develop GUI navigation tree object based

design DesM 30. prepare class diagrams of the services service based

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 7

Discipline Model № Discipline action Specification technique

design DesM 31. define attributes and operations of classes service based

design DesM 32. develop sequence diagrams of the services interface based

design DatM 33. refine object data model into relational data

model

object based

design DatM 34. relational data model normalization (if neces-

sary)

object based

design DesM 35. develop statechart diagrams of the services interface based

design DesM 36. develop statechart diagrams of important data

objects

interface based

design DatM 37. update Data model object based, rule based

design CM 38. prepare package diagrams event based

design OWLM 39. associate use case, component, class, package

and infrastructure diagrams

ontology based

generation CM 40. code generation all

generation CM 41. code implementation all

generation CM 42. code integration all

exploitation all 43. deployment all

exploitation all 44. exploitation all

exploitation all 45. enhancement all

exploitation all 46. recycling all

Table 1. KBASE lifecycle disciplines

Abbreviations used in Table 1: BIT - Built-in-Test, BM – Business model, CM – Code model, DatM – Data

model, DesM – Design model, IM – Infrastructure model, OWLM - Web Ontology Language model, PQP –

Project Quality Plan; SDP – Software Development Plan, SA – Software Architecture, SPEM - Software & Sys-

tems Process Engineering Metamodel Specification ([9]); SRS – Software Requirements Specification, TM – Test

model, UCM – Use case model.

It has to be noted that: (1) the pre-project is performed by implementing the disciplines and actions to a

limited extent; (2) actions could iterate in order to achieve better results; (3) the “Management” disci-

pline represents horizontal activities related to planning, specification and realization; (4) the “Code

model” term is used instead of the standard RUP “Implementation model” with no changes in the con-

tents and notation; (5) the “infrastructure diagram” term is used instead of the UML standard “deploy-

ment diagram” to better convey the purpose with no changes in the notation; (6) the “Infrastructure

model” term is used instead of the standard RUP “Deployment model” to incorporate the development,

testing, staging, production and management environments; (7) “Service” is used for services of three

different control structures, namely business process, state engine and multi-agent systems.

For the purpose of the KBASE method presented in this paper, the following simplifications/ extensions

to RUP are proposed: (1) the RUP discipline Business Modeling is removed since low productive, and

highly resource consuming; (2) the RUP discipline Analysis and Design is separated in two KBASE

disciplines – first Analysis, and second Design, in order to reduce the gap between domain area experts

and analysts on the one hand and between analysts and designers on the other hand; (3) the RUP disci-

pline Implementation is replaced by Generation; (4) the RUP horizontal disciplines Configuration and

Change management, Project management, Testing and Environment (№1-5) are combined in one Man-

agement discipline to optimize project realization; (5) the KBASE Requirements discipline (actions №7-

12) uses the Contextual design models which improve the quality of primary information collection; (6)

the KBASE Analysis discipline (actions № 15 – 17) uses the process-based, object-based and event-

based specification techniques instead of the RUP Use Case Specification in order to reduce the re-

sources for UML model completion; (7) the KBASE Design discipline (action №39) uses ontologies for

automation of the development process; (8) the KBASE Generation discipline (actions №40-42) uses

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 8

automated support of models and documents; (9) the Test management and realization action (№4) uses

structured Use Case Specifications for better compliance between use cases and test cases, improvement

of the quality and efficiency of the test process; (10) the Test management and realization action (№4)

uses the Built-in-Test method ([4]) for automated testing; (11) the actions from the RUP Deployment

discipline are incorporated in the KBASE Exploitation discipline (action №43).

3.3 KBASE Specification Language

The following Specification Techniques (ST) are selected to implement the actions of the method de-

scribed in Table 1, as well as to create ontology objects static and dynamic behavior.

(1) Natural Language based ST (standard used - Natural Language Combinatorial Dictionary, NLCD).

The specification technique is used to describe domain area ontology objects and behavior, the legal

base, functional and non-functional requirements. The Combinatorial Dictionary contains information

for the syntax functions, semantic-syntax functions and word-order zone of each lexeme. A Linguistic

Processor verify the NL description of domain area objects and behavior. If the description is success-

fully verified they are integrated in the domain area ontology using the morphological NL processor,

semantic-syntax NL processor, and business rules.

(2) Context based ST (standard used – Contextual Design, CD, [5]). CD models are used to improve the

structuring of information about the domain area. The specification technique is used to describe domain

area ontology objects and behavior, describe functional area, functional and non-functional require-

ments. A Context Interpreter verifies the specified objects and behavior. If the specifications are suc-

cessfully verified they are integrated by a Context Manager in the domain area ontology, or used for

generation of new program code.

(3) Event based ST (standard used – Case Management Model and Notation, CMMN, [12]; Business

Process Model and Notation, BPMN, [10]; Unified Modeling Language, UML, [11] (Component Dia-

gram, Infrastructure Diagram, and Package Diagram)). The specification technique is used to describe

complex Information Systems (IS), realized as event based Multi-Agent Systems, including their Soft-

ware Architecture, Infrastructure Model, and behavior. An IS Interpreter verifies the specified models

and behavior. If the specifications are successfully verified, they are used for generation of IS program

code.

(4) Process based ST (standard used – BPMN). The specification technique is used to describe domain

area candidate business processes. The specified candidate processes are used for identification of can-

didate services and selection of services. After the selection of services, candidate processes are trans-

formed in processes. A Process Interpreter verifies the specified processes. If the specifications are suc-

cessfully verified they are integrated by a Process Manager in the domain area ontology, or used for

generation of new program code.

(5) Message based ST (standard used – BPMN, UML (Sequence Diagram)). The specification technique

is used to describe the Server to server (S2S) direct communication, including structure of messages,

typical message objects, data types, data structures, and sequence diagrams describing the S2S valid and

invalid interactions. A Message Interpreter verifies the specified messages, message objects and inter-

actions. If the specifications are successfully verified they are integrated by a Message Manager in the

domain area ontology, or used for generation of new program code.

(6) Service based ST (standard used – UML (all diagrams)). The specification technique is used to

describe domain area services including their input and output objects, classes, attributes, methods, be-

havior, etc. A Service Interpreter verifies the specified objects and behavior. If the specifications are

successfully verified they are integrated by a Service Manager in the domain area Service Repository,

or used for generation of new service program code.

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 9

(7) Object based ST (standard used – UML (State Engine)). The specification technique is used to de-

scribe domain area ontology objects and their behavior, including object states, state transitions, transi-

tion conditions, and transition operations. An Object Interpreter verifies the specified objects and be-

havior. If the specifications are successfully verified they are integrated by an Object Manager in the

domain area ontology, or used for generation of new program code.

(8) Rule based ST (standard used – Decision Model and Notation, DMN, [13]). The specification tech-

nique is used to describe domain area simple and complex rules applicable to class attributes and dia-

grams transitions/ connectors/ associations, ontology establishment and restructuring, decision making,

and knowledge management. A Rule Interpreter verifies the specified rules and behavior. If the specifi-

cations are successfully verified they are integrated by a Rules Manager in the domain area ontology, or

used for generation of new program code.

(9) Ontology based ST (standard used – Web Ontology Language, OWL, [24]). The specification tech-

nique is used to describe formally taxonomies and classification networks, essentially defining the struc-

ture of knowledge for various domains. An Ontology Interpreter verifies the specified ontologies. If the

specifications are successfully verified they are integrated by an Ontology Manager in the domain area

ontology, or used for generation of new program code.

3.4 KBASE Development Environment

The CPAP model is developed taking into account the features of leading CC technological environ-

ments, standards defining SOA and CC, as well as the KBASE method. CPAP components for classic,

combined, automated and ontology programming, organized in layers and packages, are presented in

[18].

CPAP-DE architecture is presented in Figure 2 below. Actors (presented as) represent: (1) the end

user, responsible to specify the problem to be solved, to provide the input data, and to analyze the cal-

culated results (2) external CPAP correspondents interacting through server-to-server (S2S) communi-

cation; and (3) knowledge engineers (KE) in the business and IT domain areas responsible to design and

implement new data objects, ontology primitives, ontology structures, Graphical User Interfaces (GUI),

messages, interactions, rules, etc.

CPAP-DE Components are: (1) GUI Display (presented as) conducts the dialogue between CPAP

and CPAP Actors. The key requirements for GUID realization are the automation of its design, devel-

opment, and testing process, as well as its rapid reengineering; (2) Editor (presented as) is a software

component which ensures the design or modification of GUIs, the specification and modification of

components. The simple specification techniques and availability of rich libraries with predefined reus-

able objects are the key requirements for the realization of the Editors; (3) Compiler (presented as

) is a software component which ensures the transformation of non-formal to formal user specification.

The key requirement for the Compiler functionality is the capability of identifying the insufficient, in-

complete, or fuzzy parts of user specifications and for producing a fully defined formal specification;

(4) Manager (presented as) is a software component responsible for the organization, management

and fault tolerant performance of every particular CPAP-DE process. Its role is to ensure the resources

required for the performance of the process, to organize the communication with other managers, to

control the prioritization of the performance of required services, as well as to identify and, if possible,

to correct the own runtime errors. Well-defined self-training and self-organization capabilities are the

main requirements for these managers; (5) Generator (presented as) is a software component

responsible for the generation or modification of other software components through formal specifica-

tions. Considerable reduction of development and testing activities performed by CPAP-DE experts

after component generation is the main goal of its functionality; (6) DB (presented as) is a software

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 10

component responsible for storing data, knowledge, services and components. (7) Servers (presented

as) manage the execution of CPAP components at service and process level.

Figure 2. DE Architecture

Abbreviations used in Figure 2: DB – Data base, DWH – Data warehouse, ESB – Enterprise service bus, GIS –

Geographical information system, GUID – Graphical user interface display, KE – Knowledge engineer, IS –

Information system, NL – Natural language, RDB – Relational data base, Req. – requirements, S2S – Server-to-

server, TIS – Template information system.

CPAP-DE Zones are the following: (1) The Specification Zone (including Natural Language based,

Context based, Event based, Process based, Message based, Service based, Object based, Rule based,

and Ontology based specification instruments) is responsible for compiling to internal representation

the high level IS specifications, their verification, and the generation of IS code;

(2) The Bus Zone organizes all CPAP-DE interactions via the Security Manager, Message Manager,

DB Manager, the couples GUI Manager – GUIDs, and S2S communication channel – namely interac-

tions between users (End Users and Knowledge Engineers), between the Specification Zone instruments

and users, between the Specification zone and all DB Zones (Data, Knowledge and Repository), between

all zones and CPAP-DE Server Zone, automatic communication between CPAP-DE Servers and partner

Servers; (3) The Server Zone (including Security, Interface, Web, Application, Process, and DB Serv-

ers) manages and realizes the whole CPAP computational process; (4) The Data Zone is the CPAP

operational (RDB), and analytical (DWH) data store; (5) The Knowledge Zone is the knowledge store,

containing all CPAP ontologies and knowledge models; (6)The Repository Zone stores all CPAP active

units, including components, services, etc.

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 11

4 Results evaluation and future work

Different combinations of the solutions incorporated in KBASE and CPAP-DE are evaluated in a large

number of applications and prototypes. Some of the important results demonstrating the problem solving

and efficiency improvement capabilities of KBASE and CPAP-DE are presented in Table 2 below.

These improvements are either quantitative or qualitative. Relevant improvements for the specific ap-

plication are marked with √ at their intersection as applicable.

A detailed description of the Module for Automated Programming of Robots (MAPR), Intelligent Prod-

uct Manual (IPM), Built-in-Test Adaptive Document Display (BIT), and Information Objects Manager

(IO.Man) is provided in [16]. BeC, BeH and BeG are presented in section 2.1 of this paper.

Type Improvement MAPR IPM BIT IO.Man BeC BeH BeG

quantitative product specification time reduced √ √

quantitative programming time reduced √ √ √ √ √

quantitative COTS (Commercial off-the-shelf)

components integration time reduced

 √ √ √ √

quantitative testing time reduced √ √ √ √ √

quantitative COTS components testing time re-

duced

 √ √

quantitative IT team reduced √ √ √

qualitative adaptive to various domain areas √ √ √ √

qualitative adaptive to different end users √ √

qualitative adaptive presentation to various

standards

 √ √ √ √

qualitative adaptive presentation to different

media

√ √ √ √ √

qualitative real time code synchronization √ √

qualitative real time documents synchronization √ √ √ √

qualitative prevent emergency system failure √ √ √ √ √

qualitative real time performance improvement √ √ √

Table 2. Improvements achieved in the realized KBASE applications

Quantity improvements are related to considerable decrease of the necessary time and effort for software

development (modelling, implementing, testing, customization) and modification as well as for the de-

velopment of the integrated platform.

Quality improvements are in three aspects: (1) improvement of product adaptation to the domain area

(adaptation to different users, standards, media, etc.); (2) improvement of product stability including

prevention of system failure and failure solving; (3) quality of service improvement including product

response time reduction, increased real-time product and product documentation update and synchroni-

zation, etc.

Another effect of introducing the KBASE technology and tools is the change of IT development team

profile. Although the application of the domain area ontology requires more business analysts in the

team, the introduction of automation in the implementation process considerably reduces the required

number of implementers and testers.

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 12

Measurements on the MAPR, IPM, BIT and IO.Man projects are provided in [16]. Measurements in the

enterprise information systems domain is presented in Table 3 below. The reference projects cover the

three domains presented in section 2.1, namely e-customs, e-health, and e-government.

The problem number in the header row corresponds to the problems described in sub-section 2.5. The

first column indicates the specific realization, name, owner, and results for each reference project (noted

as “Rn”). For each problem are presented two reference projects, R1 being the one realized following

the RUP software development process, and R2 – following the method proposed in this paper. Some

of these projects have the same scope while using different realization technologies (e.g. reference pro-

jects for problems 3 and 5). In this case R1 is developed by а contractor and R2 is developed by a team

of students from a software engineering master program.

The KBASE solution to each problem, successfully demonstrated in R2 is presented in the bottom row.

Table 3. Results evaluation

Abbreviations used in Table 3: BA – Business analyst, BCA – Bulgarian Customs Agency, BTMS – Bulgarian

Transit Management System, DesM – Design model, EMS – Excise Management System, MoH – Ministry of

Health, MTITC – Ministry of Transport, Information Technologies and Communications, TIS – Template infor-

mation system, UoR – University of Ruse Software Engineering Master’s program.

Future work is related to: (1) development of a new Unified Specification Language to integrate and

optimize the selected specification techniques in the KBASE method; (2) build a second generation of

nine industrial specification tools; (3) build a second generation of industrial Common Platform for

Automated Programming; (4) develop new specification techniques (e.g. image processing, cluster anal-

ysis etc.).

5 Conclusion

The analysis performed in this paper identifies 5 important problems related to the software development

process. They are presented in section 2.5. In order to solve these problems the suggested KBASE

framework integrate the methods RUP and KBASE, the technologies Software Engineering, Service

Oriented Architectures, Automated Programming, and Knowledge Processing, and the platforms Cloud

Computing and Common Platform for Automated Programming.

Based on the KBASE framework the following solutions are proposed: (1) Nine Specification Tech-

niques based on different combinations of nine international standards for IS description are introduced

to improve the level of standardization of ongoing IT processes and objects; (2) Contextual Design

Method is introduced to improve the systematic collection of the initial information; (3) Process-based,

Problem № 1 2 3 4 5

R1

realisation

manual GUI programming non-structured interviews UML Use Case

described processes

implementation after 20 %

design

non-structural use cases

R2

realisation

automated GUI

programming

structured interviews (data flow

diagrams and mock-ups)

BPMN described

processes

implementation after 100%

design

structural use cases

R1 name EMS1 BTMS1 TIS Hospital Care eVote BTMS1

R2 name EMS2.1 BTMS2 TIS Hospital Care еID BTMS1

R1 owner BCA BCA MoH MTITC BCA

R2 owner BCA BCA UoR MTITC UoR

R1 results role BA - 2

role GUI Programmer - 12

Design time (p/m) - 4

Impl. Time (p/m) - 24

functional test errors - n

change request (DesM) - n

change request (Prod) - n

classes DesM (same

granularity) - 630

reusable components - 5%

functional change requests - n

number of Use Cases - 250

number of Test Cases - 2000

test coverage - 25%

R2 results role BA - 4

role GUI Programmer - 3

Design time (p/m) - 12

Impl. Time (p/m) - 6

functional test errors - 0.7 x n

change request (DesM) - 0.5 x n

change request (Prod) - 0.2 x n

classes DesM (same

granularity) - 245

reusable components - 32%

funct. change requests - 0.5 x n

number of Use Cases - 1350

unmber of Test Cases - 1590

test coverage - 87%

KBASE

solution

new full set specification

techniques

introduced context based ST introduced event,

process, and object

based ST

replace RUP by KBASE design

method

introduce structural Use Case

algorithmization style

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 13

object-based and event-based specification techniques are introduced as more efficient replacement of

large part of the RUP Use Case Specification; (4) Automated programming is introduced to allow code

generation after completion of the design model, which considerably increases components reusability

level and the quality of the developed product; (5) Built-in-Test method is introduced to improve test

coverage and the efficiency of the development process.

Acknowledgment

The presented work has been partially funded by the National Scientific Research Fund, Contract No.

02/13/12.12.2014.

References

[1] Abrahamson, P., O.Salo, J.Ronkainen, J.Warsta (2002). Agile software development meth-

ods: Review and analysis (Technical report). VTT. 478.

[2] Axelos Limited (2017). Managing Successful Projects with PRINCE2. The Stationery Office

[3] Bauer, F.L. (1968), Report on a conference sponsored by the NATO Science Committee.

Garmisch. Germany. 7th to 11th October 1968

[4] EU IST-1999-20162 Development and Applications of New Built-in-Test Software Compo-

nents in European Industries. Software Architecture. 2003

[5] Holtzblatt, K. and H.Beyer (2016). Contextual Design, Second Edition: Design for Life. Mor-

gan Kaufmann Publishers. San Francisco.

[6] Kruchten, P. (2000). The Rational Unified Process: an Introduction. Addison-Wesley.

[7] Liu, F. et. all. (2011). NIST Cloud Computing Reference Architecture. Gaithersburg: National

Institute of Standards and Technology Special Publication 500-292. US Department of Com-

merce

[8] Mell, P. and T.Grance (2011). “The NIST Definition of Cloud Computing”. Gaithersburg: Na-

tional Institute of Standards and Technology NIST Special Publication 800-145 US Depart-

ment of Commerce.

[9] Object Management Group (OMG) (2008). Software & Systems Process Engineering Meta-

model Specification (SPEM) v.2.0. http://www.omg.org/spec/SPEM/2.0/

[10] OMG (2014), Business Process Model And Notation v.2.0.2. http://www.omg.org/spec/BPMN

[11] OMG (2015). Unified Modeling Language v2.5. http://www.omg.org/spec/UML/

[12] OMG (2016-1). Case Management Model And Notation v1.1.

http://www.omg.org/spec/CMMN

[13] OMG (2016-2). Decision Model And Notation v1.1. http://www.omg.org/spec/DMN

[14] Project Management Institute (2013). A Guide to the Project Management Body of

Knowledge Fifth Edition.

[15] Stanev I. (2012). “Method for Automated Programming of Robots”, Knowledge Based Auto-

mated Software Engineering. Cambridge Scholars Publishing. Cambridge.

[16] Stanev, I. and K.Grigorova (2012). “KBASE Unified Process”, Knowledge Based Automated

Software Engineering. Cambridge Scholars Publishing. Cambridge.

[17] Stanev, I. and M. Koleva (2015-1), “KBASE Technological framework – Requirements”. In:

Proceedings of 17th International Conference on Semantic Interoperability and Integration

(ICSII 2015).

http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/BPMN
http://www.omg.org/spec/UML/
http://www.omg.org/spec/CMMN
http://www.omg.org/spec/DMN

Stanev, Koleva/ Method for IS automated programming

The 11th Mediterranean Conference on Information Systems (MCIS), Genoa, Italy, 2017 14

[18] Stanev, I. and М.Koleva (2015-2), “A Common Automated Programming Platform for

Knowledge Based Software Engineering”. In: Proceedings of 17th International Conference

on Semantic Interoperability and Integration (ICSII 2015).

[19] Stanev, I. and М.Koleva (2016-1). “Bulgarian Health Information System based on the Com-

mon Platform for Automated Programming”. In: Proceedings of 10th Mediterranean Confer-

ence on Information Systems (MCIS 2016).

[20] Stanev, I. and М.Koleva (2016-2). “Bulgarian e-Customs based on the Common Platform for

Automated Programming – Requirements”. In: Proceedings of 55th Annual Science Confer-

ence of University of Ruse.

[21] Stanev, I. and М.Koleva (2016-3). “Bulgarian e-Customs based on the Common Platform for

Automated Programming – Technological Framework”. In: Proceedings of Proc. 55th Annual

Science Conference of University of Ruse.

[22] Stanev, I. and М.Koleva (2016-4). “Bulgarian e-Government Information System Based on the

Common Platform for Automated Programming – Requirements”. In: Proceedings of 10th Ju-

bilee International conference Information Systems & Grid Technologies (ISGT 2016).

[23] Stanev, I. and М.Koleva (2016-5). “Bulgarian e-Government Information System Based on the

Common Platform for Automated Programming – Technical Solution”. In: Proceedings of

10th Jubilee International conference Information Systems & Grid Technologies (ISGT 2016).

[24] W3C (2012), Web Ontology Language v.2, https://www.w3.org/standards/techs/owl#w3c_all

https://www.w3.org/standards/techs/owl#w3c_all

	Association for Information Systems
	AIS Electronic Library (AISeL)
	9-2017

	Method For Information Systems Automated Programming
	Ivan Stanev
	Maria Koleva
	Recommended Citation

	tmp.1510917664.pdf.zj_vl

