
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1987 Proceedings International Conference on Information Systems
(ICIS)

1987

THE USER INTERFACE IN INFORMATION
PROCESSING: AN EMPIRICAL STUDY OF
STUDENT PROGRAMMERS
Donna M. Kaminski
Western Michigan University

Follow this and additional works at: http://aisel.aisnet.org/icis1987

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1987 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Kaminski, Donna M., "THE USER INTERFACE IN INFORMATION PROCESSING: AN EMPIRICAL STUDY OF STUDENT
PROGRAMMERS" (1987). ICIS 1987 Proceedings. 4.
http://aisel.aisnet.org/icis1987/4

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1987%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987?utm_source=aisel.aisnet.org%2Ficis1987%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1987%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1987%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987?utm_source=aisel.aisnet.org%2Ficis1987%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987/4?utm_source=aisel.aisnet.org%2Ficis1987%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


THE USER INTERFACE IN INFORMATION PROCESSING:
AN EMPIRICAL STUDY OF STUDENT PROGRAMMERS

Donna M. Kaminski
Computer Science Department
Western Michigan University

ABSTRACT

The importance of human factors considerations is clearly recognized in the computing field
today. However, there has been relatively little attention given to such issues in information
systems and computer science curricula. This study examined the user interfaces designed by
student COBOL programmers for an online, information processing application. A variety of
problems were found in the visual displays and interaction designs suggesting a need for
greater explicit consideration of this area in programming and software design training. A
variety of suggestions are made as to ways of incorporating this issue into the curriculum.

The notion of "user friendliness" in computing has also the cost of human "suffering" -- the frustra-
become quite popular during the last decade, tion of repeated mistakes, the anxiety from
particularly with the advent of widespread micro- seemingly erratic behavior of the system, the
computer usage, the inftux of vast numbers of pressure and fatigue from trying to understand
casual and non-technical users, the increasing system responses and keeping track of mentally
number of online processing applications, and the difficult processes. And probably even worse is
rapidly expanding volume of information being the cost from relatively limited use of computers
stored on computers today. Hardware design, the because of previous negative experiences (Ledgard,
software's user interface and documentation have all Singer and Whiteside 1981).
increasingly begun to reflect this greater awareness
of the importance of considering human factors in
computing, i.e., concern for users' needs, desires, However, in spite of the growing awareness of the
abilities, tendencies and shortcomings, tailoring the importance of the user interface, relatively little
computer system to the user rather than vice versa. direct attention has been given to this topic in

most undergraduate computer science and informa-
tion systems curricula. For example, the recom-

Indeed, research has shown that there is a payoff mended standard computer science curriculum does
for this effort; "the human-computer interface can not specifically include this topic (ACM 1979).
make a substantial difference in learning time, Judging from its absence in most programming and
performance speed, error rates and user satisfac- software engineering textbooks, one would assume
tion" (Shneiderman 1987, p. v). Problems which that user interface design issues do not receive
users encounter on the interface, such as "cumber- much direct attention in such courses. (Exceptions
some data entry procedures, obscure messages, do exist, e.g., Kacmar 1984; Marca 1984. Likewise,
intoterant error handling, inconsistent procedures, the relatively new approach to software development
confusing sequences of cluttered screens" can all of prototyping [e.g., Boar 1984] gives much greater
significantly reduce productivity (Morland 1983, p. prominence to the user interface than the tradition-
484). But direct costs such as wasted human and al approach did.) Computer science educational
computer time are not the only costs of poor human programs perhaps see this topic as relatively less
engineering. Other more hidden costs can be even important and beyond the scope and time of their
more expensive. There are extensive indirect costs coursework. Or perhaps it is assumed that such
as, for example, the time spent in trying to abilities come "naturally" with experience. What
understand manuals, errors, system vocabulary, kind of user interfaces would experienced program-
command abbreviations and system formats or the ming students develop if asked to design user
costs of printing excessive documentation. There is friendly, interactive programs?

188



THE STUDY Hersh 1984; Bolt 1984). Shneiderman's (1987) text
in particular does an excellent survey of research

This study looked at a sample of programs from on user interface. Coombs and Alty (1981), Monk
intermediate-level computer science students' pro- (1985) and Moran (1981) all provide collections of
grams and examined the user interfaces they articles on user psychology and the user interface.
designed. They were asked to write user friendly,
interactive programs allowing users to easily access Some of the common complaints users have with
and update specified information on a random access regard to the interface include: incomprehensible
file. The interest here was to investigate and terminology, no warning by the system of poten-
identify what visual display and communications tially dangerous actions, hard to remember language
design decisions student programmers at this level forms, non-uniform abbreviations, cryptic messages,
would spontaneously use without explicit instruc- redundant forms of the same operation, and many
tions on interface ideals and guidelines. Were they useful tasks still manual rather than automated
able to take the role of user and imagine what a (Ledgard, Singer and Whiteside 1981).
user might need, want and like? By analyzing
particular types of choices, problems and/or less Moriand (1983) provides guidelines for terminal
desireable features which they chose to use, specific interface design which address some of these issues.
user interface design issues could be identified to The objective is to reduce the frequency and conse-
serve as a basis for further discussion and study. quences of user errors by keeping things simple.
The specific aspects of their designs examined here For example, for data input, use screens correlated
include the reasonableness of command option with input forms, common cultural conventions (e.g.,
indicators, the clarity and consistency of error for dates), chunking (e.g., social security number),
messages, the completeness, intelligibility and and mnemonic structures. For screen design,
conciseness of instructions, the efficiency of error simplify the screen, eliminate unnecessary social
recovery, the extent of shortcuts allowed to users amenities (e.g., "please"), use native language, and
and the clarity and easy readability of the visual standardize and structure things. For error
display formats. handling, prevent them if possible, correct or

tolerate where possible, and report them immedi-
Alternatively, students could have been given prior ately where users must fix them.
instruction or readings on human-computer interac-
tion guidelines as a method of learning about user Dehning, Essig and Maass (1981) review research in
interface issues. However, the interest in this this area and summarize some basic interface design
study was in examining the design decisions these principles: simplify, standardize, be consistent, use
programmers used without specific human factors common human communication patterns, keep system
training, which no doubt reflects the more typical behavior transparent and protect against human
case in programmer development. nature (e.g., forgetfulness and common mistakes).

Designers should also keep in mind that users are
The analysis was descriptive rather than inferential likely to be goal directed (as a coping strategy
based on a field study model rather than an against the barrage of new information) and may
experimental design. The interest here was on tend to skip reading all but "essential" material
identifying and describing the types of problems, (Hammond and Barnard 1985).
assumptions, and practices used in order to serve as
a basis for further discussion and work. This then Ledgard, Singer and Whiteside (1981) highlight
served as a pilot study for identifying particular aspects of their Assistant package which suggest
factors to be used experimentally in subsequent attributes of a good user interface: an organized,
tests with these programmers serving as users of visually appealing physical display that is concise
the interfaces. and easily referenced (e.g., keywords in the margin);

consistent behavioral rules with deductive capabili-
ties and natural defaults; status information and

RELATED LITERATURE positive reinforcement with no ambiguities; security
checking (e.g., for defaults); exploitation of natural

Several recent books provide extensive guidelines language using correct grammar, short keywords,
for software designers in developing the user single letter abbreviations; and several possible skill
interface (Shneiderman 1980, 1987; Rubinstein and levels of interaction.

189



Thimbleby (1985) suggests a more general set of programming courses plus an average of three and a
guidelines -- generative user-engineering principles half additional computer classes as well as an
-- rather than a specific list of rules (e.g., Smith average of one concurrent computer class (all
1982; Paxton 1984; and those above) since many requiring considerable programming). A typical
rules are derived from very small experiments and subject had probably written a minimum of forty
cannot necessarily be generalized. For example, programs prior to this assigned task.
some generative principles include: conceal ex-
traneous information from the user, "what you see There were 64 usable programs, i.e., those submitted
is what you get," and be able to "run it with your which ran roughly according to specifications. The
eyes shut." In further support of the need for sample was skewed towards the "better" students
application-based decisions for interface design, since programs for those not completing the course,
Hauptmann and Green (1983) found no significant missing this final assignment, or not following
differences among menu, command and natural directions were not included in the study.
language interfaces in terms of user satisfaction or Two-thirds reported grade point averages of 3.0 or
task performance time. better, both overall and in their computer courses.

User psychology is also important to consider. These intermediate-level computer students were
Hammond and Barnard (1985) have done a variety of selected because they were advanced enough to have
empirical field studies of dialogue design from which had a fair amount and variety of programming expe-
they have developed a theoretical model of user rience by this time. This course also provides an
knowledge, including knowledge of the domain, appropriate place in which to incorporate discussion
system operations, interface dialogue, the physical of user interface issues (in response to this assign-
interface and the problem itself. The designer ment) since programming per se need not be taught
should then specifically use the user's conceptual but, rather, a new third language.
model in developing the interaction dialogue
(Jagodzinski 1983; Gaines 1981). The system should
be thought of as a communication network with THE TASK
information flowing among users, programmer,
designer and machine (Oberquelle, Kupta and Maass The assigned task was to write an interactive, user
1983). friendly program which would allow a user to query,

insert, delete, correct, update and print out
When users encounter problems in dealing with the specified information from a random access VSAM
computer, they are likely to attribute it to some- inventory file. General instructions were provided
thing they did wrong -- a threat to their self- as to the types of functions needed and the neces-
esteem -- unlike designers (computer specialists), sity of handling possibly invalid requests. The only
who probably view such things as external problems, guidance given on the actual interaction style was
as fixable bugs (Thimbleby 1985). Commercial users the suggestion that a menu be used and the need to
also are likely to want to view the computer as a provide reassurance to the user that their requested
tool to help them accomplish their task: asa function had been carried out. There was no
means not an end (Eason and Damodaran 1981). specific discussion as to what "user friendly" meant.
The interface should thus accommodate the user's Rather, an attempt was made to elicit students'
task and expectations as nearly as possible and keep "natural," unguided design of the visual display and
any overhead time and effort for learning to a dialogue.
minimum.

The compiler/system used did not easily allow
THE SAMPLE students full-screen addressing capabilities as such;

rather, a linear format was used. The actual
The programs examined in this study were written processing logic of the problem was kept quite
near the end of the course by all students enrolled straightforward in order to encourage greater effort
in the Computer Science Department's COBOL on the visual display and computer-user communica-
course during one semester. This was a required tion design aspects. The interface requirements were
course for all computer science majors, so this also kept rather straightforward in order to observe
sample should be fairly representative. All had how students would handled these simple design
previously completed at least two prerequisite issues.

190



Students ran their programs themselves using to be friendly, the user instructions often tended to
instructor test cases. Being "perfect users," there be quite long and tedious rather than short and to
were thus no data entry errors, no misunderstand- the point. This would be especially annoying to a
ings of the appropriate responses, etc. -- certainly user in conjunction with a menu (and introductory
an unrealistic situation. The test data provided a instructions) automatically repeated every time they
check of both valid and invalid request routines for needed to select a function. Surprisingly, some of
each function. However, no additional "bad data" the menus (13%) even had obvious spelling and/or
was included in the test cases, thus relieving the grammatical errors. On more than one-quarter of
necessity of extensive editing in the program. the menus the actual options and their indicators

were not easy to pick out. Indentation, column
THE RESULTS lists, spacing, alignment, extra blank lines and/or

special visual markers would have helped consider-
In evaluating the user friendliness of a software ably in clearly presenting the options to the user.
system, some characteristics are not necessarily
innately good or bad. Rather, the particular user Regarding option indicators, one-third of the menus
and his or her level of expertise, frequency of use, required the user to type in either the function
and so on, must be taken into account. For name itself or its first letter(s); two-thirds used
example, should a menu repeatedly be provided indicators unrelated to the function names. One
every time the user is required to enter a function, might imagine that programmers would not require
or should it be provided only when the user users to repeatedly type in entire function names,
requests it? Other measures, however, can be since the interface was menu-based rather than
ranked on a more/less easy-to-use continuum. For command-driven, but a number did. (And even in
example, when requested, is the user's range of their own command-driven environment, most of
function choices clearly specified with easy to these students themselves use abbreviations when
remember, easy to enter option indicators? Both running system software). Over one-half used
types of issues were examined here. numbers for indicators, though it is difficult to say

whether this was specifically a design decision or
As suggested, all programs in the sample provided merely for programming ease (e.g., a "go to/depend-
the user with an initial menu of function choices. ing on" statement). Eight percent actually provided
Most also provided initial instructions as well. letters completely unrelated to function names.
Most dialogues (92%) automatically repeated the
entire menu each time a new function was being The programs generally printed out fairly under-
requested. The others allowed the user the choice standable error messages on invalid conditions.
of either entering a function selection indicator However, one-half of the programs used no consis-
immediately (from memory) or else requesting to tent pattern for error messages; for example,
view the menu again. It was surprising that more sometimes using the word "invalid," sometimes
students did not choose the more streamlined "error," sometimes "not." Less than one-half used
"expert' approach (i.e., providing help initially and some type of "attention-getter" on error messages
then only again when requested), particularly given such as a series of *'s or beginning the message
the simplicity of the program and their own with a consistent key word such as "Invalid: The
experience with software. (This ties in with the rest embedded the word "not" or "no" within the
suggestion by Ledgard, Singer and Whiteside (1981) message making it appear, on a glance, to be very
and Mortand (1985) of allowing a terse and a long similar to their reassurances on valid requests.
mode of interaction). However, they perhaps Users would have to read the entire message to
interpreted "user friendly" as meaning geared to an determine whether their insertion or deletion had
audience of very naive beginning users. Or instead, been done or whether an error had occurred.
two more likely explanations: it was easier to
program with duplicate processing each time A surprising two-thirds of the programs did not
through, or else they hadn't thought about treating initially check the key for validity before continu-
the function menu as optional. ing to ask the user to supply the rest of the

information on that request. For example, on an
Over one-half of the menus and introductory invalid insertion, the user had to type in all the
instructions, though usable, were not highly necessary information to build a new record, only
readable, nor easy to quickly follow. In an attempt finding afterwards that the insertion could not be

191



done because of an initial invalid ID key. Obvious- types of human-computer interfaces have fared in
ly little thought had been given to saving the user their "friendliness": e.g., documentation, system
time and frustration on this point. As is often the software and actual application program structures
case at this level, invalid/error situation handling themselves. How understandable, concise, thorough,
receives little thought and testing. organized, easy to use and visually appealing are

these? Traditionally they are no better than user
Most programs gave reasonable responses to the interfaces.
user after carrying out a function. A number of
minor improvements could have been made, however. The programs evaluated in this study produced
One-sixth did not label the fields printed out in usable dialogues, particularly given the inherent
response to the user's request for information. simple nature of the task. Most f'laws were not
When items were added or subtracted from the major. But taken all together they suggest a
number in stock in the file, only one-half the general failure to step back and actually consider
programs informed the user of the original and/or the user's point of view. Much of the human
new totals in their reassurance message. While not factors literature concerns issues which help make
necessarily required, this feature would not have software easier and faster to learn and to use,
cost much in terms of either programmer or screen making for a smoother, less frustrating user
display time, and yet it may have been of value to experience. Many of these are seemingly small
users. Less than one-half the programs consistently factors, yet together they contribute to the overall
worded reassurance messages reflecting the menu friendliness of a system.
function terms (e.g., "removed" versus "deleted"
versus "discontinued"). These are minor problems, It appeared that many of the programmers in the
but do suggest that more thought could have been study spent minimal time considering the user view.
devoted to considering the user's point of view One might surmise from this that they were
during design. focusing on the program's functioning and saw the

interface task as more peripheral. Their actual use
Regarding overall screen layout, even though a of the interface was perhaps more as a mechanism
linear rather than screen format was necessary, for testing their program rather than vice versa
further consideration could have been given to the with the program as a mechanism for providing for
general visual appearance of the screen for both human-computer interaction.
requesting and presenting information to the user.
One-quarter used no blank lines at all for visual It is difficult to say whether this is reflective of
separation and one-half used no indentation to the general population of programmers or merely of
highlight things. Only 15% made good use of intermediate-level student programmers. As
indentation and special characters as visual markers students, they know their programs will not be run
to indicate error conditions, set off the menu or by real users. There is thus less motivation to
point out that information was needed from the spend time working on the interface aspects.
user. However, past observations of student-written

systems from the graduate-level software systems
DISCUSSION development course show that their user interfaces

are often little better; many projects from that
It might be assumed that designing a computer-user course are actually intended for use by the general
interface for an interactive system is a skill that university computing community.
should come naturally to people. After all, it is
quite similar to what people practice everyday: Can computer and information science education
interacting with others, explaining things, requesting programs do anything to address this problem?
information and following directions. Programmers There is one group of users that computer education
in particular are accustomed to explaining in detail, has shown a good deal of concern for and whose
using very specific rules, the step-by-step instruc- needs and concerns are discussed and taught -- i.e.,
tions telling a computer what to do. Also, programmers themselves, especially maintenance
programmers themselves are heavy software users programmers. Students in programming and
who have no doubt developed ideas about what they software development courses receive specific
like and don't like about using certain packages and instruction on issues such as programming style,
system programs. However, consider how well other structured programi top-down design, modularity,

192



good variable naming, and internal documentation. REFERENCES
They are expected to incorporate these concepts
into all of their programs and projects. All of ACM Curriculum Committee on Computer Science.
these make for more user friendly programs -- more "Curriculum '78: Recommendations for the Under-
readable, understandable, and modifiable programs graduate Program in Computer Science." Com-
which are easier to write, test, debug and change. munications of the ACM, Vol. 22, No. 3, March

1979, pp. 147-166.
Human factors issues should be incorporated into
programmer education. They need not be a central Boar, B. H. Application Prototyping: a Requirement
concern in a programming class, where the language Definition Strategy for the 80's. Wiley, New York,
itself, programming skills and ideas of main- 1984.
tainability deserve major attention. However, it can
be a thread which runs through many courses. Bolt, R. A. The Human Interface: Where People and
When interactive program assignments are given, Computers Meet. Lifetime Learning Publications,
some discussion of various alternative approaches New York, 1984.
might be discussed. It is very useful to have
students run, demonstrate and comment on other Coombs, M. J., and Alty, J. L. Computing Skills and
students' programs from the class. The experience the User /nterface. Academic Press, London, 1981.
has been very educational for both the author and
the "critic." Outside readings might be given which Dehning, W.; Essig, H.; and Maass, S. The Adapta-
discuss human factors issues relevant to a particular tion of Virtual Man-Computer Interfaces to User
assignment. Students could be asked to critique and Requirements in Dialogs. Springer-Verlag, New
suggest improvements for existent systems software York, 1981.
and utilities which they regularly use. They might
select the best and the worst they have used and Eason, K. D., and Damodaran, L. "The Needs of the
elaborate on why they like/dislike it. Students Commercial User." In M. J. Coombs and J. L. Alty
might be asked to explicitly compare several (eds.), Computing Skills and the User Interface,
different computers they've worked on noting Academic Press, London, 1981, pp. 115-139.
differences with respect to ease of use, documenta-
tion readability, helpfulness, clarity of error Gaines, B. R. "The Technology of Interaction--
messages, forgiveness of compilers, etc. These Dialogue Programming Rules." International Journal
kinds of activities would go a long way towards of Man-Machine Studies, Vol. 14,1981, pp. 133-150.
making students more conscious and reflective on
the user point of view; after all. they themselves Hammond, N., and Barnard, P. "Dialogue Design:
are users. Yet considerable amounts of class time Characteristics of User Knowledge." In A. Monk
need not be spent on any of these topics. Ideas ted.), Fundamentals of Human-Computer Interaction,
related to human factors should be specifically Academic Press, London, 1985, pp. 127-163.
incorporated into software development courses,
particularly by introducing such issues into more Hauptmann, A. G., and Green, B. Bert F. "A
systems design and software engineering texts. Comparison of Command, Menu-Selection, and

Natural Language Computer Programs." Behavioral
Whether one is a systems programmer, applications Information Technology, Vol. 2, No. 2, April-June
programmer or systems designer, there are end 1983, pp. 163-178.
users who need to be seriously considered. User
friendliness is clearly not something that comes Jagodzinski, A. P. "A Theoretical Basis for the
"naturally" to all without explicit consideration and Representation of OnLine Computer Systems to
reflection. Just as concern for programmers as Naive Users." International Journal of Man-Machine
users has been incorporated into the computer Studies, Vol. 18, No. 3, March 1983, pp. 215-252.
science and information systems curricula. so should
a greater concern for end users. Today's computer Kacmar, C. J. On-Line: Systems Design & Int-
students are tomorrow's programmers. Online, plementation. Reston, Reston, VA, 1984.
interactive software can only become more wide-
spread, with greater need for easy to use, less frus-
trating user interfaces.

193 '



Ledgard, H.; Singer, A.; and Whiteside, J. Direc- Rubinstein, R., and Hersh, H. M. The Human
lions in Human Factors for Interactive Systems. Factor: Designing Computer Systems for People.
Springer-Verlag, New York, 1981. Digital Press, Billerica, MA, 1984.

Marca. D. Applying Software Engineering Prin- Shneiderman, B. Software Psychology: Human
ciples. Little, Brown, & Co., Boston, MA, 1984. Factors in Computer and Information Systems.

Winthrop, Cambridge, MA, 1980.
Monk, A. Fundamentals of Human-Computer
Interaction. Academic Press, London, 1985. Shneiderman, B. Designing the User Interface.

Addison-Wesley, Reading, MA, 1987.
Moran, T. "An Applied Psychology of the User."
Computing Surveys, Vol. 13, No. 1, March 1981. Smith, S. L. "User-System Interface Design for

Computer-Based Information Systems." ESD-TR-82-
Morland, D. V. "Human Factors Guidelines for 132, Mitre Corp., Bedford, MA, 1982.
Terminal Interface Design." Communications of the
ACM, Vol. 26, No. 7, July 1983, pp. 484-494. Thimbleby, H. "User Interface Design: Generative

User Engineering Principles." In A. Monk (ed.),
Oberquelle, H.; Kupta, I.; and Maass, S. "A view of Fundamentals of Human-Computer Interaction,
Human-Machine Communication and Cooperation." Academic Press, London, 1985, pp. 165-180.
International Journal of Man-Machine Studies, Vol.
19, No. 4, October 1983, pp. 309-333.

Paxton, A. L. "The Application of Human Factors
to the Needs of the Novice Computer User."
International Journal of Man-Machine Studies, Vol.
20, No. 2, February 1984, pp. 137-156.

194


	Association for Information Systems
	AIS Electronic Library (AISeL)
	1987

	THE USER INTERFACE IN INFORMATION PROCESSING: AN EMPIRICAL STUDY OF STUDENT PROGRAMMERS
	Donna M. Kaminski
	Recommended Citation


	tmp.1422396232.pdf.oPQ1z

