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Abstract 
The unresolved problems of improving software engineering management require a broader 
systemic approach   of investigating related issues like software development productivity. The 
paper links software engineering management to research on software cost estimation and on 
factors affecting software development productivity. It examines ways for the systemic 
incorporation of all issues influencing a software project through application of  combination of 
methods from diverse paradigms.  
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1. Introduction 
A better understanding of the factors affecting software development productivity and the 
relationships between them is essential for the improvement of the management of the 
information systems development process through improved cost and effort estimation (see 
Boehm, 2006). Boehm and Sullivan (1999) present thought provoking ideas on the need for 
renewal in the capabilities to reason about major software decisions in economic terms. They 
note, “The new software development techniques demand new estimation methods”(Boehm and 
Sullivan, 1999).  One way to address this is the periodic calibration of existing cost estimations 
models, like COCOMOII to reflect the new development practices  (e.g. see Boehm, Abts and 
Chulani, 2000). The introduction of agile approaches and internet-speed software development, 
poses new demands towards the improvement of our understanding about what drives software 
development (see Baskerville et al.(2003), Boehm (2006) and others).  
 
Boehm and Sullivan (1999) point out that an important issue is to empower high-level managers 
to choose the best available economic reasoning techniques for use in their projects. The same 
authors conclude that “the pressures for improved cost-benefit and return on investment analyses 
are causing more software researchers and business analysis researchers to come together to 
integrate their knowledge and tools into more effective capabilities, not just for analysis, but also 
for more effective software management” (Boehm and Sullivan, 1999:945). This is another 
justification for the need of a deeper analysis of software development productivity. 
 
The multiple dimensions of the factors affecting software development productivity represent a 
challenge for an interdisciplinary research to their nature. Past research on software development 
productivity and related areas such as cost and effort estimation was carried out predominantly 
within the paradigms of Computer Science and Software Engineering.  Information Systems 
Development (ISD) is also the core of the field of Information Systems (see Hirschheim and 



Klein, 2003).  Hence, the field of software development productivity can be viewed as one of the 
areas of intersection of research interests within Information Systems, Software Engineering and 
Computer Science. More details on an analysis of the research in the three disciplines can be 
found in Glass, Ramesh and Vessey (2004).  The contention of this paper is that software 
development productivity needs to be studied in an interdisciplinary manner even if we recognise 
differences in the core competencies of the disciplines. Very few authors have attempted to 
analyze software development productivity outside of the domain of competencies that is 
characteristic of software engineering and that was another motivation for this paper. 
 
Hirschheim and Klein (2003) identify the four ISD process core competencies (organizational 
alignment of IT; user requirements construction, organizational implementation, and 
evaluation/assessment of IT artifacts) possessed by IS specialists and that distinguish them from 
Software Engineers (see SWEBOK, 2004). It is true that software engineering and to some extent 
computer science have changed over the years towards recognizing the role of the human 
element. Thus, Kemerer (1998) states that, “because of the significant role played by people, 
software engineering is already one of the computer science disciplines that is closest to the 
social sciences”. 
 
The importance of research on factors affecting software development productivity is both of a 
practical and theoretical nature. From the point of view of the needs of the software industry, 
there is a gap between the claims of publications in the area of software measurement regarding 
its usefulness and the actual degree to which such approaches are applied in practice (Pfleeger, 
2000; Pfleeger et al., 2002). One of the ways to reduce this gap is to provide better methods for 
the assessment of factors affecting software development productivity that are intuitive and easy 
to use by managers and at the same time are rigorous from the point of the current state of 
decision making as a scientific field.  
 
The majority of the research in software development productivity is only indirectly linked to it 
through the definition of productivity. It is primarily focused on effort and cost estimation or 
software project management and control. According to Boehm and Sullivan (1999:939), 
“…most of today’s successful estimating procedures are largely empirical in nature. It would be 
good to have theoretical models that would capture, explain and permit us to reason from an 
understanding of the underlying dynamics…” This has been one of the inspirational ideas behind 
this research.  Here, past work on factors affecting software development productivity is linked 
to the area of software process improvement and information systems development management 
in general, pointing to some work of interpretative nature that has been done recently in the 
Information Systems field. To the best of the authors’ knowledge, this is the first attempt at a 
comprehensive analysis of the multifaceted work on the factors affecting software development 
productivity exceeding the domain of cost estimation and providing links to related publications 
within the broader goal of the improvement of software development management through 
methods enabling organizational learning. 
 
The paper continues with a critical review of previous publications on issues related to software 
development productivity. It is followed by an analysis of research that is indirectly related to 
cost and effort estimation through improved understanding of what drives software development 
and how to manage better software development. At the end are provided some conclusions on 
potential future work. 
 
  



 

2. Software development productivity and the factors affecting it 
Since software is intangible, it is not possible to measure productivity directly (Sommerville, 
2007). According to the same source, in software systems, what we really want to estimate is the 
cost of deriving a particular system with given functionality and that is only indirectly related to 
some tangible measures as those used by various methods from the literature. 
 
The best definition of productivity as a process, according to Boehm (1987:44), is: 

 
Outputs produced by the process 

      Productivity =            
Inputs consumed by the process 

 
Thus, evaluation of productivity in a software project depends on the ways we define the inputs 
and the outputs of the software process. Following Boehm(1987), inputs to the software 
development process generally comprise labour, computers, supplies, and other support facilities 
and equipment. The same author points out that there might be other meaningful inputs in the 
organisational context of a particular environment and frequently one can use present-value 
monetary expressions as a uniform scale for various classes of resources as inputs. 
 
Our concern in this paper will be with factors affecting productivity over the entire systems 
development life cycle. Some authors concentrate only on one phase or aspect of it. For example, 
historically, researchers were predominantly interested in programmer productivity. 
 
2.1. Cost estimation models and factors affecting software development 
productivity 
Empirical research into productivity in the system development process had its beginnings in the 
1960s . It can be classified in various ways (see also Conte, Dunsmore and Shen (1986): 
• field studies versus laboratory experiments; 
• prescriptive or descriptive models; 
• analytic models, e.g. COCOMO (Boehm, 1981), versus analogy-based models (Shepperd and 

Schofield, 1997); 
• machine learning methods using neural networks (see  Heisat, 2002) or Case Based 

Reasoning (CBR) (Mudhopadhyay et al, 1992). 
 
Another classification reflecting the recent development in cost estimation involving a Bayesian 
analysis (see Boehm et al., 2000) and systems dynamics (see Abdel-Hamid and Madnick (1991); 
Madachy (1996)) is provided in Boehm and Sullivan (1999): 
• expertise-based methods, 
• model-based methods,  
• regression-based methods,  
• composite-Bayesian methods,  
• learning-oriented methods and  
• dynamics-based methods.  

 
It can be noted, that this categorization does not mention analogy-based methods including Case 
Based Reasoning. 
 



 
It has been argued by many researchers that the cost estimation models discussed in the literature 
do not seem to capture productivity factors very well. A major problem in most of the research 
surveyed has been the insufficient precision of the results. Thus, Kemayel et al.(1991:157) left 
53.1% of software development productivity unexplained through their statistical analysis. 
Relatively little precision of different analytical models had been reported in Kemerer (1998), 
Jones (1991) and others. This is particularly true when a certain model is applied to an 
environment that is different from the one used as a basis for gathering statistical data for 
deriving the model Maxwell et al. (1999).  
 
Pfleeger (2000) lists the best-reported values on parameters characterising the precision of ten 
well-known methods for effort and cost estimation and concludes that the statistics for most 
models are disappointing. This raises the question as to how successful the methods currently 
applied within the domain of software cost estimation are. A major concern limiting their 
usability and precision is the need to calibrate them according to the specific conditions of a 
given organisational environment. This need is partially recognised through the research on 
calibration of existing cost/effort estimation models with company specific data (see Maxwell et 
al. (1999), Jeffery et al. (2000)).  
 
According to Subramanian and Breslawsli (1995), the poor performance of normative models, 
especially in foreign sites, has lead researchers to consider descriptive estimation techniques. 
These approaches estimate effort through the provision of a better insight into the estimation of 
the development effort. Such ideas are reflected in the work in the area of software effort 
estimation on analogy-based reasoning and case based reasoning (see Mudhopadhyay et al. , 
1992; Shepperd and schofild, 1997; shepperd and Cartwright, 2001).  
  
The issues related to the factors affecting software development productivity have been 
identified in the past as a major area of research in the literature on software 
productivity/cost/effort estimation (Maxwell et al., 1999), Bergeron and St-Arnaud, 1992). In 
most cases, these factors have been analysed with respect to the tuning or validation of a 
particular metric for cost/effort estimation. These factors are labelled differently in different 
models: in Boehm’s (1981) COCOMO model, they are called cost drivers; Bailey and Basili 
(1981) name them as  input to the model, while in Function Point Analysis (FPA) they are called 
Adjustment Factors (see Abran and Robillard, 1996).  
 
Due to their large number, a certain classification of these factors is appropriate. Benbasat and 
Vessey (1980) discuss 19 factors grouped in seven classes: organizational operations 
characteristics, computer hardware characteristics, source language characteristics, programmer 
characteristics, programming problem characteristics. Kemayel et al. (1991) focus their attention 
on the controllable factors affecting software development productivity. According to them, 
controllable factors are those pertaining to the software process that a typical software manager 
has the latitude to determine. They investigate 33 controllable factors placed in three groups: 
factors pertaining to personnel; factors pertaining to the process; and factors pertaining to the 
user community. Finnie, Wittig and Petkov (1993) investigate 18 factors grouped in four groups: 
technical attributes, project attributes, developer attributes and user attributes.  
 
It can be concluded that the major factors affecting software development productivity are those 
included in the contemporary version of COCOMO, known as  COCOMOII model (see Boehm 
et al. , 2000) and in the Function Point Analysis approach (see Abran and Robillard,1996). The 
majority of the researchers in the field accept their formulations, although there are a number of 



 
cases when additional factors are introduced in the literature. COCOMOII is synthesizing ideas  
from the original COCOMO and FPA. It uses Source Lines of Code and/or Function Points as 
the sizing parameter for inputs, adjusted for both reuse and breakage, a set of 17 multiplicative 
effort multipliers and a set of 5 exponential scale factors (Boehm et al., 2000). 
 
A brief observation of the lists of the factors affecting software development productivity in 
various publications shows that a small number of them evolve with time and the development of 
technology. Thus, these days it seems inappropriate to consider the effect of memory size or 
storage devices, as did Benbasat and Vessey (1980). Another conclusion that comes to mind is 
the fact that various researchers focused their attention on quite different sets of factors, thus it is 
very difficult to compare results from previous surveys.  
 
The diverse use of factors affecting software development in software engineering and in 
information systems justifies the need for their deeper analysis. One of the initial steps may 
involve some standardization of the definitions of certain factors used in well-established 
methods for cost and effort estimation like COCOMOII and Function Point Analysis for the 
whole field of software management. Thus, Rainer and Hall (2003) investigate the influence of 
26 factors affecting software processes. These factors were identified through extensive 
computerised qualitative analyses of the text of past papers in the software engineering literature 
on software process improvement, which provides credibility to their list. At least six of them 
have some similarities with those factors featuring in COCOMOII, but their wording is different. 
One reason could be the fact that software productivity improvement (SPI) researchers are still 
seeking to identify the key factors that affect SPI programs (Rainer and Hall, 2003:19).   
 
A relatively little researched issue is the importance of time in software productivity estimation. 
A well-known model of the error in estimates at various stages of a project is the Cone of 
Uncertainty in cost estimation, discussed in Boehm (2008). As far as factors are concerned, the 
later the estimate,  the greater the percentage of the factors that are related to more accurate 
estimates (Benbasat and Vessey, 1980:253). They also claim that different factors could be used, 
depending upon the development phase at which the first global estimate of the development 
effort is made. Thus, estimators are encouraged to use specific methods and factors at specific 
phases. Similarly, Pfleeger et al. (2002) promote the need for early measurement in the software 
life cycle, but they also note that project managers are often intimidated by the effort required to 
track process measures throughout development.  
 
A conclusion that can be drawn from an overall analysis of the various research attempts in the 
field of software development productivity is that there is no consensus on the relevant factors 
that have to be reflected in a particular method or model (see also Maxwell et al. (1996)). Most 
of the studies only include an analysis of a few factors, ignoring others. As most of the 
researchers indicate how complex the process of software development is, it can be assumed, that 
any attempts to drastically reduce the number of factors under concern may lead to over 
simplification of a model and its subsequent inadequate performance. In addition, there is usually 
little justification in the literature as to why certain factors are not included in a particular model. 
For example, user characteristics, application type and programming language are omitted from 
COCOMO. 
 
Maxwell et al. (1999) note that in models such as COCOMO (see Boehm, 1981), the  factors are 
treated as if they are independent, even though some are not. Furthermore, they conclude that 
some of the factors used in existing models for cost and effort estimation were not among the 



 
underlying factors affecting productivity, hence the need for the development of a simple model 
based on the determination of a small number of independent factors (Maxwell et al.,1999). 
Determining the necessary factors is still an open research goal.  
 
Therefore, there is a need to reduce the number of factors that may be included in a particular 
model to a reasonable quantity so that it may be sufficiently understandable and comprehensible. 
This problem requires further research into the nature of each factor, its relationships with other 
factors and their ranking according to their contribution to software development productivity. 
The latter issue shows the need for models guiding the prioritisation of software development 
productivity factors. The identification of a smaller number of factors that are most important 
within a particular project allows management efforts to be directed primarily towards those 
factors, thus leading to more effective corrective action if needed. 
 
2.2. How objective can be software cost and effort estimates? 
While qualitative methods were observed to be related to more accurate estimates, no clear 
conclusion could be drawn concerning the usefulness of quantitative methods (Bergeron and St-
Arnaud, 1992). It is interesting to note that qualitative research based on psychometric 
measurements was generally neglected up until 1990, with few exceptions (e.g. see Hanson and 
Rosinski, 1985). Subsequently there has been a greater interest towards them (e.g. see Miranda, 
2001; Shepperd and Cartwright, 2001). 
 
A related point to the above question is the limitation of statistical variance theories in explaining 
social processes, including the process of systems development. As Robey (1994:443) concludes 
“...by conceiving of processes as systems of variables, the variance strategy affords little insight 
into the dynamics of the social processes it purports to explain. While some percentage of 
variance in one variable may be “explained” by the variation in another, little “explanation” of 
how and why social events occur is possible”. According to him, in addition to valuable tools for 
research, such as the traditional science approaches, are also interpretive research methods that 
allow novel theoretical insights to be induced from both qualitative and quantitative data (Robey, 
1994). 
 
Research carried out by Maxwell et al. (1999)  and others on the role of the company, country 
and the industrial/business environment is aiming at providing light on how the results from 
modelling the factors affecting software development can be generalised for different 
organizational environments. The issue of transportability of the results from one environment to 
another is an unresolved one, however. Many like Kemerer (1998), Conte et al (1986), and in 
particular Abdel-Hamid and Madnick (1991), have indicated the low utility of historical project 
statistics for cost and schedule estimation. Many of these criticisms are expressed as an 
insufficient capability of the models to reproduce their results in different environments. One 
major obstacle to the transportability of these models to environments that are different from 
those used for the original collection of data to build the model appears to be a lack of 
understanding of the factors explaining the differences in productivity among projects (Maxwell 
et al, 1999:787).  
  
Software cost or effort estimation involves well-established analytical methods. However, their 
application is a time consuming activity, which aims also to be objective. That is in contradiction 
with the role of subjectivity in the estimation process. Thus selecting particular adjustment 
factors always requires an expert opinion by the estimator. We may observe that all of the 



 
“algorithmic” methods or models actually involved an element of subjectivity in choosing the 
productivity factors, e.g. in choosing the cost driver ratings in the COCOMO model. An 
excellent review of expert estimation in software development effort can be found in Jorgensen 
(2004). However, the majority of the theory and practice of software measurement community 
shows that there is a deep concern within researchers about the involvement of subjectivity in 
this process. To answer whether or not subjectivity has some role to play in the assessment of 
factors  affecting software development productivity requires further investigation.  
 
Subjectivity is related also to the issue on how possible is to reproduce effort estimates on similar 
projects in different environments. The ability to reproduce results is a significant feature of the 
scientific approach (see Ackoff, 1973; Checkland, 1999). It cannot be met in this area because of 
the human factors involved.  On the other hand, some researchers like Kemerer (1998), correctly 
note that the socio-cultural background and the computing tradition in a particular country 
inevitably affect results in cost and effort measurement. All the above probably indicates a need 
to rethink the traditional claims to strive towards pure objectivity in cost and effort estimation 
and to accept that it is not achievable in real IS project management, due to the human factor 
involved. These ideas are further explored in the next section. 
 
  
3. Research on factors affecting software development productivity 
dealing with broader issues of software management  
According to Boehm and Fairley (2000:24), besides “setting budgets and schedules and 
supporting make-or-buy analyses, software estimation techniques have several additional 
decision support uses: 

• supporting negotiations or trade-off analyses among software cost, schedule, quality, 
performance and functionality;  

• providing the cost portion of a cost-benefit or return on investment analysis; 
• supporting software cost and schedule risk analyses and risk management decisions;  
• and supporting software quality and productivity improvement investment decisions”. 

 
The factors affecting software development productivity play an important role in the 
management of the Information Systems development process. They influence the way in which 
the work of software development teams is organised and controlled (see Abdel-Hamid (1991), 
Boehm (2008) and others). An important contribution to understanding team and individual 
issues in software development is the work of Watts Humphrey (see Humphrey, 1996). The 
factors play an important role in the broader field of software measurement (see Pfleeger et al., 
2002).Most of the above  topics represent a separate stream of research in the Information 
Systems and Software Engineering literature with specific epistemology.  
 
3.1. Early attempts for analyzing the factors affecting software development 
productivity and learning about software project dynamics issues 
Most of the IS research reported in the literature is limited to statistical analyses of cause-effect 
type of relationships between two or three factors only. An alternative way for modelling the 
relationships between factors affecting software development productivity is the application of a 
multi-criteria decision analysis approach, the Analytic Hierarchy Process in Finnie et al. (1993). 
The latter paper suggests a simple model that allows the prioritization of the factors according to 
their importance for a given project. The smaller number of factors that are identified as 



 
important factors for a particular development situation allows management to concentrate only 
on these. ). Support for the idea of this investigation can be found in Rainer and Hall (2003:15).  
 
Finnie et al (1993) note also that although past research seems to assume independence of factors 
affecting software processes, attention should be directed at how such factors relate to each 
other.  
Their modelling approach can be extended further in the direction of capturing all the 
interrelationships between the factors affecting productivity using an extension of AHP for 
models with feedback (Saaty, 1996). Such models are also known as Analytic Network Process 
(Saaty, 1996). Such a model of the factors affecting software development productivity is 
explored in Petkova (1999). In essence, it serves a somewhat similar purpose as the use of 
Bayesian Belief Networks in modelling software projects (see Stamelos et al., 2003) and the 
application of Systems Dynamics for a similar purpose, which is discussed next.   
 
Abdel-Hamid and Madnick (1991) summarize their work conducted in the 1980s on modeling 
the software development micro-world through systems dynamics. Subsequent accounts can be 
found in Madachy(1996) and Madachy (2007). This approach explores the relationships between 
various factors affecting software development focusing on the existing feedback influences 
between them.  It acknowledges that software development, a dynamic and complex process, 
requires new ways of thinking in order to improve the current software environment. Systems 
dynamics involves thinking in circles and considering interdependencies, closed loop causality 
versus straight-line thinking, seeing the system as a cause rather than an effect, internal versus 
external orientation, thinking dynamically rather than statically, operational versus correlation 
orientation (Madachy, 1996). Systems dynamics modeling can provide insights by investigating 
virtually any aspect of the software process at a macro or micro level.  
 
Besides systems dynamics, other techniques for modelling software process dynamics have been 
used as well. According to Ramil and Lehman (1999) these include Petri nets, fuzzy logic, and 
combinations of fuzzy logic and systems dynamics. Bayesian belief networks were applied as 
another way to support expert judgment in software cost estimation (see Stamelos et al., 2003). 
One possible direction for further research is to compare the expressive power of models 
applying the above approaches, including Systems Dynamics and the Analytic Network Process. 
The major issue of concern in such a comparative study should be the determination of the effort 
associated with the application of a particular method. The latter is important since according to 
Ramil and Lehman (1999), “modelling of software process dynamics has, however, not attracted 
widespread interest. The level of expertise, data and resources required to build and calibrate 
such models did not appear justified in a perception of limited benefit”. Similar criticism can be 
stated about another direction line of research in the 1980s and 1990s by Scacchi, aimed at 
development of knowledge-based systems that model software production (see Scacchi, 1995). 
Hence, the need for simpler modelling approaches that still capture the complexity of software 
development and the interrelationships between the factors affecting it.  
 
3.2. Towards broader interpretive holistic approaches for understanding 
software development management perceived as a learning process   
Kitchenham et. al.(2002) point out the need for software cost estimation approaches and models 
that incorporate the instinctual ways that humans organize and manipulate the information at 
their disposal. Software development is treated as a learning process for the client and the service 
provider recently also by Champion et al. (2006). Such learning is affected by many sources of 



 
change in a software project, that bring the need to consider uncertainty and emergent 
requirements in software projects as discussed by Boehm (2008). According to him, the best way 
to reduce the uncertainty in software development is to buy information to avoid risk. Boehm 
(2008) lists for that purpose as possible techniques prototyping, simulating, benchmarking, 
market trend analysis, analyzing relative costs and benefits. We would like to add that these 
methods for reducing uncertainty could be applied within a broader framework supporting 
organizational learning. The factors supporting organizational learning in software development 
are investigated in Van Solingen et al. (2000). Systems dynamics modelling is an early example 
of a method supporting organizational learning in the context of a software process (Madachy, 
1996) but it cannot capture well all subjective issues in a project. Hence, we propose the idea to 
link the fields of software measurement and organisational learning in efforts towards 
improvement of the ISD process and show how it can be implemented with methods that go 
beyond systems dynamics.  
 
Another approach supporting organizational learning for improved understanding of factors  
affecting software development productivity within a specific software project is presented in 
Petkova and Roode (1999). It draws on the growing number of attempts in IS research towards 
the application of qualitative approaches and methodological pluralism(see Hirschheim and 
Klein, 2003). Based on the analysis of the research in software metrics, we can conclude that an 
investigation of factors affecting software development productivity is a complex problem, with 
many intertwined sub-problems, and as such, it can be classified as a “messy” problem, to use 
the term coined first by Ackoff (1973). It is an important and worthwhile problem, both from a 
theoretical and practical point of view. A framework is proposed in Petkova(1999) and Petkova 
and Roode (1999) for its analysis that is relatively easy to use, which allows for the incorporation 
of all relevant factors affecting software development productivity in a holistic way. It 
incorporates available quantitative and qualitative data on a particular project environment, as 
well as the expertise of those involved in its management.  It combines techniques from soft 
systems thinking and multi-criteria decision analysis, enabling experiential learning about the 
relationships between the factors involved. This approach is in line with the call by Scacchi 
(1995) for development of setting-specific models of software production, which “can be tuned 
to better account for the mutual influence of product, process and setting characteristics specific 
to a process”. 
 
Petkova and Roode (1999) implemented a pluralist systemic framework for the evaluation of the 
factors affecting software development productivity within a particular organizational 
environment. It combines techniques from several paradigms; stakeholder identification and 
analysis, from SSM (Checkland, 1999) and the Analytic Hierarchy Process (Saaty, 1996). The 
framework is based on the principles of Multimethodology, a powerful systemic metatheory for 
organizing an intervention in Operations Research (see Mingers, 2001) through mixing methods 
from different methodologies. This framework is complementary to the existing cost estimation 
approaches and does not aim to replace them. The result of its application is a better expert 
judgment in the usage of other existing methods for software cost and effort estimation, as well 
as for IS project management.   
 
There are very few accounts of the use of Soft Systems Methodology (SSM) (see Checkland, 
1999) in the mainstream SE literature. More details on that and a recent example of combining 
SSM and UML for business process modelling are presented in Sewchurran and Petkov (2007). 
It is significant that Boehm has recognised the potential of SSM as he quotes Checkland in a 
recent paper: “… software people were recognizing that their sequential, reductionist processes 



 
were not conducive to producing user-satisfactory software, and were developing alternative SE 
processes (evolutionary, spiral, agile) involving more and more systems engineering activities. 
Concurrently, systems engineering people were coming to similar conclusions about their 
sequential, reductionist processes, and developing alternative ‘soft systems engineering’ 
processes, emphasizing the continuous learning aspects of developing successful user-intensive 
systems” (Boehm, 2006a).  
 
The challenges of software and systems engineering for improvement of software development 
productivity may be addressed better through the application of a systems approach. This is 
advocated recently by Petkov et al. (2008). The latter work extends some of the ideas in Abdel-
Hamid and Madnick (1991), Madachy (1996), Petkova and Roode (1999). Most of the 
suggestions on integrating IS, SE and systems thinking in Petkov et al. (2008) relate to issues of 
organizational learning facilitated by a systems approach. Soft systems methods have a 
significant track record of producing results in management (se Checkland, 1999) and Mingers, 
2001) and accordingly their potential in software development management is stressed in Petkov 
et al. (2008). 
 
According to Boehm (2006a), “recent process guidelines and standards such as the Capability 
Maturity Model Integration (CMMI), ISO/IEC 12207 for software engineering, and ISO/IEC 
15288 for systems engineering emphasize the need to integrate systems and software engineering 
processes”. The same author further proposes a new process framework for integrating software 
and systems engineering for 21st century systems, and improving the contractual acquisition 
processes.  
 
Boehm (2006b) presents a deep analysis of the history of SE and of the trends that have emerged 
recently.  These include the agile development methods (see Baskerville et al. (2003)]); 
commercial off-the-shelf software and model driven development. The traditional software 
development world, characterized by software engineering advocates uses plan-driven methods, 
which rely heavily on explicit documented knowledge. Plan-driven methods employ project 
planning documentation to provide broad-spectrum communications and rely on documented 
process plans and product plans to coordinate everyone (Boehm, 2006b). The late 1990s saw 
something of a backlash against what was seen as the over-rigidity contained within plan-driven 
models and culminated in the arrival of agile methodologies, which rely heavily on 
communication through tacit, interpersonal knowledge for their success. 
 
The above paragraphs indicate major developments in the area of software process management 
and software development management. Research in this direction should not ignore previous 
related work in software cost and effort estimation and software development management. An 
example of how past work is integrated with the new ideas in software management is the topic 
on what happens at the level of large systems-of-systems, discussed in Lane and Boehm (2007), 
dealing with some issues related to cost and effort estimation for large and complex software 
projects).  
 
 
4. Conclusion 
This paper attempted to review the past research on factors affecting software development 
productivity. The links between this issue and the broader aspects of software development 
management were also explored. Our findings show that: 



 
• the models of relationships between such factors have so far not contributed significantly to 

the improvement of the precision of estimates for development effort or costs; 
• the number of factors affecting software development productivity quoted in the literature 

exceeds seventy. There are no universal classifications accepted in the fields of Information 
Systems, Software Engineering and Computer Science. There is not enough evidence about 
justifying the selection or exclusion in a particular model of certain factors; 

• there is a need to provide a link between work on software measurement with research on 
the management of the software development process; 

• the stakeholders in a project in some cases are easy to identify, but more often, there are 
subtle stakeholders that need to be uncovered to avoid a potential over- simplification of the 
understanding of the role of a project and its environment; 

• a better understanding of the relationships between the factors affecting software 
development productivity can be achieved through application of methods promoting 
organizational learning. The result of this is an improved Information Systems Development 
process; 

• there is a need for relatively simple approaches to identify which are the most appropriate 
factors affecting software development productivity for a given organisation and project, 
how they relate to each other, and how their ranking evolves at different stages of the 
software development process.   

 
Different organizational environments may justify the inclusion of various factors affecting 
software development productivity. It seems that the choice of those that need to be considered 
in a given situation must be more flexible. Such decisions depend on the actual dynamic 
circumstances of a particular IS project and how well these are understood. The survey showed 
that very few researchers attempted to address this issue in its full complexity.  
 
Another dimension of possible future analysis can be concerning the benefits from mixing 
methods from different paradigms and methodologies in frameworks promoting better 
understanding of the factors affecting software development productivity compared to the use of 
a single methodology like systems dynamics. A starting point could be raising the awareness of a 
particular research community of what another one is doing. The results of the review point that 
a pluralist approach, breaking down the paradigmatic isolation between various research 
methodologies may lead to improvement of our understanding to handle the complexity of 
improving software development productivity.  
 
There have been a number of comparative studies of various cost and effort estimation methods 
(see Kemerer (1998); Kitchenham et al. (2002) and others). On the other hand, there have been 
few attempts to apply approaches promoting better Information Systems Development process 
management through organizational learning as the several attempts discussed in the paper. To 
the best of our knowledge, there have been no comparative studies of such approaches promoting 
organizational learning within a software development management environment. 
 
With the exception of Boehm, most of the authors working in software cost and effort estimation 
focus on their own research agenda with little comparison of how it fits within the greater body 
of knowledge on software development management. Most of that research is from the 
perspective of Software Engineering with few exceptions like the IS oriented work reported by 
Scacchi (1995) and Petkova and Roode (1999). Hence, there is a need for integrative research in 
a systemic way the problem of software development management and the related productivity 



 
factors across the current disciplinary divide in order to produce better practical, relevant and 
rigorous understanding of what drives software development productivity.  
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