
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2006 Proceedings European Conference on Information Systems
(ECIS)

2006

Cost estimation in agile development projects
Siobhan Keaveney
National University of Ireland, Galway

Kieran Conboy
National University of Ireland, kieran.conboy@nuigalway.ie

Follow this and additional works at: http://aisel.aisnet.org/ecis2006

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2006 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Keaveney, Siobhan and Conboy, Kieran, "Cost estimation in agile development projects" (2006). ECIS 2006 Proceedings. 169.
http://aisel.aisnet.org/ecis2006/169

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2006%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2006?utm_source=aisel.aisnet.org%2Fecis2006%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2006%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2006%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2006?utm_source=aisel.aisnet.org%2Fecis2006%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2006/169?utm_source=aisel.aisnet.org%2Fecis2006%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1

COST ESTIMATION IN AGILE DEVELOPMENT PROJECTS

Siobhan Keaveney, National University of Ireland, Galway, Ireland

Kieran Conboy, National University of Ireland, Galway, Ireland

Abstract

One of the key measures of the resilience of a project is its ability to reach completion on time and on

budget, regardless of the turbulent and uncertain environment it may operate within. Cost estimation

and tracking are therefore paramount when developing a system. Cost estimation has long been a

difficult task in systems development, and although much research has focused on traditional methods,

little is known about estimation in the agile method arena. This is ironic given that the reduction of

cost and development time is the driving force behind the emergence of the agile method paradigm.

This study investigates the applicability of current estimation techniques to more agile development

approaches by focusing on four case studies of agile method use across different organisations. The

study revealed that estimation inaccuracy was a less frequent occurrence for these companies. The

frequency with which estimates are required on agile projects, typically at the beginning of each

iteration, meant that the companies found estimation easier than when traditional approaches were

used. The main estimation techniques used were expert knowledge and analogy to past projects. A

number of recommendations can be drawn from the research: estimation models are not a necessary

component of the process; fixed price budgets can prove beneficial for both developers and customers;

and experience and past project data should be documented and used to aid the estimation of

subsequent projects.

Keywords: agile methods, project management, cost estimation, software development, systems

development

2

1 INTRODUCTION

The formation of the Agile Alliance in 2001 and the publication of the Agile Manifesto (Fowler and
Highsmith, 2001) formally introduced agility to the field of Information Systems Development (ISD).
Those involved sought to “restore credibility to the word method” (Fowler and Highsmith, 2001). The
Agile Manifesto presented an industry-led vision for a profound shift in the ISD paradigm, through 12
principles. The Manifesto and its principles represent quite a popular initiative which actually
complements the critique of formalised ISD methods over the past decade or so (Baskerville et al.,
1992, Fitzgerald, 1994, Fitzgerald, 1996), and have been well received by practitioners and academics.

According to the Agile Manifesto (Fowler and Highsmith, 2001), agile methods stress values such as
individuals and interactions over processes and tools; working software over comprehensive
documentation; customer collaboration over contract negotiation; and responding to change over
following a plan. The main methods that fall under the agile umbrella include XP, Scrum, Crystal,
DSDM, FDD and ASD. The emergence of agile methods has been phenomenal during the past few
years and is not showing any signs of ceasing (Abrahamsson et al., 2003). However, managing these
agile projects has presented difficulties for many project managers who have been trained in the use of
traditional development approaches (Highsmith, 2003).

The IS development process, regardless of the methodology adopted, requires effective management
and planning. A large part of this planning is the creation of estimates at the beginning of a project so
that resources can be appropriately allocated. Estimation techniques and models are available to
simplify this activity but the prevalence of cost and schedule overruns on IS development projects
indicates that accurate estimation remains somewhat elusive. The primary focus of this research is on
agile methods and how the development process can be appropriately managed and planned in terms
of estimating the resources for the project when agile methods are used.

One of the main principles of agile methods is to “welcome changing requirements” (Beck et al.,
2001), however changing requirements are a major cause of software cost estimating problems (Jones,
2003). The objective of this research is therefore two-fold:
� To determine which of the traditional cost estimation techniques are used on agile projects.
� To examine how mangers of agile development projects adhere to the traditional critical success

factors cited by the traditional cost estimation literature.

2 COST ESTIMATION IN TRADITIONAL SYSTEM

DEVELOPMENT

Estimating the cost of an IS development project is one of the most crucial tasks for project managers
(Keung et al., 2004) but despite this it continues to be a weak link in the IS development field
(Agarwal et al., 2001). IS development projects have a long history of being delivered over time, over
budget and failing to satisfy requirements (The Standish Group, 2001, Sassone, 1988, The Standish
Group, 1995). The main factors that are typically estimated at the beginning of an IS development
project are: cost, size, schedule, people resources, quality, effort, resources, maintenance costs, and
complexity. Estimates are produced and used for a variety of purposes and a study by Lederer and

3

Prasad (1995) revealed the most common uses. These are: to schedule projects, to select proposed
projects for implementation, to quote the charges to users for projects, to staff projects, to audit project
success, to control or monitor project implementation, to evaluate project estimators, and to evaluate
project developers.

2.1 Cost Estimation Techniques

Cost estimation tools, or model-based estimation techniques use data collected from past projects
combined with mathematical formulae to estimate project cost. They usually require factors such as
the system size as inputs into the model. The main model-based techniques include COCOMO, SLIM,
RCA PRICE-S, SEER-SEM, and ESTIMACS. The major software cost and schedule estimation
techniques can be grouped and classified as regression-based models, learning-oriented models, expert
based approaches and finally composite-bayesian methods.

Most of the software estimation models that are available are based on some form of regression

technique (Matson et al., 1994). Regression models have a mathematical foundation and are
constructed by collecting data on completed projects and developing regression equations that
characterise the relationships among the different variables (Fairley, 1992). Estimates are made by
substituting the new project parameters into the mathematical model with the use of a large data set.
Statistical regression models estimate software development effort as the dependent variable.
Regression models however can be difficult to use in some cases, in particular if they do not satisfy a
number of conditions that can either enhance or halt successful use (Finnie et al., 1997). These 4
conditions are discussed by Boehm and Sullivan (1999), and are based on experience from the use of
regression-based models. They are: availability of a large dataset, no missing data items, no outliers,
and the predictor variables are not correlated.The collection of approaches that fall under the heading
of regression-models include ordinary least-squares regression (OLS), classification and regression
trees (CART), stepwise analysis of variance for unbalanced data sets (stepwise ANOVA),
combinations of CART with OLS regression and analogy, multiple linear regression, and stepwise
regression.

Learning-oriented models attempt to automate the estimation process by building computerised
models that can learn from previous estimation experience (Boehm et al., 2000). These models do not
rely on assumptions and are capable of learning incrementally as new data are provided over time (Lee
et al., 1998). Learning-oriented models cover a wide area and include techniques such as artificial
intelligence approaches, artificial neural networks, case-based reasoning (Mukhopadhyay and Kekre,
1992), decision-tree learning, machine learning models, knowledge acquisition, fuzzy logic models
and rule induction (Burgess and Lefley, 2001).cost estimation tools such as COCOMO, learning
oriented and regression-based models; expert knowledge; and composite-Bayesian methods (Ruhe et
al., 2003). The main model-based techniques include COCOMO, SLIM, RCA PRICE-S, SEER-SEM,
and ESTIMACS. These estimation models produce an estimate of the cost, effort or duration of a
project based on factors such as the size and desired functionality of the system.

The most widely used estimation approach was found by Briand et al. (1998) to be “comparison to
similar, past projects based on personal memory”. These expertise based approaches are useful when
no quantified, empirical data is available (Boehm et al., 2000), and they provide a practical, low-cost
and highly useful process (Johnson et al., 2000). Estimation by analogy in its most basic form involves
examining past projects and using the information retrieved as a guide estimate for the proposed
project (Angelis et al., 2001, Jørgensen et al., 2003). The Checkpoint method is an example of an
analogy-based approach to software estimation (Fairley, 1992). Rules of thumb can be derived from
actual project data or a formalisation of expert opinion, either way they must make use of some form

4

of project data or information. Rules of thumb can be used to estimate productivity, quality or size
(Hihn and Habib-agahi, 1991, Fairley, 1992). Expert judgement relies on the accumulated experiences
of teams of experts in order to come up with project estimates (Peters and Pedrycz, 1999, Stamelos
and Angelis, 2001). This technique is used where the estimation process is primarily based on “non-
explicit, non-recoverable reasoning processes”, or perception and intuition (Jørgensen, 2004b).
Mukhopadhyay et al. (1992) highlight the weaknesses of using any human memory-based techniques,
because past projects can be forgotten, details confused and important factors accidentally ignored.
The very nature of expert judgement means that deriving an estimate is not a repeatable process
(Mendes et al., 2002), however reports have proven it to be the dominant strategy in software
development estimation (Jørgensen, 2004a, Höst and Wohlin, 1997, Moløkken and Jørgensen, 2003,
Moløkken-Østvold et al., 2004).The Delphi technique and work breakdown structure (WBS) fall under
the heading of expert judgement techniques. These help to reduce the likelihood of errors occurring in
the estimation process (Boehm and Sullivan, 1999, Boehm et al., 2000). Other techniques in the
expertise-based category include top-down and bottom-up estimation (Tausworthe, 1980), reasoning
by analogy, formal reasoning by analogy, informal reasoning by analogy, and rules of thumb (Jones,
1996).A study by Briand et al. (1998) revealed that the most widely used estimation approach was
“comparison to similar, past projects based on personal memory”. Expertise based approaches come
under much criticism for their reliance on human memory and the lack of repeatability of such
memory-based approaches (Mukhopadhyay et al., 1992, Mendes et al., 2002), however reports have
proven it to be the dominant strategy in IS development estimation (Jørgensen, 2004a, Höst and
Wohlin, 1997, Moløkken and Jørgensen, 2003, Moløkken-Østvold et al., 2004).

The Bayesian approach is a semi-formal estimation process that combines the strengths of expertise-
based methods and regression-based methods (Ferens, 1988). Bayesian analysis allows for the fact that
the data required for use in most estimation techniques is typically of poor quality or incomplete.
Expert judgement is incorporated in this approach to handle the missing data and provide a more
robust estimation process (Boehm and Sullivan, 1999). Bayesian analysis has been used in many
scientific disciplines and was used in the development of the COCOMO II model (Chulani et al.,
1999, Boehm et al., 2000). Cost Estimation, Benchmarking and Risk Analysis (COBRA) is an
example of a composite estimation model. It requires expert knowledge and a relatively small amount
of quantitative data gathered from past projects in order to produce estimates of a project’s cost and
development effort, and also the quantitative risks associated with the project (Ruhe et al., 2003).
COBRA has been shown by Briand et al. (1998) to be an inexpensive technique for producing cost
estimation and risk models without the requiring an extensive dataset.

2.2 Causes of Inaccurate Estimates in Systems Development

There is a natural erroneous tendency associated with any form of estimation primarily because “an
estimate is a probabilistic assessment of a future condition” and accuracy can therefore rarely be
expected in the estimation process (Stamelos and Angelis, 2001). The causes of inaccurate estimates in
IS development projects were grouped into 4 categories by Lederer and Prasad (1995), namely
methodology, politics, user communication and management control.

Methodology refers to the estimation process adopted and includes the steps undertaken to produce the
estimate and also the means of examining and reviewing the estimates relating to past projects. Over
reliance on intuition and personal memory is a concern for project members trying to increase
estimation accuracy (Lederer and Prasad, 1995). Estimation inaccuracy can also be caused from a lack
of procedures and policies on how to deal with failures and avoid repeating mistakes by learning from
past experiences (Ewusi-Mensah and Przasnyski, 1995).

5

Political forces at work within a project or company can often drive estimation inaccuracy. This is
usually in the form of managerial pressure to stay within or meet the estimate (Block, 1983). The
estimation process can be impacted negatively by these pressures resulting in time or cost constraints
(Hihn and Habib-agahi, 1991). When estimates are produced simply in order to satisfy managers or
customers it will inevitably lead to inaccuracy (Lederer and Prasad, 1991). According to Jørgensen
and Moløkken (2003), it should be recognised that estimation is typically fraught with “tug of wars”
and “political games”, and thus high estimation accuracy is usually not the only goal of the actors
involved. Chapman and Ward (2002) refer to a “conspiracy of optimism” whereby political pressures
from within the organisation can lead to unrealistic estimates or reluctance to report the actual
outcome. Moløkken and Jørgensen (2003) suggest that software managers may over-report causes of
inaccuracy that lie outside their responsibility, such as customer-related causes. Project managers
therefore have to be aware of the implications that political factors can have on IS development
estimation (Winklhofer, 2002).

User communication refers to the factors relating to the customers and their changing requirements
throughout a system’s life-cycle. This is usually the most prominent factor in causing project estimates
to be inaccurate (Jørgensen, 2003). Incomplete or unclear requirements specification at the beginning
of an IS development project is typically due to the fact that customers have to determine what their
requirements are and they are usually unaware what the current state of the art is, or what the
competition is doing (Orr, 2004, Stamelos and Angelis, 2001). This leads to difficulty in producing a
complete set of requirements and thus estimation inaccuracy is inevitable (Harker et al., 1993, Thayer,
1987).

Problems caused by Management control include management reviews, and comparison between
estimates and actuals. When management fails to participate in the preparation of the estimate, and
does not monitor the accuracy of the estimate, this is believed to contribute to the estimate being
inaccurate. Inaccuracy also occurs when management does not refer to the estimate when conducting
performance reviews of estimators and other project personnel (Lederer and Prasad, 1995).

2.3 Cost Estimation Critical Success Factors

There are a number of critical success factors (CSFs) that can help to ease the estimation process. A
review of the literature resulted in the compilation of a list of important guidelines which should help
to improve project managers’ estimation success rates. These are:

Involve developers, customers, managers in estimation: In order for an estimate to be accepted and
adhered to, it must consider and include all members of the development team and in particular the
project manager (Agarwal et al., 2001). It also must be communicated clearly to the project team
before the development begins. Research has shown that if the estimator is somebody who will be
involved in the development, the estimation accuracy is likely to be higher than if an estimate is
produced by a senior executive or a staff member from a different department (Jurison, 1999, Lederer
and Prasad, 1992).

Use estimate to evaluate project personnel. Management can use the estimate to review project
personnel, either during the project or upon project completion. In Lederer and Prasad’s (1992)
management guidelines for better cost estimating, they claim that using the estimate to evaluate
project personnel is an important factor for completing a project within its estimate. Completing the
project within the estimate usually results in rewards for those involved, such as pay increases,
bonuses, and promotions.

6

Finalise requirements before estimation. In order for the project estimate to attain any degree of
accuracy, it is important that the system requirements are defined and documented prior to the
production of an estimate (Lanza, 2002, Lederer and Prasad, 1992). This will usually require the use of
a structured development methodology (Golden et al., 1981), although updating the estimates to
acknowledge the evolving nature of IS is also an option (Fairley, 1992).

Make the early estimating effort simpler instead of more complex: Overly complex techniques for
estimation at an early stage of a development project are failing to acknowledge the inherent volatility
of IS projects and are therefore highly likely to lead to inaccurate cost and effort estimates (Maxwell et
al., 1999). Briand et al. (2000) found that combining modelling techniques failed to produce increased
accuracy in project predictions. Simple formulae with management reserve built in for unanticipated
problems can help to improve project estimation success rates (Murphy, 2001, Jurison, 1999). Strike,
et al. (2001) claim that it is fundamental that the estimated cost of a particular software project is
ascertained as early in the development cycle as possible as it enables project managers to make
critical business decisions in a timely manner. Knowing the cost estimate when the project is almost
completed, or even halfway through the development, is of diminishing benefit because as the project
progresses, more and more is invested, and the harder it becomes to abandon the runaway project
(Bossavit, 2003, Mahaney and Lederer, 1999).

3 COST ESTIMATION IN AGILE SOFTWARE DEVELOPMENT

In terms of the agile development, the estimation process is an iterative one whereby the user stories in
XP represent pieces of functionality to be estimated and this is done every 2 weeks. An overall
expected time for each of these stories is estimated by the developers, and the customers then prioritise
the stories based on these initial estimates and on the business value of each one (Lovaasen, 2001).
According to Highsmith (2003), the nature of agile methods often results in fixed budgets and a fixed
schedule, and it is the scope of the project that remains flexible throughout. Ceschi, et al. (2005) on the
other hand report that companies using agile methods usually lean towards “flexible contracts instead
of fixed ones that predefine functionalities, price, and time”.

Although IS projects are typically characterised by changes in scope and requirements, the impact of
these changes can vary phenomenally depending on the time at which the change is introduced (Ibbs et
al., 2001, Pressman, 1997). Agile methods aim to reduce the cost of changes throughout the
development of a system, but not necessarily to reduce the occurrence of changes (Highsmith and
Cockburn, 2001). The cost of change rises phenomenally throughout traditional development while in
XP projects as time goes on, the impact of change levels off (Neill, 2003).

The techniques used to estimate agile development projects have typically been expertise-based,
where the developers look to past projects or iterations, and draw on their own experiences to produce
estimates for the stories (Ceschi et al., 2005). A study by (Ceschi et al., 2005) claimed that none of the
companies had used COCOMO and that 40% used function points estimation on their agile projects.
These results however are based on only 10 companies and so do not represent generalisable data,
although from the available literature there does seem to be an inclination toward the reliance on
expertise-based estimation approaches (Lippert et al., 2003, Elssamadisy and Schalliol, 2002,
Grossman et al., 2004).

Reports of inaccurate estimates have not been as widespread in the literature on agile projects. This
may be due to the feeling that detailed project management only needs to look at the following

7

iteration and as such, more reliable estimates can be produced (Williams, 2003, Taber and Fowler,
2000). Ceschi, et al. (2005) see the reliance on expertise-based approaches to estimation as a problem
because of the particular uniqueness of IS projects that use agile methods. This coupled with new
concepts such as pair-programming and test-driven development makes estimation based on past
projects extremely difficult (Lippert et al., 2003). The assignment of control to the developers in
estimating their own tasks can cause inaccuracies if the developer is pressured into underestimating
their tasks in order to indulge managers or customers. This can also lead to reluctance in exposing
what may appear to be poor estimating skills or even poor development capabilities (Elssamadisy and
Schalliol, 2002).

User communication factors seem to pose less of a threat to estimation because of the extent of the
customer’s involvement, particularly when the developers are producing the estimates (Williams,
2003). Paulk (2002) however claims that customers pose a serious threat to successful agile
development if they are unwilling to maintain a close relationship with the development team.
Estimation inaccuracy would therefore increase if customers were not available to clarify and
elaborate on confusing stories.

In terms of management control, each developer takes responsibility and ownership for the stories that
they estimate and so management involvement is less of an issue as in traditional development
(Schalliol, 2001).

Estimation of the user stories in agile methods is performed by the developers who are then
responsible for working on the particular tasks that they have estimated (Beck, 1999). Customers are
involved in the estimation process to the extent that if the developer has difficulty in estimating a user
story they can discuss it with the customer and try to break the story down further (Williams, 2003).
Management involvement in agile projects tends to be less intrusive than on traditional projects and
their involvement is at a higher level and this enables them to oversee the estimation process from one
iteration to the next (Abrahamsson, 2003). Evaluation of team members based on their ability to meet
the estimates is slightly less appropriate for agile projects because it is the developers themselves who
estimate their own tasks (Schalliol, 2001).

Agile methods “welcome changing requirements, even late in development” (Beck et al., 2001),
however in terms of estimation, the requirements are finalised to a certain extent at the start of each
iteration and so developers can estimate safe in the knowledge that the scope for the iteration has been
agreed (Taber and Fowler, 2000). Simplifying the early estimation effort is done during the initial
release planning sessions where the estimates produced at this early stage for the entire project are
typically at a high level (Lindstrom and Jeffries, 2004). The frequency with which estimation is
performed, typically at the beginning of every iteration, leads to progressively more accurate
estimation by the developers as they become more and more skilled at estimating the tasks
(Abrahamsson, 2003, Levy, 2003). Cockburn (2002) recommends that cost-sensitive projects should
use serial development where possible, while projects sensitive to shifting requirements benefit more
from concurrent development. He then goes on to state that agile project teams almost always use
concurrent development, which implies that agile methods are not wholly suitable for projects that are
cost-sensitive, although realistically it is rare to find a project that is not.

8

4 RESEARCH METHOD

Estimation in agile methods is a concept that combines an important and commonly researched project
management issue with the very recent topic of agile development methods, where little prior research
exists. The research method that has been chosen for this study is that of a qualitative case study.
Having examined in detail the alternative approaches, the case study approach emerged as the most
suitable means of conducting an investigation into the practice of estimation in agile methods.

Like most aspects of IS however, it is not always easy to locate a research approach that is relevant
and applicable in all situations (Galliers, 1992). Yin (2003) defines a case study as “an empirical
enquiry that investigates a contemporary phenomenon within its real-life context, especially when the
boundaries between phenomenon and context are not clearly evident”. Case studies examine
phenomena in their natural settings in order to gain an in-depth understanding of the dynamics of both
the phenomenon and the context in which it is situated (Eisenhardt, 1989, Pinsonneault and Kraemer,
1993).

Four case studies were conducted which presented an in-depth investigation into estimation practices
followed by organisations using agile methods. These case studies involved semi-structured interviews
which addressed the main aims of the research. The primary research produced a valuable quantity of
data. The four companies, JourneyTechnology, Shinesoft, Mountain, and Software Labs are described
below and discussed in terms of their agile estimation processes (Note that pseudonyms are used to
protect the identity of the organisations involved). A comparative profile of the companies is shown in
Table 1.

 Year of

company

set up

No of

employees

No of

concurrent

projects

Typical

project

length

Team

size

JourneyTechnology 1999 70 15-20 2-3
years

2-5

Shinesoft 1995 12-15 4-5 4-6
months

12-15

Mountain Ltd. 2002 13 1-5 1-2
months

1-10

Software Labs 1971 500 2-3 4-8
months

6-7

Table 1: Case Study Company Profiles

5 DISCUSSION

5.1 Use of Traditional Cost Estimation Techniques

JourneyTechnology would appear to be the most formal in terms of their estimation process whereby
they have an estimating template in Microsoft Excel that is used for their 2-point estimation. This is
subject to management approval and what they feel to be an appropriate contingency factor for risk.
Rules of thumb are not used because they feel that the uniqueness of each of their projects would
render this a futile exercise.

Shinesoft have a formal estimation process in place that had been designed initially for use on
traditional development projects. The projects that are developed using agile approaches still use this

9

process but a more informal version of it. Their relative-size table tracks developer productivity and
this is used to produce estimates for future projects.

Mountain rely solely on the experiences and expertise of their developers for estimating projects. They
base their estimations to some extent on past projects but this is not documented and so relies on the
memory of the developers. They also use simple rules of thumb but nothing that is documented to any
formal degree. This may be due to the fact that they are a young company with a small and very
closely knit team and formal techniques may be less appropriate or necessary.

Software Labs use expert judgement to guide their project estimates. The knowledge and experience
that the development team have enables them to produce relatively accurate estimates without the use
of models or formulae. In this respect their estimation process is quite informal with no data collected
or stored, and because they use an agile approach the estimation is performed on a fortnightly basis.

5.2 Causes of Inaccurate Estimates

The causes of inaccurate estimates in IS development projects as discussed by Lederer and Prasad
(1995) revealed that each factor: methodology; politics; user communication; and management
control; were of great concern to both project estimators and implementers. These results do not
correlate exactly with the cases in this study whereby JourneyTechnology were the only company to
acknowledge the potential of political factors where pressures from customers or managers may result
in lower estimates than would be realistically expected. Management control factors were not a cause
of inaccuracies in any of the estimates produced by the companies. All of the companies did however
experience user communication difficulties at some stage or another and certainly recognised this as a
big potential threat to accurate estimates.

JourneyTechnology find that when inaccuracies do occur, it is typically due to some lack of
understanding between the customers and developers regarding the requirements. It can also be due to
a lack of technical expertise in a particular area which would prevent the accurate estimation of certain
tasks. Shinesoft seem to be the most confident in their estimation abilities. Typically the estimates
produced are relatively on target and if not, the discrepancy is usually negligible. They have found the
major potential threats to accurate estimates to have been the introduction of new people, new
technologies and too much feedback from their customers. Mountain find that change requests from
customers and lack of estimation expertise can cause problems on some projects, particularly if a new
blend of the development language is being used. Software Labs have found that their estimates are
typically accurate to within 10% of the actual figures, however they feel that their inaccuracies may be
due to their lack of formality in the estimation process or even poor tracking of actual project data
which would make the estimate appear to be inaccurate.

5.3 Presence of Cost Estimation CSFs

Ensuring accurate, reliable and realistic estimates provides an obligatory challenge for the companies
in this study. The estimates act as a focal point and encourage the team members to take responsibility
for their tasks. This paper previously provided a set of guidelines or CSFs, compiled from the
literature on estimation in traditional development. This set of guidelines or CSFs include involving
developers, managers and customers in the estimation process, using the estimate to evaluate project
personnel, finalising requirements before estimation takes place, and keeping the early estimation
effort as simple as possible.

10

Software Labs was the only project that did not involve managers in the estimation process. This may
be due to the large size of the company in comparison to the others in the study and their leaning
towards a highly informal estimation approach. Project managers and developers are involved by all of
the companies, although JourneyTechnology tend to involve individual developers only when the team
leader cannot accurately estimate a specific task. Customers are involved to a certain extent, but this
typically depends on the situation at hand. JourneyTechnology, Mountain and Software Labs involve
their customers in the requirements stage where they are estimating for the iteration and need
clarification or elaboration on the requirements. Shinesoft also involve the customer at the early stages
to determine the requirements but they have found that their main contribution is to impose a deadline
for delivery. Software Labs seem to have the most actively involved customer and this is probably
because it is an internal customer who was able to locate on-site with relative ease.

JourneyTechnology and Shinesoft both store data relating to projects so that they can use this to
inform future estimation efforts. They try to keep the early estimates as high-level as they can and they
build in a contingency factor for risk and other unknowns. Mountain and Software Labs also keep
their early estimates simple and they continue in this vein throughout the development. Mountain
place a heavy emphasis on the experience and expertise of the developers and when they encounter an
unknown in terms of the estimation of certain tasks they will learn from this and use the experience to
their advantage in the future. Software Labs have rarely encountered unknowns but on the occasions
that they have, they did a spike to enable them to estimate the task accurately. Requirements
finalisation is a practice that does not fit entirely into the agile philosophy (Beck et al., 2001) and so
this was not something that the companies did. What they tended to do was finalise the requirements at
the beginning of each iteration which loosely locked the requirements while also acknowledging the
inevitability of changes and in some cases catering for these.

Evaluation of project personnel as recommended by Lederer and Prasad (1992), was not performed to
any great degree by the companies. While both JourneyTechnology and Shinesoft record productivity
metrics and skill levels of developers, neither would actually rate individuals based on their ability to
meet the estimates. Software Labs acknowledge the skill-set of the individuals who will be performing
the tasks but do not evaluate them based on their ability to meet the estimate. Mountain do not
formally evaluate team members to any extent but if an individual failed to meet the estimate they
would informally investigate and discuss the possible reasons for this. Lederer and Prasad (1992)
claim that the use of personal memory in the estimation process correlates to projects overrunning
their estimates. Both JourneyTechnology and Shinesoft seem to acknowledge the potential for human
error and opt to record and store project data; however Mountain and Software Labs rely almost
entirely on the memory of the team members and project managers.

6 CONCLUSIONS

The emergence of agile methods in the IS field has presented many opportunities and challenges for
researchers and practitioners alike. In particular, project management serves as one area that yearns
attention in an agile context (Cao, 2004). A major project management activity involves planning and
estimating, and on IS projects developed using traditional approaches, the success of estimation has
proved controversial to say the least (The Standish Group, 2001). Reports of inaccurate estimates have
typically cited customer change requests and unclear requirements as the main causes (Jørgensen,
2003), despite supposed requirements finalisation in the early stages. The agile philosophy of
welcoming changing requirements seems on paper to be catastrophic to the estimation endeavours of
project managers.

The main estimation techniques used across the four projects were analogy and expert knowledge with
varying degrees of formality and structure between the companies. In some cases project data was

11

stored and in others it was simply assigned to the developers own memories. Estimation models,
despite their popularity in the literature were not used by the companies and for the most part were not
even recognised.

The estimates produced for agile projects were found by the companies to be easier to construct due to
the frequency with which estimates are required. The iterations typically lasted 2 weeks and estimates
were produced at the beginning of each iteration. This not only helped to keep a high degree of
accuracy but also honed the estimation skills of the team members and developers involved. It is worth
noting that estimation inaccuracy was not a great problem for any of the companies and where it was,
they typically saw it as an opportunity to learn and inform their future estimation activities.

Fixed price projects where a budget is agreed at the beginning seemed to be the most common project
type. In some cases the schedule was movable and in others it was the functionality that could be
revised. Typically when the cost is determined, a number of developers can be assigned and the
delivery date calculated from this. On the other hand, if the schedule is set by the customer then the
cost can be calculated from the number of people available to work on the project. Either way this
enables the project to be run in a manner that delivers increasingly more features as time progresses
until the scheduled delivery date has been reached.

In conclusion, research on estimation has been conducted for decades with immense quantities of
models and tools produced. This study has looked at the estimation process in the emerging field of
agile development, and examined the causes of inaccurate estimates and steps to improve the process.
From the four case studies, a number of recommendations can be summarised as follows: estimation
models are not a necessary component of the process; fixed price budgets may be the best option for
both developers and customers; and finally the most critical success factors for agile cost estimation is
that experience and past project data should be documented and used to aid the estimation of
subsequent projects.

References

ABRAHAMSSON, P. (2003) Extreme Programming: First Results from a Controlled Case Study.
Proceedings of the 29th Euromicro Conference, 2003.

ABRAHAMSSON, P., WARSTA, J., SIPONEN, M. T. & RONKAINEN, J. (2003) New Directions
on Agile Methods: A Comparative Analysis. IEEE, 244-254.

AGARWAL, R., KUMAR, M., YOGESH, MALLICK, S., BHARADWAJ, R. M. & ANANTWAR,
D. (2001) Estimating Software Projects. ACM SIGSOFT Software Engineering Notes, 26, 60-67.

ANGELIS, L., STAMELOS, I. & MORISIO, M. (2001) Building a Software Cost Estimation Model
Based on Categorical Data. Proceedings of the 7th International Software Metrics Symposium.

BASKERVILLE, R., TRAVIS, J. & TRUEX, D. (1992) Systems without method: the impact of new
technologies on information systems development projects. IN KENDALL, K., DEGROSS, J. &
LYYTINEN, K. (Eds.) The Impact of Computer Supported Technologies on Information Systems

Development. North Holland, Elsevier Science Publishers.
BECK, K. (1999) Embracing Change with Extreme Programming. Computer, 32, 70-77.
BECK, K., BEEDLE, M., VAN BENNEKUM, A., COCKBURN, A., CUNNINGHAM, W.,

FOWLER, M., HIGHSMITH, J., HUNT, A., GRENNING, J., MELLOR, S., JEFFRIES, R.,
KERN, J., MARICK, B., MARTIN, R. C., SCHWABER, K., SUTHERLAND, J. & THOMAS, D.
(2001) The Agile Manifesto.

BLOCK, R. (1983) The Politics of Projects, Englewood Cliffs, New Jersey, Prentice Hall.
BOEHM, B. W., ABTS, C. & CHULANI, S. (2000) Software Development Cost Estimation

Approaches: A Survey. USC-CSE.

12

BOEHM, B. W. & SULLIVAN, K. J. (1999) Software Economics: Status and Prospects. Information

and Software Technology, 41, 937-946.
BOSSAVIT, L. (2003) Project Management, The Movie. Cutter IT Journal, 16, 18-23.
BRIAND, L. C., EL EMAM, K. & BOMARIUS, F. (1998) COBRA: A Hybrid Method for Software

Cost Estimation, Benchmarking, and Risk Assessment. Proceedings of the 20th International

Conference on Software Engineering. Kyoto, Japan.
BRIAND, L. C., LANGLEY, T. & WIECZOREK, I. (2000) A Replicated Assessment and

Comparison of Common Software Cost Modeling Techniques. Proceedings of the 22nd

International Conference on Software Engineering. Limerick, Ireland.
BURGESS, C. J. & LEFLEY, M. (2001) Can Genetic Programming Improve Software Effort

Estimation? A Comparative Evaluation. Information and Software Technology, 43, 863-873.
CAO, L. (2004) Modeling Dynamics of Agile Software Development. Companion to the 19th Annual

ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and

Applications. Vancouver, Canada.
CESCHI, M., SILLITTI, A., SUCCI, G. & DE PANFILIS, S. (2005) Project Management in Plan-

Based and Agile Companies. IEEE Software, 22, 21-25.
CHAPMAN, C. & WARD, S. (2002) Managing Project Risk and Uncertainty: A Constructively

Simple Approach to Decision Making, Chichester, UK, John Wiley & Sons.
CHULANI, S., BOEHM, B. W. & STEECE, B. M. (1999) Bayesian Analysis of Empirical Software

Engineering Cost Models. IEEE Transactions on Software Engineering, 25, 573-583.
COCKBURN, A. (2002) Learning From Agile Software Development – Part One. CrossTalk, The

Journal of Defense Software Engineering, 10-14.
EISENHARDT, K. M. (1989) Building Theories from Case Study Research. Academy of Management

Review, 14, 532-550.
ELSSAMADISY, A. & SCHALLIOL, G. (2002) Recognizing and Responding to "Bad Smells" in

Extreme Programming. Proceedings of the 24th International Conference on Software

Engineering, 2002. Orlando, Florida.
EWUSI-MENSAH, K. & PRZASNYSKI, Z. H. (1995) Learning from Abandoned Information

Systems Development Projects. Journal of Information Technology, 10, 3-14.
FAIRLEY, R. E. (1992) Recent Advances in Software Estimation Techniques. Proceedings of the

14th International Conference on Software Engineering. Melbourne, Australia.
FERENS, D. V. (1988) Software Size Estimation Techniques. Proceedings of the IEEE 1988 National

Aerospace and Electronics Conference.

FINNIE, G. R., WITTIG, G. E. & DESHARNAIS, J.-M. (1997) A Comparison of Software Effort
Estimation Techniques: Using Function Points with Neural Networks, Case-Based Reasoning and
Regression Models. Journal of Systems and Software, 39, 281-289.

FITZGERALD, B. (1994) The systems development dilemma: whether to adopt formalised systems
development methodologies or not? IN BAETS, W. (Ed.) Proceedings of the Second European

Conference on Information Systems. Holland, Nijenrode University Press.
FITZGERALD, B. (1996) Formalised systems development methodologies: a critical perspective.

Information Systems Journal, 6, 3-23.
FOWLER, M. & HIGHSMITH, J. (2001) The Agile Manifesto. Software Development, August.
GALLIERS, R. D. (1992) Choosing Information Systems Research Approaches. IN GALLIERS, R.

D. (Ed.) Information Systems Research: Issues, Methods and Practical Guidelines. Oxford,
England, Blackwell Scientific Publications.

GOLDEN, J. R., MUELLER, J. R. & ANSELM, B. (1981) Software Cost Estimating: Craft or
Witchcraft. ACM SIGMIS Database, 12, 12-14.

GROSSMAN, F., BERGIN, J., LEIP, D., MERRITT, S. M. & GOTEL, O. (2004) One XP
Experience: Introducing Agile (XP) Software Development into a Culture that is Willing but not
Ready. Proceedings of the 2004 Conference of the Centre for Advanced Studies on Collaborative

Research.

13

HARKER, S. D. P., EASON, K. D. & DOBSON, J. E. (1993) The Change and Evolution of
Requirements as a Challenge to the Practice of Software Engineering. Proceedings of IEEE

International Symposium on Requirements Engineering.

HIGHSMITH, J. (2003) Agile Project Management: Principles and Tools. Cutter Consortium, 4, 1-37.
HIGHSMITH, J. & COCKBURN, A. (2001) Agile Software Development: The Business of

Innovation. Computer, 34, 120-122.
HIHN, J. & HABIB-AGAHI, H. (1991) Cost Estimation of Software Intensive Projects: A Survey of

Current Practices. Proceedings of the 13th International Conference on Software Engineering.

Austin, Texas.
HÖST, M. & WOHLIN, C. (1997) A Subjective Effort Estimation Experiment. Information and

Software Technology, 39, 755-762.
IBBS, C. W., WONG, C. K. & KWAK, Y. H. (2001) Project Change Management System. Journal of

Management in Engineering, 17, 159-165.
JOHNSON, P. M., MOORE, C. A., DANE, J. A. & BREWER, R. S. (2000) Empirically Guided

Software Effort Guesstimation. IEEE Software, 17, 51-56.
JONES, C. (1996) By Popular Demand: Software Estimating Rules of Thumb. Computer, 29, 116-

118.
JONES, C. (2003) Why Flawed Software Projects are Not Cancelled in Time. Cutter IT Journal, 16,

12-17.
JØRGENSEN, M. (2003) How Much Does a Vacation Cost? or What is a Software Cost Estimate?

ACM SIGSOFT Software Engineering Notes, 28, 1-4.
JØRGENSEN, M. (2004a) A Review of Studies on Expert Estimation of Software Development

Effort. Journal of Systems and Software, 70, 37-60.
JØRGENSEN, M. (2004b) Top-Down and Bottom-Up Expert Estimation of Software Development

Effort. Information and Software Technology, 46, 3-16.
JØRGENSEN, M., INDAHL, U. & SJØBERG, D. (2003) Software Effort Estimation by Analogy and

"Regression Toward the Mean". Journal of Systems and Software, 68, 253-262.
JØRGENSEN, M. & MOLØKKEN, K. (2003) A Preliminary Checklist for Software Cost

Management. Proceedings of the 3rd International Conference on Quality Software.

JURISON, J. (1999) Software Project Management: The Manager's View. Communications of the AIS,
2, 1-50.

KEUNG, J., JEFFERY, R. & KITCHENHAM, B. (2004) The Challenge of Introducing a New
Software Cost Estimation Technology into a Small Software Organisation. Proceedings of the 2004

Australian Software Engineering Conference. Australia.
LANZA, R. B. (2002) Is Your Software Bigger than a Breadbox? The Hows and Whys of Software

Estimation Tools. Information Strategy: The Executive's Journal, 18, 17-25.
LEDERER, A. L. & PRASAD, J. (1991) The Validation of a Political Model of Information Systems

Development Cost Estimating. Proceedings of the 1991 conference on SIGCPR.

LEDERER, A. L. & PRASAD, J. (1992) Nine Management Guidelines for Better Cost Estimating.
Communications of the ACM, 35, 51-59.

LEDERER, A. L. & PRASAD, J. (1995) Perceptual Congruence and Information Systems Cost
Estimating. 1995 ACM SIGCPR Conference on Supporting Teams, Groups, and Learning Inside

and Outside the IS Function Reinventing IS. Nashville, Tennessee.
LEE, A., HUNG CHENG, C. & BALAKRISHNAN, J. (1998) Software Development Cost

Estimation: Integrating Neural Network with Cluster Analysis. Information & Management, 34, 1-
9.

LEVY, J. V. (2003) If Extreme Programming is Good Management, What Were We Doing Before?
EDN, 48, 81-82, 84.

LINDSTROM, L. & JEFFRIES, R. (2004) Extreme Programming and Agile Software Development
Methodologies. Information Systems Management, 21, 41-52.

LIPPERT, M., BECKER-PECHAU, P., BREITLING, H., KOCH, J., KORNSTÄDT, A., ROOCK, S.,
SCHMOLITZKY, A., WOLF, H. & ZÜLLIGHOVEN, H. (2003) Developing Complex Projects
using XP with Extensions. Computer, 36, 67-73.

14

LOVAASEN, G. (2001) Brokering with eXtreme Programming. XP Universe 2001. Raleigh, North
Carolina.

MAHANEY, R. C. & LEDERER, A. L. (1999) Runaway Information Systems Projects and Escalating
Commitment. Proceedings of the 1999 ACM SIGCPR Conference on Computer Personnel

Research. New Orleans, Louisiana.
MATSON, J. E., BARRETT, B. E. & MELLICHAMP, J. M. (1994) Software Development Cost

Estimation Using Function Points. IEEE Transactions on Software Engineering, 20, 275-287.
MAXWELL, K. D., VAN WASSENHOVE, L. & DUTTA, S. (1999) Performance Evaluation of

General and Company Specific Models in Software Development Effort Estimation. Management

Science, 45, 787-803.
MENDES, E., WATSON, I., TRIGGS, C., MOSLEY, N. & COUNSELL, S. (2002) A Comparison of

Development Effort Estimation Techniques for Web Hypermedia Applications. Proceedings of the

8th IEEE Symposium on Software Metrics.

MOLØKKEN-ØSTVOLD, K., JØRGENSEN, M., TANILKAN, S. S., GALLIS, H., LIEN, A. C. &
HOVE, S. E. (2004) A Survey on Software Estimation in the Norwegian Industry. Proceedings of

the 10th International Symposium on Software Metrics.

MOLØKKEN, K. & JØRGENSEN, M. (2003) A Review of Software Surveys on Software Effort
Estimation. Proceedings of the 2003 International Symposium on Empirical Software Engineering.

MUKHOPADHYAY, T. & KEKRE, S. (1992) Software Effort Models for Early Estimation of
Process Control Applications. IEEE Transactions on Software Engineering, 18, 915-924.

MUKHOPADHYAY, T., VICINANZA, S. S. & PRIETULA, M. J. (1992) Examining the Feasibility
of a Case-Based Reasoning Model for Software Effort Estimation. MIS Quarterly, 16, 155-171.

MURPHY, L. (2001) Using Software Project “Should-Cost” Models. Transactions of AACE

International, 4.1-4.3.
NEILL, C. J. (2003) The Extreme Programming Bandwagon: Revolution or Just Revolting? IT

Professional, 5, 62-64.
ORR, K. (2004) Agile Requirements: Opportunity or Oxymoron? IEEE Software, 21, 71-73.
PAULK, M. C. (2002) Agile Methodologies and Process Discipline. CrossTalk, The Journal of

Defense Software Engineering, 15-18.
PETERS, J. F. & PEDRYCZ, W. (1999) Software Engineering: An Engineering Approach, John

Wiley & Sons, Inc.
PINSONNEAULT, A. & KRAEMER, K. L. (1993) Survey Research Methodology in Management

Information Systems: An Assessment. Journal of Management Information Systems, 10, 75-105.
PRESSMAN, R. S. (1997) Software Engineering: A Practitioner's Approach, McGraw-Hill.
RUHE, M., JEFFERY, R. & WIECZOREK, I. (2003) Cost Estimating for Web Applications.

Proceedings of the 25th International Conference on Software Engineering. Portland, Oregon.
SASSONE, P. G. (1988) Cost Benefit Analysis of Information Systems: A Survey of Methodologies.

ACM SIGOIS Bulletin, 9, 126-133.
SCHALLIOL, G. (2001) Challenges for Analysts on a Large XP Project. XP Universe 2001. Raleigh,

North Carolina.
STAMELOS, I. & ANGELIS, L. (2001) Managing Uncertainty in Project Portfolio Cost Estimation.

Information and Software Technology, 43, 759-768.
STRIKE, K., EL EMAM, K. & MADHAVJI, N. (2001) Software Cost Estimation with Incomplete

Data. IEEE Transactions on Software Engineering, 27, 890-908.
TABER, C. & FOWLER, M. (2000) An Iteration in the Life of an XP Project. Cutter IT Journal, 13,

13-21.
TAUSWORTHE, R. C. (1980) The Work Breakdown Structure in Software Project Management. The

Journal of Systems and Software, 1, 181-186.
THAYER, R. H. (1987) Software Engineering Project Management: A Top-Down View. IN

THAYER, R. H. (Ed.) Software Engineering Project Management. Los Alamitos, IEEE Computer
Society Press.

THE STANDISH GROUP (1995) The CHAOS Report (1995). The Standish Group International Inc.

http://www.standishgroup.com/chaos.html, 1-9.

15

THE STANDISH GROUP (2001) Extreme Chaos. The Standish Group International Inc.

http://www.standishgroup.com/chaos.html, 1-12.
WILLIAMS, L. (2003) The XP Programmer: The Few-Minutes Programmer. IEEE Software, 20, 16-

20.
WINKLHOFER, H. (2002) Information Systems Project Management during Organizational Change.

Engineering Management Journal, 14, 33-37.
YIN, R. K. (2003) Case Study Research: Design and Methods, Thousand Oaks, California, Sage

Publications, Inc.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2006

	Cost estimation in agile development projects
	Siobhan Keaveney
	Kieran Conboy
	Recommended Citation

	Microsoft Word - 53_Paper.doc

