
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2010 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-1-2010

Predicting Requirements Change Propagation Based on Software Predicting Requirements Change Propagation Based on Software

Architecture Architecture

Yun Fu

Minqiang Li

Fuzan Chen

Follow this and additional works at: https://aisel.aisnet.org/iceb2010

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2010 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2010
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2010?utm_source=aisel.aisnet.org%2Ficeb2010%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Yun Fu, Minqiang Li and Fuzan Chen

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

PREDICTING REQUIREMENTS CHANGE PROPAGATION BASED
ON SOFTWARE ARCHITECTURE

Yun Fu, Minqiang Li and Fuzan Chen
School of Management, Tianjin University

Tianjin 300072, P. R. China
E-mail: fy8266@163.com, mqli@tju.edu.cn, fzchen@tju.edu.cn

Abstract
Change propagation is a central issue in software
development process. In early stages of software
development, software architecture facilitates the
component-based software development process
and provides a platform for prediction of
requirements change.

Keywords: software architecture, requirements
change propagation, architectural pattern

This paper aims to predict
change propagation in early stages of software
development, and evaluate the architecture based
on architectural pattern. In order to achieve this
goal, the change propagation probability is
formally defined, and the change propagation in
five architectural patterns is discussed. Moreover,
change propagation density is defined to extend the
pattern-based propagation, which incorporates
design metrics into software architecture evaluation.
The efficiency of the proposed method is
demonstrated through a computational experiment.

1. Introduction

Software architecture plays an important role in the
software development process. It explicates the
structure of the software system in terms of a
collection of interacting components to accomplish
the required tasks [1]. Software architecture
facilitates the component-based software
development process and provides a platform for
the prediction of requirements change. This paper
focuses on requirements change propagation that is
a central issue of software development [2] based
on architectural view,

Software requirements always evolve throughout
the whole software development process, which is
recognized to be a major source of software
development risk [3]. Due to the direct/indirect
impacts of changes and a lot of iterative activities,
the development schedule is prolonged and the
project cost overruns the budget. However, the
impacts of changes are hard to be predicted and
quantified due to the uncertainty that is associated
with requirements change and entails the risk of the
project [4]. Requirements change usually leads to
the ripple changes among connected components,
which means that a change arising in requirements
can propagate to the components that are related
directly or indirectly. Change propagation

researches and literatures cover change
management, engineering design, product
development, complexity, graph theory and design
for flexibility [5]. This research aims to predict the
change propagation probability based on software
architecture in early stages of software
development (including requirements specification
and design), which reflects the probability that a
change originating in one component of software
architecture propagates to other components.

The rest of paper is organized as follows. Section 2
discusses the change propagation process, and
defines the change propagation probability in a
formal format. Section 3 deduces a computation
formula

 to estimate the approximate change
propagation probability, whose variables can be
calculated through UML models of the software
architecture. Considering the characteristics of
different architectural patterns, section 4 discusses
the change propagation probability based on
architectural pattern. Section 5 demonstrates the
proposed method via a computational experiment,
and section 6 summarizes the paper.

2. Change Propagation
2.1 Change Propagation Process

Due to the interdependencies among the entities of
a software system, it is difficult for developers to
manage change propagation in software
development process accurately. Failure to update
any of the related entities would cause system
inconsistencies. In early stages of software
development, software architecture is the most
important entity of a system. When requirements of
stakeholders change, designers should determine
the initial components in the architecture that must
be changed. Once the designs of the initial
components are changed, designers should
determine whether the changes propagate to other
components, and modify them if so. This process is
repeated until every change for each component
has been checked out. After that, designers should
check the propagation with requirements to ensure
that the changed architecture is consistent with the
changed requirements. If there are inconsistencies,
the change propagation process is repeated. Fig.1
shows the model of change propagation process.

148

Yun Fu, Minqiang Li and Fuzan Chen

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

Fig. 1 Model of change propagation process

The first step of predicting change propagation
within the architecture is to understand the change
propagation between a given pair of components.
This paper proposes a probabilistic method based
on UML diagrams to estimate the probability that
each change will propagate.

2.2 Change Propagation Probability

Software architecture is composed of components
and interactions among them, where component
interactions are mainly composed by the transfers
of information and data. Traditional software
metrics usually adopted tokens, flow graph, data
dependencies and control dependencies base on
code level features [6]. But in early stages of
software development process, it is impossible to
obtain efficient information that is available at the
code level. Instead, information represented at the
architectural level is taken into account. In order to
predict change propagation probability of the
system, we first calculate the propagation between
a given pair of components A and B .

Several semantic and formal definitions of change
propagation have been put forward [5] [6] [7] [8]
[9]. This paper adopts the formal definition to
interpret this computable metric.

Suppose that the software architecture has n
components, in which components A and B are
a pair of the components that communicate through
a connector. The component modeled by state
transition maintains a series of internal states that
reflect the invocation, as in Fig. 2.

Fig. 2 States transition for components A and B

Let V be the range of values or messages which
transmit from A to B , AS be the set of states

of component A , and BS be the set of states of
component B . When component B receives a
value v V∈ from component A , it changes its
internal state and produces some outputs which will
propagate to other components. Function

: B Bf S V S× → defines this state transition.

(,)B By f x v= (()Bf v for simple) represents the
state of component B after receiving v V∈ , where

Bx is the state of component B before

transmission, and By is the state after
transmission. Following a change request, the state
of component A , AS changes into '

AS and the

outputs of A also change to 'v in order to
accommodate the variation. Suppose that for a
fixed initial state Bx , the final state resulting from
unchanged value v is different from that resulting
from changed value ' v , which implies that

'() ()B Bf v f v≠ infers 'v v≠ for any Bx . Under
this situation, how the state of component B
changes after receiving 'v is the key problem in
predicting change propagation.

We define the change propagation probability from
A to B as a conditional probability which

reflects the likelihood that a change occurring in
A causes a variation of the state of B . It is

denoted by (,)cpp A B .
' '(|) (,) B B A AP S S S Scpp A B = ≠ ≠ (1)

In fact, (,)cpp A B is under the situation that A
changes its state and indeed transmits a value to B .
Let (,)t A B be the reachability probability from
A to B . Then, unconditional change probability

denoted by (,)cp A B is:

(,) (,) (,)cp A B cp p A B t A B= ⋅ (2)

(,)cp A B is unconditional probability of change
propagation which integrates (,)cpp A B with the
probability that A transmits a message to B .

The impact of change between components may
propagate directly or indirectly. Since (,)cp A B
only represents the direct propagation from A
to B , indirect propagation between components
must be also considered.

The n -step change propagation probability from
A to B is the probability that a change occurring

in component A propagates to
component B after n transmissions through

1n − other different components.

1 1 2

2 1 1

(,) = (,) (,) ...

 (,) (,)
n

n n n

cp A B cp A C cp C C

cp C C cp C B− − −

⋅ ⋅ ⋅

⋅
 (3)

It is noticed that this formula does not contain the
propagation along the path including loops.

SA1 SA2

SA3 SB3 SB4

SB2 SB1

Connector

V

Component A Component B

Requirements
change

Determine
initial

components to
change

Change the
design of

components

Propagate
change to other

components

Check the
propagation

with
requirements

End
No component to change

Rework

For each requirement change

149

Yun Fu, Minqiang Li and Fuzan Chen

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

After calculating all the n -step change
propagation probabilities for each pair of the
components, the cumulative change propagation
probability which is the sum of the direct and
indirect propagation can be obtained.

3. Estimating Change Propagation

Probability
In general, there is a tendency for designers to rely
on accumulated experience and statistical data to
determine the change propagation probability
between components. This section uses the theory
of probability and statistics to access the
approximate value of that.

Assume that the changed value 'v and unchanged
value v are both in the set V . According to the
discussion about change propagation above and the
definition of conditional probability, it is easy to
see that:

'

'

' ' '

'

'

'

'

'

,

'

,

(,) (() () | , ,)

(() ())
()

1 (() ())
1 ()

1 ()(() ())

1 () ()
B B B B

B B

B B

B B

B B B
x S v v V

v v V

cp pA B P f v f v v v v V v V

P f v f v
P v v

P f v f v
P v v

P x P v P v

P v P v
∈ ∈

∈

= ≠ ≠ ∈ ∈

≠
=

≠

− =
=

− =

− ⋅

=
− ⋅

∑ ∑

∑

 (4)

Where, { | (,) }B B Bv v V f x v y= ∈ =

and ' ' ' ' { | (,) }B B Bv v V f x v y= ∈ = . ()BP x
reflects the probability that the component B is
in state B Bx S∈ . ()P v is the probability that

unchanged value v is received by B . ()BP v

represents the probability that Bv V∈ causes B

to transit from Bx to By . In the formula (4), it is

assumed that the changed value 'v V∈ is
statistically independent of the unchanged value v .

Suppose that the changed value 'v has the same
probability distribution with unchanged value v ,
the formula (4) can be written as:

2

2

1 ()[()]
(,)

1 ()
B B B

B B
x S v V

v V

P x P v
cpp A B

P v
∈ ∈

∈

−

=
−

∑ ∑

∑
 (5)

It is obviously that the value of 2 () (0,1)
v V

P v
∈

∈∑

will be minimum if and only if ()P v is uniform

distribution, and its value is
1

V

, where V is

the number of the values transmitted from A
to B . Assume that the value v and the state BS
are both distributed according to uniform
distribution. Then, formula (5) can be written as:

21
1 ()

| |
(,)

1
1

B B B

B
x S v VB

P v
S

cpp A B

V

∈ ∈

−

=
−

∑ ∑
 (6)

Where | |BS is the number of the states that
component B has. When software architecture is
described by UML, all the available models such as
architecture diagram based on components, state
charts of the component and sequence charts can be
applied in calculating change propagation
probability. The determination of ()BP v in
formula (6) will use state charts and sequence
charts. Firstly, count the values that cause state
transmission from Bx to By in state charts. Next,
estimate the probability distribution by tracing
paths of messages transmission from A to B in
sequence charts.

Completing all the change propagation
probabilities for each pair of the components, a
n n× matrix of change propagation
probability = []ij n nCPP cpp × for the software

architecture is obtained. When i j= , 1iicpp = ,
which means that a change occurred within the
component A is determined.

Similarly, a n n× reachability probability matrix
[]ij n nT t ×= can also be obtained. Using the

models of UML, it is easy to get the information
about transitive messages. Assume that the
transitive variable v is distributed according to
uniform distribution. Then,

1

(,) n

Ak
k

V
t A B

V
=

=

∑
 (7)

Where V represents the number of variables
transmitted from A to B , n is the number of
the architectural components, and

Ak
V is the

number of variables transmitted from A to
component ()k kC C A≠ .

150

Yun Fu, Minqiang Li and Fuzan Chen

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

According to the discussion above, the
unconditional change propagation probability of
the software architecture is:

()ij ij ijCP cp cpp t= ⋅ (8)

4. Pattern-based Change Propagation

We have discussed the component-based change
propagation above. For a complex architectural
environment, the attributes of different
architectural patterns must be also taken into
account. Architectural pattern is “a description of
element and relation types together with a set of
constraints on how they may be used” [10].
Choosing an architectural pattern is often the
developers’ major design choice. So, it is necessary
for designers to yield a better estimation by
predicting change propagation of different
architectural pattern. In this section, five kinds of
patterns [11], including sequential, branching,
parallel, pipe-filter, and fault tolerance patterns are
discussed.

4.1 Sequential and Branching Pattern

The components in a sequential pattern are
executed in a sequential order, as Fig. 3. In
branching pattern, the execution only go to one of
its branching subsequent components. Both of
these two patterns are similar in the characteristics
that only one component is executed at a time, and
the component proceeds until last component has
completed.

Fig. 3 Sequential and branching pattern

For the purpose of describing conveniently, we
only consider the simple environment in which
each component is regarded as a module. Let
matrix ()ijCMP cmp be the change propagation
probability based on architectural pattern. For
architecture with n

, can reach
, for 1 ,

0, can not reach
ij ij i j

ij
i j

cpp t M M
cmp i j n

M M
⋅

= ≤ ≤

 components, the change
propagation probability in sequential or branching
pattern is:

 (9)

4.2 Parallel and Pipe-filter pattern

 In concurrent execution environment, components
are usually executed simultaneously, like parallel

pattern and pipe-filter pattern. These two patterns
have similar description showed as Fig. 4.

Fig. 4 Parallel, pipe-filter pattern

As Fig. 4, the architecture consists of n
components, where 2n − components are
executed concurrently. With the feature that all the
concurrent components (from 2C to 1 nC −) should
be performed successfully before executing the
next component (nC), the set of concurrent
components can be considered as a module, which
conforms to the essence of simultaneous transition
of concurrency. Fig. 5 shows the modules of the
architecture, where components 2C to 1nC − are

congregated into the module 2 M , 1C and nC are

modeled as 1M and 3M

 respectively. Then, the
parallel pattern is converted to a sequential pattern
based on architectural module.

Fig. 5 Modules of the architecture

We use the simple model with 3 modules (showed
as Fig. 5) to illustrate the change propagation
probabilities between different modules. Let

(,)cmp i j be the change propagation probability

from module iM to module jM

1

1 1

1

2

2

(1, 2)

(2,3) 1 (1)

 and 1

(,) 0, can not reach

 and 1 , 3

n

k k
k n

n

kn kn
k

k

i j

cmp cpp t

cmp cpp t

C M k n

cmp i j M M

i j

−

=

−

=

= ⋅

= − − ⋅

∈ ≤ ≤

=

≤ ≤

∑

∏ ，

. Then,

 (10)

4.3 Fault tolerance pattern

Fault tolerance pattern consists of a primary
component and a set of backup components. The
assignment of these components is similar with the
parallel pattern showed in Fig. 4. The difference is
that in fault tolerance pattern, the components is

M2 M3 M1

Cn

Cn-1

C3

C2

C1

C2

C1 C2 Cn

C1

C3

Cm

Ck

Cn

151

Yun Fu, Minqiang Li and Fuzan Chen

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

not executed concurrently as in parallel pattern, but
one component works at a time until it fails, then
another component will take over.

As Fig. 4, when primary component 2C is
activated, other backup components are inactive.
The change propagation probability between 2M

and 3M is 2 2 1 (1)n ncpp t− − ⋅ . When primary

component 2C is failure, the backup

component 3C is activated. Once 2C and 3C both

fail, the backup component 4C is activated, and so
on. We can get the (,)cmp i j

1

1 1
2

2 2

2

1, 1,
2 2

2

(1, 2)

(2,3) 1 (1)

 [(1)] (1)

 ,

(,) 0, can not reac

n

k k
k

n n

qn

kn k n k n
q k

k

i

cmp cpp t

cmp cpp t

t cpp t

C M

cmp i j M

−

=

−

+ +
= =

= ⋅

= − − ⋅ −

− ⋅ − ⋅

∈

=

∑

∑ ∏

h

 and 1 , 3
jM

i j≤ ≤

 in fault tolerance
pattern.

 (11)

5. Computational experiments

Previous section has shown how to compute the
change propagation probability of an architecture
based on architectural pattern. Following
experiment demonstrates it.

Fig. 6 represents the architecture with 10
components, where 2C and 3C are parallel, and

7C is the backup component of 6 C . Other
components are executed in sequential or
branching pattern.

Fig. 6 Example of Architecture

Suppose that matrix of change propagation
probability ()ijCP cp is calculated out as follow.

1

2

3

4

5

6

7

8

9

10

1 0.084 0.022 0.312 0 0 0 0 0 0
0 1 0 0 0 . 20 0 0 0 0
0 0 1 0 0.47 0 0 0 0 0
0 0 0 1 0 0.14 0.065 0 0 0
0 0 0 0 1 0 0 0 0 0.34
0 0 0 0 0 1 0 0.265 0.225 0
0 0 0 0 0 0 1 0.23 0.115 0
0 0 0 0 0 0 0 1 0 0.12
0 0 0 0 0 0 0 0 1 0.26
0 0 0 0 0 0 0 0 0 1

C
C
C
C
C
C
C
C
C
C

Since ()ijCP cp only represents the direct
propagation between a pair of components, the
cumulative change propagation probability which
is the sum of the 1-step and multi-step propagation
is derived as follow.

1

2

3

4

5

6

7

8

9

10

1 0.084 0.022 0.312 0.0271 0.0437 0.0203 0.0162 0.0123 0.0143
0 1 0 0 0.2 0 0 0 0 0.068
0 0 1 0 0.47 0 0 0 0 0.1598
0 0 0 1 0 0.14 0.065 0.5205 0.039 0.0164
0 0 0 0 1 0 0 0 0 0.34
0 0 0 0 0 1 0 0.265 0.225 0.0903
0 0 0 0 0 0 1 0.23 0.115 0.0575
0 0 0 0

C
C
C
C
C
C
C
C
C
C

0 0 0 1 0 0.12
0 0 0 0 0 0 0 0 1 0.26
0 0 0 0 0 0 0 0 0 1

Using the formula (9), (10) and (11), the change
propagation probability based on architectural
pattern ()ijCMP cmp is:

1

2 3

4

5

6 7

8

9

10

1 0.106 0.312 0 0 0 0 0
, 0 1 0 0.576 0 0 0 0

0 0 1 0 0.205 0 0 0
0 0 0 1 0 0 0 0.34

, 0 0 0 0 1 0.63 0.53 0
0 0 0 0 0 1 0 0.12
0 0 0 0 0 0 1 0.26
0 0 0 0 0 0 0 1

C
C C
C
C
C C
C
C
C

Similarly, the cumulative change propagation
probability of architectural patterns is:

1

2 3

4

5

6 7

8

9

10

1 0.106 0.312 0.0611 0.064 0.0403 0.0339 0.0344
, 0 1 0 0.576 0 0 0 0.1958

0 0 1 0 0.205 0.1292 0.1087 0.0437
0 0 0 1 0 0 0 0.34

, 0 0 0 0 1 0.63 0.53 0.2134
0 0 0 0 0 1 0 0.12
0 0 0 0 0 0 1 0.26
0 0 0 0 0 0 0 1

C
C C
C
C
C C
C
C
C

Define change propagation density to reflect the
potential of the architecture to expose its
components to the changes.

(1)

ij
i j i

cp
CPD

n n
≠=
−

∑∑
 (12)

Where, n is the number of the components in the
architecture. The idealistic change propagation
density corresponds to an identity matrix I , which
indicates that no component propagates changes to

C1

C2 C3

C10

C4

C5 C6 C7

C8 C9

152

Yun Fu, Minqiang Li and Fuzan Chen

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

others. The worst extreme is that any change in any
component propagates to all other components.
With the formula (12), the CPD of the original
architecture based on component is 0.1496, and
the CPD of the architecture based on pattern is
0.1333. The difference between these two values
implies that choosing architectural pattern
reasonably is an effective measure to lower the risk
of change propagation.

The approach proposed here introduces change
propagation probability as design metric to
evaluate the different architectural patterns. It is
useful in following two directions: (1)
incorporating the change propagation into the
software architecture evaluation; (2) decreasing the
risk of software development by choosing proper
architectural patterns.

6. Conclusions
This paper aims to predict change propagation in
early stages of software development, and to
evaluate the software architecture based on pattern.
We discuss the process of change propagation in
software development, and highlight the necessity
of predicting change propagation probability. The
formal definition of change propagation probability
between a pair of components is introduced, and a
probabilistic method based on UML diagrams to
estimate the probability of change propagation is
deduced. Due to the characteristics of different
architectural patterns, this paper extends the
pattern-based propagation, which incorporates
design metrics into software architecture evaluation.
The method and the results of the computational
experiment will promote more effective
architecture design process and will contribute to
improve the software development process,
especially for early stages of software
development.

This study is part of a wider work that considers
the impact of software requirements change. The
future works are currently in progress, including
analyzing requirements change propagation in
complex architectures that contain iterations,
determining the impact of change propagation on
cost and schedule, and simulating the risk of
requirements change.

Acknowledgements

This work was supported by the National Science
Foundation of China (No. 70771074), the
Self-Innovation Foundation of Tianjin University,
and the Ph.D. Programs Foundation of Ministry of
Education of China (No. 20090032110065).

[1] Garlan, D., Software architecture: a roadmap,
Proceedings of the Conference on the Future

References

of Software Engineering, pp.91-101, 2000.
[2] Hassan, A. E. and Holt, R. C., Predicting

Change Propagation in Software Systems,
Proceedings of the 20th IEEE International
Conference on Software Maintenance, pp.
284-293, 2004.

[3] Strens, M. R. and Sugden, R. C., Change
analysis: a step towards meeting the
challenge of changing requirements,
Proceedings of IEEE Symposium and
Workshop on Engineering of
Computer-Based Systems, pp.278-283, 1996.

[4] Ebert, C. and Man, J. D., Requirements
uncertainty: influencing factors and concrete
improvements, Proceedings of the 27th
international conference on Software
engineering, pp. 553-560, 2005.

[5] Giffin, M., Weck,O. d., et al, Change
Propagation Analysis in Complex Technical
Systems, Journal of Mechanical Design ,
vol.131, no.8, pp.1-14, 2009.

[6] Abdelmoez, W., Shereshevsky, M. et al,
Quantifying software architectures: an
analysis of change propagation probabilities,
The 3rd ACS/IEEE International Conference
on Computer Systems and Applications, pp.
124-131, 2005.

[7] Shereshevsky, M., Ammari, H., et al.
Information Theoretic Metrics for Software
Architectures, Proceedings of the 25th
International Computer Software and
Applications Conference on Invigorating
Software Development, pp. 151-157, 2001.

[8] Sharafat, A. R. and Tahvildari, L., Changes
Prediction in Object-Oriented Software
Systems: A Probabilistic Approach, Journal
of Software, vol. 3, no. 5, pp. 26-39, 2008.

[9] Abdelmoez, W., Nassar, D. M., et al. Error
Propagation in Software Architectures,
Proceedings of the Software Metrics, 10th
International Symposium, pp. 384-393, 2004.

[10] Bass, L., Clements, P. and Kazman, R.,
Software Architecture in Practice, Addison
Wesley, 1998.

[11] Wang, W. L., Pan, D., et al.
Architecture-based software reliability
modeling, Journal of Systems and Software,
vol.79, no.1, pp. 132-146, 2006.

153

	Predicting Requirements Change Propagation Based on Software Architecture
	tmp.1582519289.pdf.LhQBz

