
Association for Information Systems Association for Information Systems 

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL) 

ICEB 2010 Proceedings International Conference on Electronic Business 
(ICEB) 

Winter 12-1-2010 

Method for Web Service Composition Discovery Based on Method for Web Service Composition Discovery Based on 

Association Rules Association Rules 

Fuzan Chen 

Minqiang Li 

Jisong Kou 

Follow this and additional works at: https://aisel.aisnet.org/iceb2010 

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic 
Library (AISeL). It has been accepted for inclusion in ICEB 2010 Proceedings by an authorized administrator of AIS 
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org. 

https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2010
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2010?utm_source=aisel.aisnet.org%2Ficeb2010%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Chen Fuzan, Li Minqiang, Kou Jisong 

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010 

Method for Web Service Composition Discovery Based on Association Rules 

Chen Fuzan  Li Minqiang   Kou Jisong 
School of Management, Tianjin University, Tianjin, China 

Abstract 

Web service plays an important role in 
implementing Service Oriented Architecture (SOA) 
for achieving dynamic business process. With the 
increased number of web services advertised in 
public repository, it is becoming vital to provide an 
efficient web service composition mechanism with 
respect to user’s requirement. In this paper, a 
service composition approach based on association 
rules is proposed in the sense of knowledge 
discovery. This approach includes two steps: firstly, 
frequent web services will be enumerated in the 
dataset of history service composition transactions. 
Secondly, execution path, the basic unit of 
composite service, will be generated based on 
concepts extracted from SOA domain and 
association rules implied in frequent services. In 
addition, frequent services mining algorithm is put 
forward based on a structure of Adjacent-Lattice, 
and experiments are given to show the 
effectiveness of the mining algorithm. 

Key Words: Service Oriented Architecture, Web 
Service, Service Composition, Association Rules 

 
1. Introduction 

Web services are considered as self-contained, 
self-describing, modular applications that can be 
published, located, and invoked across the Web [1]. 
Nowadays, an increasing amount of companies and 
organizations only implement their core business 
and outsource other application services over 
Internet. Thus, the ability to efficiently and 
effectively select and integrate inter-organizational 
and heterogeneous services on the Web at runtime 
is an important step towards the development of the 
Web service applications. In particular, if no single 
Web service can satisfy the functionality required 
by the user, there should be a possibility to 
combine existing services together in order to 
fulfill the request. In this case we speak of a 
composite service [2]. The process of developing a 
composite service in turn is called service 
composition, which can be either performed by 
composing elementary or composite services. This 
trend has triggered a considerable number of 
research efforts on the composition of Web 
services both in academia and in industry.  

In service oriented application, value-added service 
is composed of some component services selected 
from the candidate services. How to discover 
services and composing them for users` 

requirements efficiently become the key in the 
application of Web service technology. For this 
problem, a service composition discovery approach 
based on association rules is proposed in the sense 
of knowledge discovery. Firstly, sets of frequent 
web services that can be used to constitute 
compose services will be discovered in dataset of 
history services composition information. Secondly, 
execution path, the basic unit of composite service, 
will be generated based on association rules 
implied in these frequent service sets. 

The rest of this paper is organized as follows. 
Section 2 give an overview of the related work, and 
section 3 introduces the basic concept of services 
composition and association rule problem. Section 
4 describes the mechanism of services composition 
based on association rules. The experimental 
results and analyses are presented in Section 5. 
Finally, the paper is concluded in Section 6. 

 
2. Related Works 

At present, after user bring a web service request, 
service register server checks whether a single 
registered web service could fulfill the user’s 
request. But under some circumstances, the user’s 
request can only be satisfied by a composition of 
several services. Therefore composition-based 
service discovery and some progress have been 
made in recent years. The large amount of services 
make composing of services a time consuming and 
impossible job. Hence, a variety of techniques to 
compose services some automated and 
semi-automated ways have recently been 
investigated. To that end, several methods for this 
purpose have been proposed. In particular, most 
researches conducted fall in the realm of workflow 
composition or AI planning. 

For the former, one can argue that, in many ways, a 
composite service is similar to a workflow [3][4]. 
The workflow-based approach to Web service 
composition adopts composition schemas to define 
the abstract functionalities and interactions of 
component services, such as control flow, data flow, 
and transactional dependencies. In these 
approaches, the designer is required to explicitly 
identify the tasks that compose business processes 
and specify the relationships (e.g., execution 
sequence) among them. This mode of composition 
requires all task relationships to be established a 
priori. It also requires meticulous transformation of 
business rules and relationships into a particular 
process model. Industry extensively uses BPEL 

141



Chen Fuzan, Li Minqiang, Kou Jisong 

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010 

(Business Process Execution Language), an 
extension of WSDL, for workflow-based web 
service composition [5]. However, the composition 
is carried out in the syntactic level, which is not 
able to express the semantic capabilities of services. 
The current achievements on flexible workflow, 
automatic process adoption and cross-enterprise 
integration provide the means for automated Web 
services composition as well. In addition, the 
dynamic workflow methods provide the means to 
bind the abstract nodes with the concrete resources 
or services automatically. 

On the other hand, dynamic composition methods 
are required to generate the plan automatically. 
Among these techniques, AI planning-based and 
deductive theorem proving web service 
composition techniques have attracted considerable 
research interests. In these works, automated 
composition is described as a planning problem 
[6][7][8]: services that are available and published 
on the Web, the component services are used to 
construct the planning domain, composition 
requirements can be formalized as planning goals, 
and planning algorithms can be used to generate 
composed services, i.e., plans that compose the 
component services. This is achieved through the 
use of the Semantic Web. For example, the 
ontology language OWL-S [9] is specifically 
designed to connect with AI planning. Some other 
AI planning techniques are proposed for the 
automatic composition of Web services. For 
example, Rao et al. [10] introduced a method for 
automatic composition of semantic web services 
using liner logic (LL) theorem proving. The 
Colored Petri Nets (CPNs), that is an extension of 
Petri Nets, is used to model service composition 
and orchestration [11].  

Furthermore, in order to address the challenges of 
scalability, flexibility and quality-of-service (QoS) 
management for distributed service composition, 
the correlations among resource services are taken 
into account during MGrid resource service 
composition, and a QoS description mode 
supporting resource service correlation is presented 
by F.Tao [12]. Data mining techniques are also 
used on web services log to improve quality and 
performance of web services composition. Service 
mining, a technology similar to web mining, has 
been proposed [13][14][15] in order to make use of 
the service artifacts in a registry-repository and to 
improve service composition via analysis of service 
usage patterns. 

 
3. Problem Statement and Preliminaries 

3.1 Composite Service 

According to specific business process, the 
composite service is a complex service composed 

by relatively simple web services from a large set 
of candidates. It provides stronger and more 
integrated business functions than single service. 
Definition of composite service will be given in the 
following. 

Definition 1 (Composite Service, CS): A 
composite service can be formally defined as CS = 
(SS, CF, DF), and hereinto: 

1) SS is a web services set {S1, S2, …, Sm}, and Si 
is either atomic service or composite service. 
There exist logic control relations CF and data 
dependency relations DF on web services set 
SS. 

2) CF is logic control relation set among web 
services. For any two services Si, Sj∈SS, if there 
is any relation of the following four kinds of 
relation, namely, sequence, fork, iteration and 
parallel relation. It is said that there is logic 
control relation between Si and Sj. 

3) CF is data dependency relation set among web 
services. Given Si, Sj∈SS, if the input of Sj is 
output of Si, there is a dependency relation 
between Si and Sj. 

 

 

 

 

 

 

 

 

 

Figure 1 is an example of composite service 
composed by component web services SS={S1, 
S2,…, S9}. Thus, web service composition can be 
seen as a process to find a new service S, which 
consists of a set of component web services SS={S1, 
S2, …,S9 }. There is a logic control relation 
between S2 and S3, and data dependency relation 
between S3 and S8. 

 
3.2 Association Rules (AR) Problem 

Association rules in large databases of sales 
transactions was firstly proposed by Agrawal in 
1993, which is one of the most important research 
topics in data mining [16]. Association rules 
problem can be stated as follows. Let I be the set of 
items and D a transaction database in which each 
transaction is a subset of I and is associated with a 
unique identifier called its TID. A set of items is 
called an itemset. We say that a transaction 
supports an itemset X if all the items in X are 

S5

S6

S1

S3

S2 S4 S7 

S8 

S9

Logic control

Data dependency

Figure 1 An example of composite service

142



Chen Fuzan, Li Minqiang, Kou Jisong 

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010 

contained in the transaction. The support of an 
itemset X is the percentage of transactions in D 
which support X: 

}{}{)( DttXDtXsupport ∈⊆∈= . An 

association rule is an implication of the form X⇒Y, 
where X,Y⊂I and X∩Y=φ. It means that if we find 
all of items of item set X, then we have a good 
chance of finding the items of Y.  

Given an association rule, its support and 
confidence should be above certain thresholds. The 
confidence of association rule R:X⇒Y describes 
the probability of finding Y on the condition of X: 
confidence(X⇒Y) = support(X∪Y)/ support(X). 
The support of R is defined as: support(X⇒Y) = 
support(X∪Y). So an association rule R:X⇒Y 
holds in the transaction set D with confidence c if 
c% of transactions in D that contain X also contain 
Y, and has support s in the transaction set D if s% 
of transactions in D contain X∩Y. 

The problem of mining association rules in a 
database D is then traditionally defined as follows. 
Given the defined thresholds for the permissible 
minimum support threshold min_sup and 
confidence threshold min_conf, this procedure can 
be broken into two sub-problems: 

1) Find all frequent itemsets X with support no 
less than the given min_sup.  

2) For each frequent itemset X and Y⊂X, 
generate all strong rules Y⇒X-Y, with 
confidence no less than the given min_conf. 

 
4. Services Composition Based on AR 

When users give a service request, web services 
register server will select several registered 
services, compose them in some way and finally 
generate a composite service which could satisfy 
the user’s request. This composition process 
usually complex and will lead to large overhead. 
Usually, specific user groups have some common 
request, for which service discovery algorithm will 
return the same composite service. Therefore, by 
recording the composite services returned by 
services register server will constitute services 
composition logs. Performing mining algorithms 
on such log files, some frequent composite services 
can be discovered, which correspond to the 
requirements of the specific user group. By doing 
this, the service discovery efficiency and quality 
can be greatly improved. 

 
4.1 The Main Idea of Service Composition 
Based on AR 

Association rule describes the probability of the 
associations among different objects. In the task of 

web service discovery, it is considered that web 
services are not independent on each other. In 
general, a frequent service set is the corresponding 
services of a composite service that are frequently 
executed together. It has been verified by many 
efficient executions in the past. It can be deduced 
that the frequent service sets would have better 
performance than other services. The implicit 
associations always happen among different web 
services and would reflect the most optimal 
composition of different web services. Inspired by 
the idea above, association rule can be applied for 
web service composition.  

The main idea of our proposed approach is to 
utilize AR among different web services to identify 
the dependence between the given web service and 
other web services. The process can be divided into 
the following two steps: 

1) Frequent service sets discovery: Enumerate all 
of the frequent web service sets that satisfy the 
minimum support threshold. 

2) Composite services generation: Generate 
association rules from the frequent service sets 
that satisfy the minimum confidence threshold, 
and then configure reachable execution paths 
with selected association rules. This step 
involves pruning the association rules based on 
concepts extracted from SOA domain and 
confidence threshold. 

 
4.2 Frequent Service sets Discovery 

In order to enumerate all of the frequent web 
service compositions, service composition 
transaction datasets D should be constituted firstly, 
which consists of a certain number of composition 
transactions implemented with web services in the 
repository during the specified time interval. D is 
defined as D = {T1, T2, T3, … , Tm}, Ti is a service 
composition transaction associated with a unique 
identifier. Each services composition transaction T 
contains a set of web services invoked in that 
transaction and T = {S1, S2, S3, … , Sk}, where Si is 
a web service invoked in that composition 
transaction. Therefore, we can get a web service set 
including all web services SS={S1, S2, … , Sn } 
invoked in all composition transactions. 
Consequently, an item is a web service, and an 
itemset is the set of services, named as serviceset, 
consisted in a certain composite service. 

Let I be a service (item) set derived in transaction 
database D, X,Y∈I and X≠Y, if Y can be obtained 
from X by adding a single service, then X is said to 
be adjacent to Y. We call X is a parent of Y, and Y is 
a child of X. Thus, and serviceset may possibly 
have more than on parent and more than one child. 
For each serviceset X and each xk,∈X, X-{xk,} is a 
parent of X.  

143



Chen Fuzan, Li Minqiang, Kou Jisong 

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010 

Definition 2 (Adjacent-Lattice): Let I = {i1, 
i2,  … , im} be the service set derived in 
transaction database D, the Adjacent-Lattice L on 
the ordered powerset P=(P(I), ⊆) of I be a DAG 
which each vertex is an serviceset X⊆I. L is 
constructed as follow: For each primary serviceset 
X, construct a graph with a vertex v(X), each vertex 
has a label corresponding to the value of its support, 
denoted as S(X). If and only if X is a parent of Y, a 
directed edge exists from v(X) to v(Y), denoted as 
E(X,Y).The vertex v(X) is said to be the head of the 
edge E(X,Y), and the vertex v(Y) is said to be the 
tail of the edge E(X,Y). 

Thus, the search space of all servicesets can be 
represented by an Adjacent-Lattice, with the empty 
serviceset at the top and the set containing all 
services at the bottom. Apparently, the fact there is 
a directed path from vertex v(X) to vertex v(Z) in a 
adjacent-lattice L, implies X⊂Z. Especially, we call 
X is an ancestor of Z, and Z is a descendent of X. 

Considering the database D illustrated in Table1, 
there are five different services, i.e.,I={A,B,C,D}, 
The corresponding Adjacent-Lattice L is illustrated 
in Figure 2. Each vertex has a label corresponding 
to its support value.  

Table1 Transaction database D 

Tid servicesets 
1 ABC 

2 CD 

3 ABC 

4 ACD 

5 ABCD 

6 BCD 

7 D 

8 BC 

9 ABCD 

10 B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let min_sup be the minimum support theshod, to 
find all frequent servicesets, we need to solve the 
following search problem in the Adjacent-Lattice: 
for a given serviceset X (i.e. bottom element, top 
element or some medi-vertex), find all servicesets 
Y such that v(Y) is reachable from v(X) by a 
directed path in the lattice or sub-lattice, and 
satisfies the condition S(Y)≥ min_sup. 

In practice, the number of vertices reachable from a 
given vertex may be quite large, though the number 
of vertices, which satisfy the minimum support 
condition, may be small. Using the lattice and 
sub-lattice structure can restrict the number of 
vertices checked. In order to restrict the number of 
vertices checked in the lattice, we sort the 
serviceset vertices by their support value in 
inverted sequence for each level.  

We discuss an efficient strategy for enumerating 
the frequent servicesets in lattice, denoted 
Breadth-First search. The Breadth-First search 
approach starts with the bottom element of the 
sub-lattice, traverses the lattice level by level. Just 
the same as saying, we check each vertex at the 
next level only after the end of checking the certain 
level. This approach enumerates all frequent 
servicesets. 

Algorithm 1 Breadth-First search strategy 
Algorithm Breadth-First-search( S ) 
Begin 

))}(),({( BSBvFS = ; List={v(B)};  

While List φ≠  do 

Select )(Rv from List  ; 

For each unvisited child )(Tv  of )(Xv  do 

If supminYS _)( ≥ do 

)(YvListList ∪= ; 

Add ( )(Yv , )(YS ) to FS  

For each Yij ∈  add )},{( YiYE j−  

to FS  
endfor; 

enddo; 
Delete )(Rv  from List  

End; 

Each supper set of an infrequent serviceset is also 
infrequent. Thus, we can increase searching 
efficiency of the algorithm by pruning the vertices 
such that not satisfying the minimum support 
condition. 

Performing the Breadth-First searching on the 
service composition transaction datasets D, all the 
frequent service sets can be enumerated. Web 
services in the same frequent set are frequently 
executed together, and have better performance 
than other infrequent services. 

 

{} 

ABCD 
0.2

A 
0.5 

C 
0.8 

D
0.6

AC 
0.5 

AD 
0.3 

BC 
0.6 

BD 
0.3 

CD
0.5

AB 
0.4 

ABC 
0.4 

ABD 
0.2 

ACD 
0.3 

BCD
0.3

B 
0.7 

Figure2 Adjacent-Lattice L＝P(I) 

144



Chen Fuzan, Li Minqiang, Kou Jisong 

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010 

4.3 Composite Service Generation Based on 
selected Association Rules  

A composite service consists of execution paths, 
which are the basic units for service composition. 

Definition 3 (Execution Path, EP): Given a 
composite service CS = (SS, CF, DF), one 
execution path EP = (SS`, CF`, DF`) of CS is still 
an composite service, and meets the following 
constraint conditions: 

1) SS`⊆SS∧ CF`⊆∧DF`⊆DF, namely EP is 
contained in the composite service CS; 

2) There is the unique service sequence s=<Si1, 
Si2, …, Sin> corresponding to EP, hereinto 
∪Sij=SS`, Si1 is the first web service, Sin is the 
last one. Sik is called to the direct predecessor of 
S ik+1, and Sik + 1 is the direct successor of Sik. EP 
can be executed sequentially according to s. 

3) ∀Si, Sj∈ SS`, it is impossible that Si belongs to 
the different fork or parallel route from Sj; 

4) ∃Sij∈<Si1, Si2 , …, Sik–1>, that is the direct 
predecessor of Sik; 

5) Any direct successor of Sik does not exist in 
<Sik+1, Sik+2, …, Sin>. 

Definition 4 (Reachable Execution Path, REP): 
Given an execution path EP = (SS, CF, DF) of a 
composite service CS, if EP can executed 
successfully, then we call EP is a reachable 
execution path of CS. 

Definition 5 (Consistent Rule): Given an execution 
path EP = (SS, CF, DF) of a composite service CS, 
e=<S1, S2,…,Sn> is the service sequence 
corresponding to EP. e`=< S1 ,S2 , …, Sk > is a sub 
service sequence of e, namely Ant＝{S1,S2, …,Sk} 
is the set of services that has been selected by EP. 
Ant is called to the ancestor services set of EP, 
denoted by EP.Ant. Likewise Con＝SS-Ant＝{Sk+1, 
Sk+2, …, Sn } is called to the consequence services 
set of EP, denoted by EP.Con. Given an association 
rule R：X⇒Y, if X⊆EP.Ant and Y⊇EP.Con, then 
we call that R is a consistent rule for EP. 

It can be seen from the above definitions, that the 
execution paths, generated by composite service 
division, are the basic unit for web service selection. 
The key of this web service composition approach 
is how to generate reachable execution paths.The 
main idea of our proposed approach is to utilize the 
association rules among different web services to 
identify the dependence between the given web 
service and other web services. Namely, for an 
execution path EP of a composite service CS, let 
SS={S1, S2, …, Sn} be the set of web services of 
EP, and ARS be the association rules set generated 
from frequent service sets. EP can be constituted by 
invoking these two procedures iteratively:  

1) Given the last selected web service Si∈SS of EP, 
find the constituent rule R：Si⇒Y with the 
maximal confidence value in ARS that 
satisfying: 

Support(Si ⇒ Y) ≥ min_sup 
Confidence(Si ⇒ Y) ≥ min_conf    (1) 

2) Add component web services in Y to SS, and 
generate services sequence of SS. 

 
5. Experimental and Analytical Results 

We run the simulation on PC: Intel P4 2*2.4G CPU, 
2GB main memory and Windows 2000 Server. The 
synthetic service composition transactions are 
generated using a method provided by KDD 
Research Group in IBM, referring to 
Http://www.almaden.ibm.com/cs/quest/syndata#As
socSynData. D is the number of service 
composition transactions, T is the average 
transaction size, and S is the average size of 
potential maximal frequent service set. A data set is 
denoted by Tx.Sy.DmK. Our approach is a two 
stages process, and enumerates the frequent web 
service sets in the second stage: 

1) Constructing the Adjacent-Lattice, decomposing 
the constructed lattice into sub-lattices if 
necessary. 

2) Traversing the lattice and enumerating the 
frequent service sets. 

Figure 3 shows the response time variation with 
average transaction size during lattice constructing. 
The data sets are Tx.S3.D100K and Tx.S3.D100K, 
the transaction size increases 1 every time. This 
shows that response time of lattice constructing and 
the average transaction size is an exponential 
relation. The computational effort and the scale of 
constructed lattice are more sensitive to the average 
transaction size, rather than to the number of 
transactions. We also find that the computational 
effort mushrooms when some transactions have 
very great length, even though the average 
transaction size is small. 

 

 

 

 
 

 
 

 

 

 

0

50

100

150

200

4 5 6 7 8

Average Transaction Size

R
es

po
ns

e 
T

im
e(

10
3
se

c.
)

TxS3D200K

TxS3D100K

Figure 3 Response times with average 
transaction size during lattice constructing 

145



Chen Fuzan, Li Minqiang, Kou Jisong 

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010 

Figure 4 shows the response time variation with the 
number of frequent service sets enumerated by 
applying Breadth-First search strategy to 
Adjacent-Lattice. The data sets are T5.S3.D100K 
and T5.S3.D200K. The response time of frequent 
service sets enumerating is more sensitive to the 
number of frequent service sets searched, rather 
than to the average transaction size and number of 
transactions in the data set. 

 
 
 
 
 
 
 
 
 
 

 
 

6. Conclusions 

Web Service Composition problem, especially 
based on Quality of Service (QoS), has been 
extensively studied recently. The different 
approaches that have been followed so far in the 
research of QoS-driven service selection span from 
the use of QoS ontology, the proposal of ad-hoc 
methods in some general framework, the use of 
data mining and so on. Most approaches are 
complex and time consuming. Furthermore, current 
Web service technology can not support QoS or 
other non-functional aspects of a web service, so all 
the approaches above face the vital problem that 
how to acquire Web service QoS information. 
Compared to service QoS information, the service 
composition information and composite service 
execution information, which can be recorded on 
the service register server, are easier to acquire.  

This paper presents a new service composition 
discovery approach based on service composition 
transaction mining, gives a complete solution of the 
new service composition discovery approach, and 
describes the related algorithm. Based on 
service-composition-data mining, the new services 
composition discovery approach presented in this 
paper would greatly improve the efficiency of the 
service compotation process, and achieve more 
robustness of the composite services. Furthermore, 
association rules would be discovered by analyzing 
all web service composition transactions related to 
that set of users. By combining user group and 
association rule mined from that group, a 
personalized web service recommendation would 
be presented. 

However, the proposed approach has its own 
limitation. It would suffer from cold start problem, 
a typical problem in web applications, which 
means for a new web service, it is difficult to give 
recommendation since there have no history 
composition transactions on it. 

 
Acknowledgements 

The work was supported by the National Science 
Foundation of China (No. 70771074), the 
Self-Innovation Foundation of Tianjin University, 
and the Ph.D. Programs Foundation of Ministry of 
Education of China (No. 20090032110065). 

 
References 

[1] Web Services Architecture—W3C Working 
Group Note, 
http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211, Feb. 2004 

[2] Alonso, Gustavo, Fabio Casati, Harumi Kuno 
& Vijay Machiraju: Web Services. Concepts, 
Architectures and Applications. 
Springer-Verlag Berlin Heidelberg 2004  

[3] F. Casati, S. Ilnicki, and L. Jin. Adaptive and 
dynamic service composition in EFlow. In 
Proceedings of 12th International Conference 
on Advanced Information Systems 
Engineering (CAiSE), Stockholm, Sweden, 
June 2000. Springer Verlag. 

[4] Kunal Verma， Karthik Gomadam， The 
METEOR-S Approach for Configuring and 
Executing Dynamic Web Processes ， 
Technical Report.2005 ， 
http://lsdis.cs.uga.edu/projects/meteor-s/tech
Rep6-24-05.pdf 

[5] M. t. Beek, A. Bucchiarone, and S. Gnesi. 
“Web service composition approaches: From 
industrial standards to formal methods,” 2nd 
Intl. Conf. on Internet and Web Applications 
and Services, 15-20, 2007 

[6] J. Rao and X. Su, A survey of automated web 
service composition methods,” 1st Int. Work. 
on Semantic Web Services and Web Process 
Composition, SWSWPC-2004, LNCS, 
2005(3387), 43–54 

[7] P. Bertoli, M. Pistore, P. Traverso, 
Automated composition of Web services via 
planning in asynchronous domains, Artificial 
Intelligence, 2010, vol.174, 316–361 

[8] E. Sirin, B. Parsiab, D. Wu, J. Hendler, D. 
Nau, HTN planning for web service 
composition using SHOP2, Journal of Web 
Semantics, 2004(4), 377–396 

[9] D. Martin, et al., “OWL-S: Semantic markup 
for web services,” 
http://www.w3.org/Submission/OWL-S/, 
2004. 

0

20

40

60

80

100

120

1 2 3 4 5 6 7

Output Frequent Servicesets Number(103)

R
es

po
ns

e 
T

im
e(

se
c.

)

T5S3D100K

T5S3D200K

Figure 4 Response time variation with 
number of frequent servicesets searched

146



Chen Fuzan, Li Minqiang, Kou Jisong 

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010 

[10] J.Rao,  Kungas P, Matskin M, Composition 
of semantic Web services using linear logic 
theorem proving. Information System, 
2006(31):340-360 

[11] V. Gehlot, K. Edupuganti, Use of Colored 
Petri Nets to Model, Analyze, and Evaluate 
Service Composition and Orchestration, 
Proceedings of the 42nd Hawaii International 
Conference on System Sciences, 2009,1-8 

[12] Fei Tao,Dongming Zhao, Hu Yefa, Zude 
Zhou, Correlation-aware resource service 
composition and optimal-selection in 
manufacturing grid, European Journal of 
Operational Research 201 (2010) 129–143 

[13] G. Zheng, A. Bouguettaya, Service Mining 
on the Web, IEEE transactions on services 

computing, 2(1), 2009,65-78 
[14] Wenge Rong, Kecheng Liu, Lin Liang, 

Personalized Web Service Ranking via User 
Group Combining Association Rule. ICWS 
2009: 445-452 

[15] Shuchuan Lo, Web service quality control 
based on text mining using support vector 
machine, Expert Systems with Applications, 
34(1),2008, 603-610  

[16] R. Agrawal, T. ImielinSki, A. Swami, 
Mining association rules between sets of 
items in large database. Proc. of the 
ACMSIG2 MOD International Conference 
on Management of Data, Washington, 
DC.1993, 2 : 207-216 

 

147


	Method for Web Service Composition Discovery Based on Association Rules
	tmp.1582518733.pdf.m4iX4

