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62F. On the XML Data Stream and Xpath Queries 
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Abstract  
With the growing importance of XML in data exchange, much research has been done in 
providing flexible query mechanisms to extract data from XML documents. In this paper, 
we focus on the query evaluation in an XML streaming environment, in which data 
streams arrive continuously and queries have to be evaluated even before all the data of 
an XML document is available. We will propose an algorithm for this issue, working in 
O(|T|⋅Qleaf) time and O(|T|⋅Qleaf) space, where Tleaf stands for the number of the leaf nodes 
in a document tree T and Qleaf for the number of the leaf nodes in a query tree Q. 
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1. Introduction  
XPath is a simple language for querying XML data. It has been used in many XML 
applications and also in some languages for querying an XML tree and returning a set of 
answer nodes, such as in XQuery (World Wide Web Consortium, 2005), XML-QL 
(Dutch et al., 1999), and Quilt (Chamberlin et al., 2000; Chamberlin et al., 2002). 
 
In this paper, we consider a subset of XPath (World Wide Web Consortium, 2007) 
queries, which is frequently used in practice. This subset consists of node tests (or say 
element tag name tests), the child axis (/), the descendant axis (//), wildcards (*), and 
predicates (or filter, denoted [...]). 
We call this class of queries XP{/,//,*,[]}. Figure 1 shows its grammar. 
 
 
 
 
 
 
 
 
In the absence of ‘∨’ and ‘¬’, an Xpath expression can be represented as a tree, called a 
twig pattern. For example, the XPath expression: a[b[c and .//f]]/b[c and e//d] can be 
represented as a tree Q shown in Figure 2. 
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Figure 1. Language grammar 



 
 
 
 
 
In such a tree structure, a nodes v is labeled with an element name, a wild card ‘*’ (that 
matches any element in a document tree T), or a string values, denoted as label(v). In 
addition, there are two kinds of edges: child edges (/-edges) for parent-child relationships, 
and descendant edges (//-edges) for ancestor-descendant relationships. A /-edge from 
node v to node u is denoted by v → u in the text, and represented by a single arc; u is 
called a /-child of v. A //-edge is denoted v ⇒ u in the text, and represented by a double 
arc; u is called a //-child of v. For any node v in Q, we use Q[v] to represent the subtree 
rooted at v. We also denote the query size, i.e., the number of nodes in Q, by |Q|; and the 
document size, i.e., the number of elements in T, by |T|. 
 
In any DAG (directed acyclic graph), a node u is said to be a descendant of a node v if 
there exists a path (sequence of edges) from v to u. In the case of a twig pattern, this path 
could consist of any sequence of /-edges and/or //-edges. Based on these concepts, the 
tree embedding can be defined as follows. 
 
Definition 1. An embedding of a twig pattern Q into an XML document T is a mapping f: 
Q → T, from the nodes of Q to the nodes of T, which satisfies the following conditions: 
(i) Preserve node label: For each u ∈ Q, label(u) = label(f(u)) (or say u matches f(u)). 
(ii) Preserve parent-child/ancestor-descendant relationships: If u → v in Q, then f(v) is a 

child of f(u) in T; if u ⇒ v in Q, then f(v) is a descendant of f(u) in T. 
If there exists a mapping from Q into T, we say, Q can be imbedded into T, or say, T 
contains Q. 
 
In an XML streaming environment, an XML document tree T is modeled as a stream S of 
modified SAX events: startElement(tag, level, id) and endElement(tag, level), where tag 
is the tag of the node being processed, level is the level at which the node appears, and id 
is the unique identifier assigned to the node. A node in T exactly corresponds to a 
startElement and (the corresponding endElement event) in S. In addition, if an element e 
has no subelement, a text is possibly associated with its startElement. These events are 
the input to our query evaluation processor. 
 
In this paper, we propose a new algorithm to evaluate queries in such an environment, 
which runs in O(|T|⋅Qleaf) time and O(Tleaf⋅Qleaf) space, where Tleaf and Qleaf represent the 
numbers of the leaf nodes in a document tree T and in a query tree Q, respectively. 
 
The remainder of the paper is organized as follows. In Section 2, we review the related 
work. In Section 3, we discuss our main algorithm. In Section 4, we extend this algorithm 
to general cases that ‘∨’ and ‘¬’ logic operators are included. Finally, a short conclusion 
is set forth in Section 5. 
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Figure 2. A query tree 
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2. Related work  
Recently, a great many strategies have been proposed to evaluate XPath queries in an 
XML streaming environment (Avila et al., 2002; Chen et al., 2006; Ives et al., 2002; 
Koch et al., 2004; Ludascher et al., 2002; Peng and Chawathe, 2003; Peng et al., 2003). 
The methods discussed in (Avila et al., 2002; Ives et al., 2002) are based on finite state 
automata (FSA), but only able to handle single path queries, i.e., a query containing 
branching cannot be processed, as observed in (Peng and Chawathe, 2003). The method 
proposed in (Peng and Chawathe, 2003) is a general strategy, but requires exponential 
time (O(|T| × 2|Q|)) in the worst case, as analyzed in (Peng et al., 2003). The methods 
discussed in (Koch et al., 2004; Ludascher et al., 2002) do not support d-edges. If we 
extend them to general cases, exponential time is required. Up to now, the research 
culminates in TwigM presented in (Chen et al., 2006). It is not only a general-case 
algorithm, but also works in polynomial time. In the worst case, its time complexity is 
bounded by O(ThQd|Q||T| + |Q|2|T|), where Th is the height of T and Qd is the largest 
outdegree of a node in Q. By this method, each node q of Q is associated with a boolean 
array of length Qd and a stack of size Th, in which each element is a node v from T such 
that its relationship with the nodes in the stack associated with q’s parent q’ satisfies the 
relationship between q and q’. Therefore, each time to figure out a stack and push a node 
into it, O(ThQd|Q|) time is required, leading to a time complexity of O(ThQd|Q||T| + 
|Q|2|T|). See Theorem 4.4 in (Chen et al., 2006). 
 
 
3. Main Algorithm 
Weremark that in a streaming environment, the input to the XML query processor is a 
steam of modified SAX events; and an event is either startElement(tag, level, id) or 
endElement(tag, level). In order to evaluate a query Q, we have to scan a stream S from 
the beginning to the end and report any startElement event once the corresponding 
subtree is found containing Q. 
For this purpose, we will maintain a global stack structure with each entry in it being a 
triplet: <e, p, c>, where e is a startElement event, p is a pointer to an entry in stack where 
its parent startElement is stored and c a pointer to the head of a linked list containing all 
the nodes constructed for its child elements, as illustrated in Figure 3. 

 
 

 
During the process, two other data structures are also maintained and computed to 
facilitate the discovery of subtree matchings according to Definition 1. 
• Each node v (corresponding to a startElement event in S) in a document tree T is 

associated with a set, denoted α(v), contains all those nodes q in Q such that Q[q] 
can be imbedded into T[v]. 

• Each q in Q is associated with a value δ(q), defined as follows. 

ck 

 … 
… c1 

 … 

 … 
 p     e       c 

stack structure:

Figure 3. Illustration for stack structure 



Initially, for each q ∈ Q, δ(q) is set to φ. During the tree matching process, δ(q) is 
dynamically changed as below. 
(i) Let v be a node in T with parent node u.  
(ii) If q appears in α(v), change the value of δ(q) to u. 
Then, each time before we insert q into α(v), we will do the following checkings: 
1. Check whether label(q) = label(v). 
2. Let q1, ..., qk be the child nodes of q. For each qi (i = 1,..., k), check whether δ(qi) is 

equal to v. 
If both (1) and (2) are satisfied, insert q into α(v). 
 
Below is the algorithm, which takes an event stream S and a twig pattern Q as the input. 
During the process, S is scanned from the beginning to the end and once a startElement 
event is found such that the subtree rooted at the corresponding node contains Q it will be 
reported. 
 
In the algorithm, a virtual startElement event is used, which is considered to be the parent 
of the first startElement event in S (which corresponds to the root of T). The level number 
of the virtual event is set to be -1, and its tag and id are both set to be nil. Two variables E 
and E’ are used. E’ is for the current startElement event being processed while E is to 
store the parent of the current startElement event. In addition, each time a node v is 
constructed, a subprocedure containment-check(v, Q) is invoked to find all those q ∈ Q 
such that T[v] contains Q[q] and store them in α(v). 
 
Algorithm query-evaluation(S, Q) 
input:  S - an XML stream; Q - a twig pattern. 
output: report any startElement such that for the corresponding node v, T[v] contains Q. 
begin 
1. push(the first element of S, stack); 
2. E := virtual event; 
3. while stack is not empty do { 
4.  E’ := top(stack); 
 (*check the top element in stack*) 
5.  E’.p := address of E;   (*establish parent link for E’*) 
6.  let e be the next element in S; 
7.  if  e is a startElement event then { 
8.   E := E’; 
9.   push(e, stack); 
10.  } 
11.  else (*e is an endElement event.*) 
12.  {E’’ := pop(stack);   (*pop the top element out of stack*) 
13.  generate node v for E’’; E := E’’.p; 
14.  append v to the end of (E’’.p).c; 
15.  call containment-check(v, Q); 
16.  } 
17. } 
end  



The above algorithm processes the events in S one by one. Therefore, the corresponding 
document tree T is searched in the depth-first traversal fashion. Each time a startElement 
event is encountered, it will be pushed into stack (see line 1 and lines 6 - 9) and stay there 
until its corresponding endElement is encountered (see lines 11 - 12). In this case, it will 
be popped out of stack and a node v for it will be constructed (see line 13), for which a 
containment check will be performed (see line 15).  
 
Example 1. Consider the document tree T in Figure 4(a). Its XML stream S is shown in 
Figure 4(b). Applying the algorithm query-evaluation( ) to S, we will regain T if line 15 is 
not executed. In Figure 5, we trace the first 8 steps of the execution process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the above discussion, we can see that a document tree can always be constructed by 
scanning the corresponding XML stream S. For the purpose of query evaluation, 
however, we have to check the containment each time a node of T is constructed. This is 
done by calling containment-check(v, Q), in which another two functions are invoked to 
do different checkings: 
- element-check(u, q): u is an element containing subelements. It checks whether T[u] 

contains Q[q]. If it is the case, return {q}. Otherwise, it returns an empty set ∅. 

Figure 4. A document tree and its XML stream 

Figure 5. Illustration for for L(qi)’s 
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- bottom-element-check(u, Q): u is an element containing no subelement. It returns a set 
of nodes in Q: {q1, ..., qk} such that for each qi (1 ≤ i ≤ k) the following conditions are 
satisfied. 

 (i) label(u) = label(qi). 
 (ii) if qi has a child, then the child must be a text and matches the text associated with 

u. 
 
Algorithm containment-check(v, Q) 
input: v - a node in T; Q - a twig pattern. 
output: a(v) - a set of query node q such that T[v] contains Q[q].  
begin 
1. C := ∅; C1 := ∅; C2 := ∅; 
2. if v.c is not nil then   (*v has some subelements.*) 
3. {let v1, ..., vk be the child nodes of v; 
4. α := α(v1) ∪ ... ∪ α(vk); 
5. for each q ∈ α do  
6. {δ(q) := v; C := C ∪ {q’s parent};} 
7. remove all α(vj) (j = 1, ..., k);  
8. for each q’ in C do 
9. C1 := C1 ∪ element-check(v, q’); 
10. } 
11. C2 := bottom-element-check(v, Q); 
12. α(v) := α ∪ C1 ∪ C2; 
end 
Function element-check(u, q) 
begin 
1. C1 := ∅; 
2. if label(q) = label(u) then  (*If q is ‘*’, the checking is always successful.*) 
3. {let q1, ..., qk be the child nodes of q; 
4. if for each qi (i = 1, ..., k) d(qi) is equal to u  
5. then {C1 := {q};  
6. if q is root then report u;}} 
7. return C1; 
end 
Function bottom-element-check(u, Q) 
begin 
1. C2 := ∅; flag := false; 
2. for each leaf node q in Q do { 
3.  if q is a text then { 
4. let q’ be the parent of q; 
5. if label(q’) = label(u) and 

 q matches the text associated with u then {C2 := C2 ∪ {q’}; flag := true; 
6. } 
7. else { 



8. if label(q) = label(u) then { 
9. C2 := C2 ∪ {q}; flag := true; 
10. } 
11. if q is root and flag := true then report u; 
12. flag := false; 
13. } 
14. return C2; 
end 
 
One of the inputs to the algorithm containment-check( ) is a node v constructed in the 
execution of query-evaluation(S, Q). If v corresponds to an element that has no 
subelement, the function bottom-element-check( ) is called (see line 11), by which a(v) 
will be established by checking it against all the leaf nodes of Q. Otherwise, α(vi) will be 
checked for all the child nodes vi of v (see lines 3 -6). Concretely, for each q in α (= α(v1) 
∪ ... ∪ α(vk)), the value of δ(q) will be changed to v. Meanwhile, q’s parent will be 
stored in a temporary variable C. Then, all the nodes q’ in C are the candidates to be 
further checked. This is done by calling element-check(v, q’) to see whether T[v] contains 
Q[q’] (see lines 8 -9). Special attention should be paid to the fact that bottom-element-
check( ) should also be applied to v to find all the leaf nodes of Q which matche v. 
 
Finally, we notice that in the execution of element-check( ), δ(q)’s are utilized to facilitate 
the checkings (see lines 3 - 5 in element-check( )). 
 
 
4. General cases 
In this section, we extend the algorithm discussed in the previous section to handle 
queries containing ‘∧’, ‘∨’ and ‘¬’ logic operators. 
Without loss of generality, we assume that in an XPath expression a predicate is a path, 
or a conjunctive normal form. As an example, consider the following XPath expression: 
 a[b[c and .//f]]/b[c or e//*]/g[not c]. 
This expression can be represented as an And-Or tree Q shown in Fig. 6. 
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Figure 6. A query tree with different logic operators 



In such a tree, we distinguish between two kinds of nodes: 
- name nodes: nodes corresponding to the node test. 
- operator nodes: nodes labeled with ∧ or ∨. 
As with a simple twig pattern, it may contain two kinds of edges: /-edges and //-edges; 
but an edge may be labeled with ‘¬’. If an edge (q, q’) is labeled with ‘¬’, q’ is called a 
negative node; otherwise, q’ is called a positive node. 
In an And-Or tree Q, the following conditions always hold: 
1. The child nodes of any ∨-node are name nodes. 
2. The child nodes of any ∧-node are ∨-nodes. 
3. Any name node has no children or has only one node which is a ∧-node. 
According to the above properties, the tree embedding of Q into a document tree T can be 
defined as follows. 
 
Let q be a node in Q with child nodes q1, ..., qk. Let v be a node in T with child nodes v1, 
..., vl. 
(i) If q is a ∨-node, T[v] contains Q[q] if one of the following conditions holds: 
 - There exists a positive //-child qi (1 ≤ i ≤ k) such that T[v] contains Q[qi]. 
 - There exists a positive /-child qi (1 ≤ i ≤ k) such that T[v] contains Q[qi] and 

label(v) = label(qi). 
 - There exists a negative //-child qi (1 ≤ i ≤ k) such that T[v] does not contain Q[qi]. 
 - There exists a negative /-child qi (1 ≤ i ≤ k) such that T[v] does not contain Q[qi] 

or T[v] contains Q[qi] but label(v) ≠ label(qi). 
(ii) If q is a ∧-node, T[v] contains Q[q] if the following conditions hold: 
 - for every positive node qi (1 ≤ i ≤ k), there exists a vj (1 ≤ j ≤ l) such that T[vj] 

contains Q[qi]. 
 - for every nagative node qi (1 ≤ i ≤ k), there exists no vj (1 ≤ j ≤ l) such that T[vj] 

contains Q[qi]. 
(iii) If q is a name node, T[v] contains Q[q] if the following conditions hold: 
 - T[v] contains Q[q1] (q has only one child node q1.) 
 - label(v) = label(q). 
 
In the following, we give an algorithm to check the embedding of an And-Or tree Q into 
a document tree T. For this purpose, we associate with each v in T two sets: α(v) and β(v). 
α(v) is defined in the same way as in Section 3; and β(v) contains all those ∨-nodes q in 
Q such that Q[q] can be imbedded into T[v]. Besides, in order to calculate β(v), we 
maintain an array NQ containing all the negative nodes in Q. 
 
With α(v) and β(v), we need to slightly change the algorithms containment-check( ) and 
element-check( ) discussed in 4.1. But Algorithm bottom-element-check( ) needn’t be 
modified. 
Algorithm general-containment-check(v, Q) 
input: v - a node in T; Q - a twig pattern. 



output: a(v) - a set of query node q such that T[v] contains Q[q].  
begin 
1. S := ∅; S1 := ∅; S2 := ∅; 
2. if v.c is not nil then   (*v has some subelements.*) 
3. {let v1, ..., vk be the child nodes of v; 
4. α := α(v1) ∪ ... ∪ α(vk); 
5. for each q ∈ α do { 
6. for q ∈ β(v) do {δ(q) := v;} 
7. assume that α = {q1, ..., qj}; 
8. for i = 1 to j do { 
9. S := S ∪ {qi’s parent};  
10.  remove all α(vj) (j = 1, ..., k);  
11.   for each q in S do 
12. S1 := S1 ∪ general-element-check(v, q); 
13. }  
14. S2 := bottom-element-check(v); 
15. α(v) := α∪ S1 ∪ S2; 
16. call calculate-β(v, α(v));  
end 
Function general-element-check(u, q) 
begin 
1. S1 := ∅; 
2. if label(q’s parent) = label(u) then (*If q is *, the checking is always successful.*) 
3. {let q1, ..., qk be the child nodes of q; 
4. if for each qi (i = 1, ..., k) δ(qi) is equal to u  
5. then {S1 := {q};  
6.  if q’s parent is root then mark u};} 
7. return S1; 
end 
Function calculate-β(v, S) 
begin 
1. β := ∅; A := ∅; 
2. for each q ∈ S do { 
3.  if ((q is a /-child and label(q) = label(v)) or 
4.   q is a //-child) 
5.  then β := β ∪ {q’s parent}); 
6. }  
7. for each q’ ∈ NQ do { 
8.  if (q’ ∉ S or (q’ ∈ S and q’ is a /-child with label(q’) ≠ label(v))) 
9.  then A := A ∪ {q’s parent};} 
10. return merge(β, A); 
end 
Algorithm general-containment-check( ) is similar to Algorithm containment-check( ). 
The only difference is lines 6, 12, and 16. In line 6, we establish δ values for query nodes 



based on β(v) instead of α(v). In addition, different treatments of /-child and //-child 
nodes are shifted to Function calculate-β( ) (see line 16.) In line 12, we call Function 
general-element-check( ) instead of element-check( ). In line 16, we call Function 
calculate-β( ) to generate β(v). 
 
We also notice that Function general-element-check( ) is a little bit different from 
Function element-check( ). It corresponds to the checking of ∧-nodes in Q. Since each 
name node has only one ∧-node as its child, the checking of name nodes is integrated into 
this process to simplify the procedure (see line 2 in this function.) 
 
In Function calculate-β(v, S), we compute β(v) based on α(v). It is done exactly 
according to the conditions given above for checking ∨-node containment. Especially, in 
the presence of ‘¬’, we have to check each negative node in NQ to see whether it appears 
in S (see lines 7 - 9 in this function). It needs O(|NQ|⋅logS) time. So the total time of the 
algorithm is bounded by  O(|T|⋅leafQ + |NQ|⋅|T|⋅logleafQ). 
 
5. Conclusion 
In this paper, an efficient algorithm for the query evaluation in an XML streaming 
environment is presented. The algorithm runs in O(|T|⋅Qleaf) time and O(|T|⋅Qleaf) space, 
where Tleaf stands for the number of the leaf nodes in a document tree T and Qleaf for the 
number of the leaf nodes in a query tree Q. This computational complexity is much better 
than any existing strategy for this problem. In addition, this method can be extended to 
handle general queries. 
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