
Association for Information Systems
AIS Electronic Library (AISeL)

CONF-IRM 2008 Proceedings International Conference on Information Resources
Management (CONF-IRM)

5-2008

On the XML Data Stream and Xpath Queries
Yangjun Chen
University of Winnipeg, y.chen@uwinnipeg.ca

Follow this and additional works at: http://aisel.aisnet.org/confirm2008

This material is brought to you by the International Conference on Information Resources Management (CONF-IRM) at AIS Electronic Library
(AISeL). It has been accepted for inclusion in CONF-IRM 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For
more information, please contact elibrary@aisnet.org.

Recommended Citation
Chen, Yangjun, "On the XML Data Stream and Xpath Queries" (2008). CONF-IRM 2008 Proceedings. 42.
http://aisel.aisnet.org/confirm2008/42

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fconfirm2008%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2008?utm_source=aisel.aisnet.org%2Fconfirm2008%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/conf-irm?utm_source=aisel.aisnet.org%2Fconfirm2008%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/conf-irm?utm_source=aisel.aisnet.org%2Fconfirm2008%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2008?utm_source=aisel.aisnet.org%2Fconfirm2008%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2008/42?utm_source=aisel.aisnet.org%2Fconfirm2008%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

62F. On the XML Data Stream and Xpath Queries

Yangjun Chen
Dept. of Computer Science, University of Winnipeg

y.chen@uwinnipeg.ca

Abstract
With the growing importance of XML in data exchange, much research has been done in
providing flexible query mechanisms to extract data from XML documents. In this paper,
we focus on the query evaluation in an XML streaming environment, in which data
streams arrive continuously and queries have to be evaluated even before all the data of
an XML document is available. We will propose an algorithm for this issue, working in
O(|T|⋅Qleaf) time and O(|T|⋅Qleaf) space, where Tleaf stands for the number of the leaf nodes
in a document tree T and Qleaf for the number of the leaf nodes in a query tree Q.

Keywords
XML databases, Trees, Paths, XML pattern matching, XML streams.

1. Introduction
XPath is a simple language for querying XML data. It has been used in many XML
applications and also in some languages for querying an XML tree and returning a set of
answer nodes, such as in XQuery (World Wide Web Consortium, 2005), XML-QL
(Dutch et al., 1999), and Quilt (Chamberlin et al., 2000; Chamberlin et al., 2002).

In this paper, we consider a subset of XPath (World Wide Web Consortium, 2007)
queries, which is frequently used in practice. This subset consists of node tests (or say
element tag name tests), the child axis (/), the descendant axis (//), wildcards (*), and
predicates (or filter, denoted [...]).
We call this class of queries XP{/,//,*,[]}. Figure 1 shows its grammar.

In the absence of ‘∨’ and ‘¬’, an Xpath expression can be represented as a tree, called a
twig pattern. For example, the XPath expression: a[b[c and .//f]]/b[c and e//d] can be
represented as a tree Q shown in Figure 2.

Path
Step
Axis
NoteTest
Predicate

ComOp

:=
:=
:=
:=
:=

:=

Step | Path Step
Axis | NodeTest | Axis NodeTest ‘[’ Predicate ‘]’
‘/’ | ‘//’
name | ‘*’
Path | Path ComOp Constant | Predicate ‘∧’ Predicate
| Predicate ‘∨’ Predicate | ‘¬’ Predicate
‘=’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’

Figure 1. Language grammar

In such a tree structure, a nodes v is labeled with an element name, a wild card ‘*’ (that
matches any element in a document tree T), or a string values, denoted as label(v). In
addition, there are two kinds of edges: child edges (/-edges) for parent-child relationships,
and descendant edges (//-edges) for ancestor-descendant relationships. A /-edge from
node v to node u is denoted by v → u in the text, and represented by a single arc; u is
called a /-child of v. A //-edge is denoted v ⇒ u in the text, and represented by a double
arc; u is called a //-child of v. For any node v in Q, we use Q[v] to represent the subtree
rooted at v. We also denote the query size, i.e., the number of nodes in Q, by |Q|; and the
document size, i.e., the number of elements in T, by |T|.

In any DAG (directed acyclic graph), a node u is said to be a descendant of a node v if
there exists a path (sequence of edges) from v to u. In the case of a twig pattern, this path
could consist of any sequence of /-edges and/or //-edges. Based on these concepts, the
tree embedding can be defined as follows.

Definition 1. An embedding of a twig pattern Q into an XML document T is a mapping f:
Q → T, from the nodes of Q to the nodes of T, which satisfies the following conditions:
(i) Preserve node label: For each u ∈ Q, label(u) = label(f(u)) (or say u matches f(u)).
(ii) Preserve parent-child/ancestor-descendant relationships: If u → v in Q, then f(v) is a

child of f(u) in T; if u ⇒ v in Q, then f(v) is a descendant of f(u) in T.
If there exists a mapping from Q into T, we say, Q can be imbedded into T, or say, T
contains Q.

In an XML streaming environment, an XML document tree T is modeled as a stream S of
modified SAX events: startElement(tag, level, id) and endElement(tag, level), where tag
is the tag of the node being processed, level is the level at which the node appears, and id
is the unique identifier assigned to the node. A node in T exactly corresponds to a
startElement and (the corresponding endElement event) in S. In addition, if an element e
has no subelement, a text is possibly associated with its startElement. These events are
the input to our query evaluation processor.

In this paper, we propose a new algorithm to evaluate queries in such an environment,
which runs in O(|T|⋅Qleaf) time and O(Tleaf⋅Qleaf) space, where Tleaf and Qleaf represent the
numbers of the leaf nodes in a document tree T and in a query tree Q, respectively.

The remainder of the paper is organized as follows. In Section 2, we review the related
work. In Section 3, we discuss our main algorithm. In Section 4, we extend this algorithm
to general cases that ‘∨’ and ‘¬’ logic operators are included. Finally, a short conclusion
is set forth in Section 5.

4 c d 5

2 b

d 8

1 a

6 c

b 3

e 7

Figure 2. A query tree

output node

2. Related work
Recently, a great many strategies have been proposed to evaluate XPath queries in an
XML streaming environment (Avila et al., 2002; Chen et al., 2006; Ives et al., 2002;
Koch et al., 2004; Ludascher et al., 2002; Peng and Chawathe, 2003; Peng et al., 2003).
The methods discussed in (Avila et al., 2002; Ives et al., 2002) are based on finite state
automata (FSA), but only able to handle single path queries, i.e., a query containing
branching cannot be processed, as observed in (Peng and Chawathe, 2003). The method
proposed in (Peng and Chawathe, 2003) is a general strategy, but requires exponential
time (O(|T| × 2|Q|)) in the worst case, as analyzed in (Peng et al., 2003). The methods
discussed in (Koch et al., 2004; Ludascher et al., 2002) do not support d-edges. If we
extend them to general cases, exponential time is required. Up to now, the research
culminates in TwigM presented in (Chen et al., 2006). It is not only a general-case
algorithm, but also works in polynomial time. In the worst case, its time complexity is
bounded by O(ThQd|Q||T| + |Q|2|T|), where Th is the height of T and Qd is the largest
outdegree of a node in Q. By this method, each node q of Q is associated with a boolean
array of length Qd and a stack of size Th, in which each element is a node v from T such
that its relationship with the nodes in the stack associated with q’s parent q’ satisfies the
relationship between q and q’. Therefore, each time to figure out a stack and push a node
into it, O(ThQd|Q|) time is required, leading to a time complexity of O(ThQd|Q||T| +
|Q|2|T|). See Theorem 4.4 in (Chen et al., 2006).

3. Main Algorithm
Weremark that in a streaming environment, the input to the XML query processor is a
steam of modified SAX events; and an event is either startElement(tag, level, id) or
endElement(tag, level). In order to evaluate a query Q, we have to scan a stream S from
the beginning to the end and report any startElement event once the corresponding
subtree is found containing Q.
For this purpose, we will maintain a global stack structure with each entry in it being a
triplet: <e, p, c>, where e is a startElement event, p is a pointer to an entry in stack where
its parent startElement is stored and c a pointer to the head of a linked list containing all
the nodes constructed for its child elements, as illustrated in Figure 3.

During the process, two other data structures are also maintained and computed to
facilitate the discovery of subtree matchings according to Definition 1.
• Each node v (corresponding to a startElement event in S) in a document tree T is

associated with a set, denoted α(v), contains all those nodes q in Q such that Q[q]
can be imbedded into T[v].

• Each q in Q is associated with a value δ(q), defined as follows.

ck

 …
… c1

 …

 …
 p e c

stack structure:

Figure 3. Illustration for stack structure

Initially, for each q ∈ Q, δ(q) is set to φ. During the tree matching process, δ(q) is
dynamically changed as below.
(i) Let v be a node in T with parent node u.
(ii) If q appears in α(v), change the value of δ(q) to u.
Then, each time before we insert q into α(v), we will do the following checkings:
1. Check whether label(q) = label(v).
2. Let q1, ..., qk be the child nodes of q. For each qi (i = 1,..., k), check whether δ(qi) is

equal to v.
If both (1) and (2) are satisfied, insert q into α(v).

Below is the algorithm, which takes an event stream S and a twig pattern Q as the input.
During the process, S is scanned from the beginning to the end and once a startElement
event is found such that the subtree rooted at the corresponding node contains Q it will be
reported.

In the algorithm, a virtual startElement event is used, which is considered to be the parent
of the first startElement event in S (which corresponds to the root of T). The level number
of the virtual event is set to be -1, and its tag and id are both set to be nil. Two variables E
and E’ are used. E’ is for the current startElement event being processed while E is to
store the parent of the current startElement event. In addition, each time a node v is
constructed, a subprocedure containment-check(v, Q) is invoked to find all those q ∈ Q
such that T[v] contains Q[q] and store them in α(v).

Algorithm query-evaluation(S, Q)
input: S - an XML stream; Q - a twig pattern.
output: report any startElement such that for the corresponding node v, T[v] contains Q.
begin
1. push(the first element of S, stack);
2. E := virtual event;
3. while stack is not empty do {
4. E’ := top(stack);
 (*check the top element in stack*)
5. E’.p := address of E; (*establish parent link for E’*)
6. let e be the next element in S;
7. if e is a startElement event then {
8. E := E’;
9. push(e, stack);
10. }
11. else (*e is an endElement event.*)
12. {E’’ := pop(stack); (*pop the top element out of stack*)
13. generate node v for E’’; E := E’’.p;
14. append v to the end of (E’’.p).c;
15. call containment-check(v, Q);
16. }
17. }
end

The above algorithm processes the events in S one by one. Therefore, the corresponding
document tree T is searched in the depth-first traversal fashion. Each time a startElement
event is encountered, it will be pushed into stack (see line 1 and lines 6 - 9) and stay there
until its corresponding endElement is encountered (see lines 11 - 12). In this case, it will
be popped out of stack and a node v for it will be constructed (see line 13), for which a
containment check will be performed (see line 15).

Example 1. Consider the document tree T in Figure 4(a). Its XML stream S is shown in
Figure 4(b). Applying the algorithm query-evaluation() to S, we will regain T if line 15 is
not executed. In Figure 5, we trace the first 8 steps of the execution process.

From the above discussion, we can see that a document tree can always be constructed by
scanning the corresponding XML stream S. For the purpose of query evaluation,
however, we have to check the containment each time a node of T is constructed. This is
done by calling containment-check(v, Q), in which another two functions are invoked to
do different checkings:
- element-check(u, q): u is an element containing subelements. It checks whether T[u]

contains Q[q]. If it is the case, return {q}. Otherwise, it returns an empty set ∅.

Figure 4. A document tree and its XML stream

Figure 5. Illustration for for L(qi)’s

a v1

a v2 v6 c

v5 b

c v3 v4 e b v7 v8 b (a)

1. startE(a, 0, 1) 9. endE(a, 1)
2. startE(a, 1, 2) 10. startE(c, 1, 6)
3. startE(c, 2, 3) 11. startE(b, 2, 7)
4. endE(c, 2) 12. endE(b, 2)
5. startE(e, 2, 4) 13. startE(b, 2, 8)
6. startE(b, 3, 5) 14. endE(b, 2)
7. endE(b, 3) 15. endE(c, 1)
8. endE(e, 2) 16. endE(a, 0)

(b)

 p startE c

At the beginning, stack is
empty.

Step 1: 1st startE into stack

(a, 0, 1)
 p startE c

Step 2: 2nd startE into stack

0 (a, 1, 2)
(a, 0, 1)

 p startE c

Step 3: 3rd startE into stack

1 (c, 2, 3)
0 (a, 1, 2)

(a, 0, 1)
 p startE c

Step 4: meet an endE; pop
stack; a node is constructed.

0 (a, 1, 2)
(a, 0, 1)

 p startE c
v3

Step 5: 4th startE into stack

1 (e, 2, 4)
0 (a, 1, 2)

(a, 0, 1)
 p startE c

v3

Step 6: 5th startE into stack

v3

(b, 3, 5)2
1 (e, 2, 4)
0 (a, 1, 2)

(a, 0, 1)
 p startE c

Step 7: meet an endE; pop
stack; a node is constructed.

1 (e, 2, 4)
0 (a, 1, 2)

(a, 0, 1)
 p startE c

v3

v5

Step 8: meet an endE; pop
stack; a node is constructed.

0 (a, 1, 2)
(a, 0, 1)

 p startE c
v3 v4

v5

- bottom-element-check(u, Q): u is an element containing no subelement. It returns a set
of nodes in Q: {q1, ..., qk} such that for each qi (1 ≤ i ≤ k) the following conditions are
satisfied.

 (i) label(u) = label(qi).
 (ii) if qi has a child, then the child must be a text and matches the text associated with

u.

Algorithm containment-check(v, Q)
input: v - a node in T; Q - a twig pattern.
output: a(v) - a set of query node q such that T[v] contains Q[q].
begin
1. C := ∅; C1 := ∅; C2 := ∅;
2. if v.c is not nil then (*v has some subelements.*)
3. {let v1, ..., vk be the child nodes of v;
4. α := α(v1) ∪ ... ∪ α(vk);
5. for each q ∈ α do
6. {δ(q) := v; C := C ∪ {q’s parent};}
7. remove all α(vj) (j = 1, ..., k);
8. for each q’ in C do
9. C1 := C1 ∪ element-check(v, q’);
10. }
11. C2 := bottom-element-check(v, Q);
12. α(v) := α ∪ C1 ∪ C2;
end
Function element-check(u, q)
begin
1. C1 := ∅;
2. if label(q) = label(u) then (*If q is ‘*’, the checking is always successful.*)
3. {let q1, ..., qk be the child nodes of q;
4. if for each qi (i = 1, ..., k) d(qi) is equal to u
5. then {C1 := {q};
6. if q is root then report u;}}
7. return C1;
end
Function bottom-element-check(u, Q)
begin
1. C2 := ∅; flag := false;
2. for each leaf node q in Q do {
3. if q is a text then {
4. let q’ be the parent of q;
5. if label(q’) = label(u) and

 q matches the text associated with u then {C2 := C2 ∪ {q’}; flag := true;
6. }
7. else {

8. if label(q) = label(u) then {
9. C2 := C2 ∪ {q}; flag := true;
10. }
11. if q is root and flag := true then report u;
12. flag := false;
13. }
14. return C2;
end

One of the inputs to the algorithm containment-check() is a node v constructed in the
execution of query-evaluation(S, Q). If v corresponds to an element that has no
subelement, the function bottom-element-check() is called (see line 11), by which a(v)
will be established by checking it against all the leaf nodes of Q. Otherwise, α(vi) will be
checked for all the child nodes vi of v (see lines 3 -6). Concretely, for each q in α (= α(v1)
∪ ... ∪ α(vk)), the value of δ(q) will be changed to v. Meanwhile, q’s parent will be
stored in a temporary variable C. Then, all the nodes q’ in C are the candidates to be
further checked. This is done by calling element-check(v, q’) to see whether T[v] contains
Q[q’] (see lines 8 -9). Special attention should be paid to the fact that bottom-element-
check() should also be applied to v to find all the leaf nodes of Q which matche v.

Finally, we notice that in the execution of element-check(), δ(q)’s are utilized to facilitate
the checkings (see lines 3 - 5 in element-check()).

4. General cases
In this section, we extend the algorithm discussed in the previous section to handle
queries containing ‘∧’, ‘∨’ and ‘¬’ logic operators.
Without loss of generality, we assume that in an XPath expression a predicate is a path,
or a conjunctive normal form. As an example, consider the following XPath expression:
 a[b[c and .//f]]/b[c or e//*]/g[not c].
This expression can be represented as an And-Or tree Q shown in Fig. 6.

a

∧

∨ ∨

b b

∧ ∧

∨ ∨ ∨ ∨

c f c e g

∧ ∧

∨ ∨

c *

¬

output node

Figure 6. A query tree with different logic operators

In such a tree, we distinguish between two kinds of nodes:
- name nodes: nodes corresponding to the node test.
- operator nodes: nodes labeled with ∧ or ∨.
As with a simple twig pattern, it may contain two kinds of edges: /-edges and //-edges;
but an edge may be labeled with ‘¬’. If an edge (q, q’) is labeled with ‘¬’, q’ is called a
negative node; otherwise, q’ is called a positive node.
In an And-Or tree Q, the following conditions always hold:
1. The child nodes of any ∨-node are name nodes.
2. The child nodes of any ∧-node are ∨-nodes.
3. Any name node has no children or has only one node which is a ∧-node.
According to the above properties, the tree embedding of Q into a document tree T can be
defined as follows.

Let q be a node in Q with child nodes q1, ..., qk. Let v be a node in T with child nodes v1,
..., vl.
(i) If q is a ∨-node, T[v] contains Q[q] if one of the following conditions holds:
 - There exists a positive //-child qi (1 ≤ i ≤ k) such that T[v] contains Q[qi].
 - There exists a positive /-child qi (1 ≤ i ≤ k) such that T[v] contains Q[qi] and

label(v) = label(qi).
 - There exists a negative //-child qi (1 ≤ i ≤ k) such that T[v] does not contain Q[qi].
 - There exists a negative /-child qi (1 ≤ i ≤ k) such that T[v] does not contain Q[qi]

or T[v] contains Q[qi] but label(v) ≠ label(qi).
(ii) If q is a ∧-node, T[v] contains Q[q] if the following conditions hold:
 - for every positive node qi (1 ≤ i ≤ k), there exists a vj (1 ≤ j ≤ l) such that T[vj]

contains Q[qi].
 - for every nagative node qi (1 ≤ i ≤ k), there exists no vj (1 ≤ j ≤ l) such that T[vj]

contains Q[qi].
(iii) If q is a name node, T[v] contains Q[q] if the following conditions hold:
 - T[v] contains Q[q1] (q has only one child node q1.)
 - label(v) = label(q).

In the following, we give an algorithm to check the embedding of an And-Or tree Q into
a document tree T. For this purpose, we associate with each v in T two sets: α(v) and β(v).
α(v) is defined in the same way as in Section 3; and β(v) contains all those ∨-nodes q in
Q such that Q[q] can be imbedded into T[v]. Besides, in order to calculate β(v), we
maintain an array NQ containing all the negative nodes in Q.

With α(v) and β(v), we need to slightly change the algorithms containment-check() and
element-check() discussed in 4.1. But Algorithm bottom-element-check() needn’t be
modified.
Algorithm general-containment-check(v, Q)
input: v - a node in T; Q - a twig pattern.

output: a(v) - a set of query node q such that T[v] contains Q[q].
begin
1. S := ∅; S1 := ∅; S2 := ∅;
2. if v.c is not nil then (*v has some subelements.*)
3. {let v1, ..., vk be the child nodes of v;
4. α := α(v1) ∪ ... ∪ α(vk);
5. for each q ∈ α do {
6. for q ∈ β(v) do {δ(q) := v;}
7. assume that α = {q1, ..., qj};
8. for i = 1 to j do {
9. S := S ∪ {qi’s parent};
10. remove all α(vj) (j = 1, ..., k);
11. for each q in S do
12. S1 := S1 ∪ general-element-check(v, q);
13. }
14. S2 := bottom-element-check(v);
15. α(v) := α∪ S1 ∪ S2;
16. call calculate-β(v, α(v));
end
Function general-element-check(u, q)
begin
1. S1 := ∅;
2. if label(q’s parent) = label(u) then (*If q is *, the checking is always successful.*)
3. {let q1, ..., qk be the child nodes of q;
4. if for each qi (i = 1, ..., k) δ(qi) is equal to u
5. then {S1 := {q};
6. if q’s parent is root then mark u};}
7. return S1;
end
Function calculate-β(v, S)
begin
1. β := ∅; A := ∅;
2. for each q ∈ S do {
3. if ((q is a /-child and label(q) = label(v)) or
4. q is a //-child)
5. then β := β ∪ {q’s parent});
6. }
7. for each q’ ∈ NQ do {
8. if (q’ ∉ S or (q’ ∈ S and q’ is a /-child with label(q’) ≠ label(v)))
9. then A := A ∪ {q’s parent};}
10. return merge(β, A);
end
Algorithm general-containment-check() is similar to Algorithm containment-check().
The only difference is lines 6, 12, and 16. In line 6, we establish δ values for query nodes

based on β(v) instead of α(v). In addition, different treatments of /-child and //-child
nodes are shifted to Function calculate-β() (see line 16.) In line 12, we call Function
general-element-check() instead of element-check(). In line 16, we call Function
calculate-β() to generate β(v).

We also notice that Function general-element-check() is a little bit different from
Function element-check(). It corresponds to the checking of ∧-nodes in Q. Since each
name node has only one ∧-node as its child, the checking of name nodes is integrated into
this process to simplify the procedure (see line 2 in this function.)

In Function calculate-β(v, S), we compute β(v) based on α(v). It is done exactly
according to the conditions given above for checking ∨-node containment. Especially, in
the presence of ‘¬’, we have to check each negative node in NQ to see whether it appears
in S (see lines 7 - 9 in this function). It needs O(|NQ|⋅logS) time. So the total time of the
algorithm is bounded by O(|T|⋅leafQ + |NQ|⋅|T|⋅logleafQ).

5. Conclusion
In this paper, an efficient algorithm for the query evaluation in an XML streaming
environment is presented. The algorithm runs in O(|T|⋅Qleaf) time and O(|T|⋅Qleaf) space,
where Tleaf stands for the number of the leaf nodes in a document tree T and Qleaf for the
number of the leaf nodes in a query tree Q. This computational complexity is much better
than any existing strategy for this problem. In addition, this method can be extended to
handle general queries.

References
I. Avila-Campillo, T.J. Green, A. Gupta, M. Onizuka, D. Raven, and D. Suciu (2002),

XMLTK: An XML Toolkit for Scalable XML Stream Processing, in Programming
Langauge Technologoes for XML(PLAN-X), 2002.

D.D. Chamberlin, J.Clark, D. Florescu and M. Stefanescu (2002) XQuery1.0: An XML
Query Language, http:/ /www.w3.org/TR/query-datamodel/.

D.D. Chamberlin, J. Robie and D. Florescu (2000) Quilt: An XML Query Language for
Heterogeneous Data Sources, WebDB 2000.

Y. Chen, S.B. Davison, Y. Zheng (2006), An Efficient XPath Query Processor for XML
Streams, in Proc. ICDE, Atlanta, USA, April 3-8, 2006.

A. Dutch, M. Fernandez, D. Florescu, A. Levy, D. Suciu (1999), A Query Language for
XML, in: Proc. 8th World Wide Web Conf., May 1999, pp. 77-91.

C.M. Hoffmann and M.J. O’Donnell (1982), Pattern matching in trees, J. ACM, 29(1):68-
95, 1982.

Z.G. Ives, A.Y. Halevy, and D.S. Weld (2002), An XML query engine for network-bound
data, VLDB Journal, 11(4), 2002.

D.E. Knuth (1969), The Art of Computer Programming, Vol.1, Addison-Wesley, Reading,
1969.

C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier (2004), Schema-based
Scheduling of Event Processor and Buffer Minimization for Queries on Structured Data
Stream, in: Proc. of VLDB, 2004.

B. Ludascher, P. Mukhopadhayn, and Y. Papakonstantinou (2002), A Transducer-based
XML Query Processor, in: Proc. of VLDB, 2002.

F. Peng and S.S. Chawathe (2003), XPath queries on streaming data, in: Proc. of SIGMOD,
2003.

F. Peng and S.S. Chawathe (2003), XSQ: A Streaming XPath Engine, Technical Report CS-
TR-4493, University of Maryland, 2003.

World Wide Web Consortium (2007). XML Path Language (XPath), W3C
Recommendation, 2007. See http:// www.w3.org/TR/xpath20.

World Wide Web Consortium (2005). XQuery 1.0: An XML Query Language, W3C
Recommendation, Version 1.0, 2005. See http://www.w3.org/TR/xquery.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	5-2008

	On the XML Data Stream and Xpath Queries
	Yangjun Chen
	Recommended Citation

	Microsoft Word - 62F.docx

