
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2002 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-10-2002

The Design of a Web Snapshot Management System for Decision The Design of a Web Snapshot Management System for Decision

Support Applications Support Applications

David Chao

Follow this and additional works at: https://aisel.aisnet.org/iceb2002

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2002 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2002
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2002?utm_source=aisel.aisnet.org%2Ficeb2002%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The Design of a Web Snapshot Management System for Decision Support
Applications

David Chao

College of Business
San Francisco State University

San Francisco, CA
 dchao@sfsu.edu

Abstract

Database snapshots that are defined and/or delivered via
the Web are called web snapshots. This paper addresses
the requirements for web snapshot management. A web
snapshot management system is proposed; its architecture
and functions of the major components are described;
new commands are defined to perform web snapshot
management activities.

1. Introduction

Providing information to support decision-making is a
major database application on the World-Wide Web.
Many web sites let external users query their databases.
Frequently accessed queries can be predefined and
retrieved on personalized pages. Internally, Intranets are
being used as a platform within an organization for
improving communication, information sharing, and for
developing business applications to support managerial
decision-making. Many companies develop Enterprise
Information Portal (EIP) to integrate Intranet
applications. Decision support databases and tools such
as web-enabled Online Analytical Processing (OLAP)
tools are major components of EIP [7]. With the
development of decision support activities on Intranet, an
easy access to the decision support databases via Intranet
is essential to the success of such development.

Database snapshots are an effective way to support
predefined and recurrent queries for decision support.
They are read-only copies of a selected portion of the
database representing the state of the database, and a
user's view of the operational data at a fixed point in time
(snaptime) [1]. A DEFINE SNAPSHOT statement that
defines the snapshot contents initiates a snapshot. In
Structure Query Language, SQL, this command might
look like:

DEFINE SNAPSHOT <snapshot-name>
AS <query>
AS OF <snaptime>

where <query> can be any valid SQL SELECT
command. Database records that satisfy the query are
said to be relevant or qualified to the snapshot. Relevant
records are materialized and stored under the snapshot-

name. A snapshot is read-only from the user's point of
view to maintain its consistency with the database at the
snaptime. As updates occur to the database, the snapshot
will eventually become "stale" and its value for decision-
making will diminish. To bring a snapshot to a new state
consistent with the database, the user issues a REFRESH
command. In SQL this command is:

 REFRESH SNAPSHOT <snapshot-name>
 AS OF <new snaptime>

Thus, snapshots are similar to "materialized views",
however, with the following major differences: 1.
Materialized views are created to efficiently answer
queries with real time data [4]. Unlike materialized
views, snapshots are not designed to provide real time
data. 2. User determines the snaptime of a snapshot. In
decision support systems users may either prefer not to
use, or should not be allowed to use real time data. Many
such applications call for historical or end-of-period data.
Thus, snapshots are created mainly for decision support
applications. 3. Materialized views are updated
automatically either by an immediate or deferred update
scheme deemed optimal by the system. Snapshots are
"refreshed" only when the user explicitly issues a refresh
request.

A decision support database (DSDB), such as a data
warehouse, is essentially a generalization of the snapshot
concept. A DSDB contains data from various sources
including internal and external data. Data from these
sources are first extracted, cleaned, and then integrated
before loaded to the DSDB [5]. A DSDB is read-only,
and holds information that is consistent with the various
data sources as of a specific point in time. Updates to the
DSDB will be done according to a predefined schedule.
Thus, a DSDB is a snapshot of the source databases. Its
content remains static between two refreshes so that users
involved in decision support and analysis activities can
work with a relatively static copy of the database.

Database snapshots that are defined and/or delivered via
the Web for decision support applications are called web
snapshots. Figure 1 depicts the environment and major
components involve with web snapshots. Web snapshots
are defined on a DSDB. The DSDM maintenance
algorithm takes updates from various data sources to

mailto:dchao@sfsu.edu
Administrator
The Second International Conference on Electronic Business Taipei, Taiwan, December 10-13, 2002

Administrator

Table 1: Possible combinations of web snapshot materialization and delivery options

Materialization Options

 Database
File

HTML File XML File OtherFile
Formats

Virtual
Snapshot

HTMLFile Conversion Ready Conversion Conversion Querying &
Formatting

XML File Conversion Conversion Ready Conversion Querying &
Formatting

Other File
Formats

Conversion Conversion Conversion Ready/
Conversion

Querying &
Formatting

Delivery
Options

update the DSDB and web snapshots. A web snapshot
manager is in charge of the snapshot management
activities, such as defining and refreshing snapshots, and
delivering web snapshots to the web server. The
management of web snapshots is quite different from that
in a traditional database system. Some major differences
and new requirements are discussed in the following.

Virtual And Materialized Snapshots Snapshots
defined on a traditional database must be materialized to
maintain the consistency at the snaptime. A DSDB is
updated by a periodical maintenance schedule, and is
static between two updates. Hence, it is consistent with
its source databases at the time of the last maintenance.
Therefore, snapshots that require the same consistent
point as the DSDB do not have to be materialized to
maintain their consistency. Hence it is possible to have
virtual snapshots defined on a DSDB.

Snapshot Location A web snapshot can be easily
downloaded to a user’s computer as a client-site
snapshot. A web page can be saved as a local page. File
formats supported by browsers can be opened and/or
saved as a local file. File formats not supported by
browsers can be downloaded without opening. A client-
site snapshot is locally available and saves
communication costs if accessed frequently. In a
wireless environment client-site snapshots can be
implemented as a mobile data warehouse to support
mobile agents [6].

Materialization And Delivery Options In a traditional
database system, snapshots are typically materialized at a
centralized location and are materialized as a regular
database file. A web snapshot may be delivered as an
HTML web page, an XML page, or other file formats
such as a spreadsheet. Table 1 illustrates the possible
combinations of snapshot materialization and delivery
options. A materialized snapshot may be ready to be
delivered, or requires conversion to the target format.
Virtual snapshots need to be generated by querying the
database, and format the results to the target format. In
practice, a snapshot’s delivery format may be different

from its materialization format. A user may view the
snapshot in an HTML format with a browser and
download it as a spreadsheet.

Personalization Web sites today typically provide
personalized web pages to users. A snapshot may be
embedded or appear as link in a personalized web page.
A web snapshot manager must keep track of users and
their snapshots in order to create personalized pages.

Snapshot Refresh Options A snapshot is usually
refreshed in response to a user’s refresh request. Such a
refresh is called pull refresh [2]. Alternatively, a
snapshot can be refreshed by a push refresh where the
snapshot manager refreshes a snapshot automatically and
still maintains the user’s requirement for consistency.
This can be done if a snapshot’s snaptime is implicitly
changing with time. For example, a user may require the
snapshot to be one-day old; the server is able to update
the snapshot even without the refresh request.

Large Number of Users and Small Number of
Snapshot Definitions Web sites typically present forms
with interface controls to users to define queries by
clicking pre-entered values in the controls. This implies
that web sites can predetermine the kind of snapshots that
will be defined. The number of unique values in those
controls is small when compared with the number of web
site users. Consequently the number of unique snapshot
definitions that can be constructed is small. Therefore,
the ratio of the number of snapshot users to the number of
unique snapshot definitions tends to be large. It is very
likely that each snapshot may associate with many users.
Hence a materialized snapshot may be used to support
many users.

This paper proposes a web snapshot management system.
This system implements new snapshot management
commands that incorporate requirements discussed
above. The architecture of the web snapshot manager
and the functions of its components will be described.
From a user’s perspective, managing snapshots involves

defining, accessing, refreshing and deleting snapshots.
These commands will be defined in the next section.

2. Defining Web Snapshot Management
Commands

A web snapshot is the realization of the function S(SC(Q,
T, D(T)), SM(O, N, L, {F}, R)) where SC(Q, T, D(T)) is
a set of parameters specifying the contents of the
snapshot, and SM(O, N, L, {F}, R) is a set of parameters
specifying the management of the snapshot. The
meaning of these parameters is explained below:

SC(Snapshot Contents)

Q: Query operations and logical conditions
T: Snaptime

 D(T): Database state at T

SM(Snapshot Management)
 O: Snapshot owner
 N: Snapshot name
 L: Snapshot location
 {F}: Snapshot formats where {} indicates
repetition
 R: Snapshot refresh option

The following DEFINE SNAPSHOT command lets users
to enter parameters:

DEFINE SNAPSHOT <snapshot-name>
AS <query>
[AS OF snaptime]
[OWNER IS system | username]
[MATERIALIZE AT client-site| server-site]
[{DELIVER AS file format}]
[REFRESH BY push | pull]

In the syntax, clauses enclosed in the brackets are
optional; clauses enclosed in the braces may be repeated;
words in italic separated by the vertical bars are possible
choices for the parameters.

The AS OF clause lets users specify the snaptime. Since
the DSDB is basically a snapshot of the source databases,
the DSDB is consistent with the source databases at the
time the DSDB was last updated in a scheduled
maintenance. Without the AS OF clause, the DSDB’s
consistent point is assumed.

The OWNER IS clause specifies the user of the snapshot.
Without it, the snapshot is system-owned. Only
registered users can issue DEFINE SNAPSHOT
command.

The MATERIALIZE AT client-site clause specifies
user’s intention to download the snapshot to local site.
Note that the snapshot may still be materialized at the
server. Without it, the server-site is assumed.

The DELIVER AS lets users specify the format of
delivery such as an HTML or XML page. Although
users may specify a delivery format, the actual
materialization may be different. A snapshot manager
may consider other factors (discussed in the next section)
in choosing a format for materialization. This clause may
be repeated which indicates users may request multiple
delivery formats. Hence, it is possible to enter the
following clauses in a DEFINE SNAPSHOT command:

 DELIVER AS xml
 DELIVER AS spreadsheet

The REFRESH BY clause specifies the snapshot to be
refreshed by a push or pull refresh. Without it, the pull
refresh is assumed.

Refreshing Snapshots: The REFRESH command
refreshes the snapshot to the new snaptime specified in
the AS OF clause.

REFRESH <snapshot-name>
[AS OF snaptime]

A forward refresh is performed when the new snaptime is
later than the old snaptime; otherwise a backward refresh
is performed. Without the AS OF clause, the DSDB’s
consistent point is assumed. Note that the REFRESH
command applies only to snapshots on the server. To
refresh a client-site snapshot, the following RETRIEVE
command is proposed.

Retrieving Snapshots The RETRIEVE command
delivers a snapshot with the specified format which may
be different from its original materialized format.

RETRIEVE <snapshot-name>
 [{AS file format}]

The AS clause may be repeated. Without it, the web
page is assumed. Hence, it is possible to enter the
following clauses in a RETRIEVE command:

 AS xml
 AS spreadsheet

Deleting Snapshots: The delete command is simply:

 DELETE <snapshot-name>

3. Components of a Web Snapshot Manager

This section describes the architecture of the web
snapshot manager. Figure 2 depicts the major
components of the web snapshot manager and the
interface among them. It takes snapshot management
commands as inputs and delivers requested snapshots as
outputs to the web server. The functions of these
components are discussed in the following.

Authorization Control and User Registry This module
maintains user directory and checks that the user has the
authorization to issue commands. Only registered users
can issue snapshot management commands. Validated
commands are passed to the Command Processor.

Command Processor This module analyzes the
commands, determines their action, and passes them to
appropriate components for execution.

Snapshot Catalog This module maintains information
about web snapshots found in the DEFINE SNAPSHOT
command including parameters Q, T, O, N, L, and F, R
described earlier. It also maintains a link to the snapshot
once it is materialized. This information is needed to
support the RETRIEVE and REFRESH SNAPSHOT
commands. It updates a snapshot’s snaptime once it is
refreshed. Information of the deleted snapshots will be
removed from the catalog.

Materialization Optimizer This module takes snapshot
definitions from the catalog and determines the optimal
materialization plan. Managing snapshots incurs the cost
of generating, refreshing, and delivering snapshots.
Generating a snapshot may incur the cost of querying the
database and formatting the results to a target format.
Refreshing a snapshot may be done by performing a
differential refresh or by regenerating the snapshot.
Delivering a snapshot may involve the cost of reading
and formatting the snapshot to a target format. Without
describing the optimizer in details major issues involved
in deciding an optimal plan are discussed in the
following.

. Choosing a criterion for optimization: A typical
criterion in selecting an optimal snapshot materialization
is to minimize the total snapshot management costs. For
web snapshots, however, reducing the response time of
delivery is important in maintaining the quality of web
site service.

. Choosing between materialization and virtual
implementation: Not all web snapshots require
materialization. The frequency of accessing a snapshot is
an important parameter in making this decision. A
frequently accessed snapshot typically requires
materialization.

. Choosing between one materialized format and multiple
formats: The DEFINE SNAPSHOT and the RETRIEVE
SNAPSHOT commands let users specify multiple
delivery formats. Materializing in multiple formats will
reduce the response time but may require more refresh
costs and vice versa.

. Choosing between using one materialized copy to
support one snapshot and multiple snapshots: Snapshots
with identical (or significantly overlapping) definitions
and with the same consistency requirement can be
supported more efficiently with a single materialization.

Refresh Optimizer This module processes the
REFRESH commands. The major functions of this
module are:

. Choosing an optimal refresh method: A snapshot can be
refreshed by a full regeneration or by a differential
refresh. Typically, a frequently refreshed snapshot or a
snapshot with only a few updates can be refreshed more
efficiently with a differential refresh.

. Maintaining update log: The REFRESH command lets
users to specify a new snaptime, which may be before or
after the current snaptime. In order to support this refresh
capability, the optimizer must maintain a log of updates.
Updates to a base table are either deletions or insertions if
modifications are treated as the deletion of the before-
image followed by the insertion of the after-image. A
typical log design is: (TimeStamp, UpdateFlag,
UpdatedRecord) where the TimeStamp records the
update time and the UpdateFlag is a flag indicating
deletion or insertion [3]. This type of log keeps updates
in chronological order. Since snapshots are defined on a
DSDB, the updates gathered by the DSDB maintenance
algorithm can be used to refresh snapshots.

. Generating refresh messages: Updates between the old
snaptime and the new snaptime can be generated from the
log. These refresh messages are sent to the
materialization optimizer to refresh the materialized
copy.

Once the refresh is done, the refresh optimizer will notify
the snapshot catalog to update the snaptime.

Retrieve and Delivery Module This module processes
the RETRIEVE commands. It retrieves the snapshot
from the materialization optimizer, converts it to the
format requested by the user, and delivers it to the web
server.

4. Summary

This paper addresses issues and requirements for the
management of web snapshots. Database snapshots that
are defined and/or delivered via the Web are called web
snapshots. They are used mainly for decision support
applications in a Web environment. New commands are
defined to perform web snapshot management activities.
A web snapshot management system is proposed; the
functions of the major components in this system are
described.

References

[1] Adiba, M. & Lindsay, B. (1980). Database snapshots.
Proceedings of the 6th International Conference on Very Large
Data Bases, pp. 86-91.

[2] Aksoy, D., Franklin, M., Zdonik, S. (2001). Data Staging
for On-Demand Broadcast. Proceedings of the 27th VLDB
Conference, Roma, Italy, 2001

[3] Chao, D., Diehr, G., & Saharia, A. (1996) Maintaining
Join-based Remote Snapshots Using Relevant Logging.
Proceedings of the Workshop on Materialized Views, ACM
SIGMOD, Montreal, Canada, 1996

[4] Labrinidis, A. & Roussopoulos, N. (2000). Webview
Materialization. ACM SIGMOD International Conference on
Management of Data, May 14-19, 2000

[5] Gray, P., Watson, H. (1998). Decision Support in the Data
Warehouse. Prentice Hall, 1998

[6] Lee, K., Si, A., and Leong, H. (1998). Incremental View
Update for a Mobile Data Warehouse. ACM Symposium on
Applied Computing, Atlanta, 1998

istry
Authorization Control &
User Reg

Command Processor

Snapshot
Catalog

Materialization Optimizer

Refresh
Optimize
r

Retrieve &
Delivery

DSDB DSDB Maintenance
Algorithm

Figure 2: Components of a web snapshot manager

Web Server

[7] Murray, G. (1999). Making Connections with Enterprise
Knowledge Portals. White Paper, Computerworld, Sept. 6,
1999

DSDB Maintenance Algorithm

DSDB

Web Snapshot Manager

Web Server

Browser

Internal & External
Databases

Figure 1: Components of web snapshot
management for decision support.

	The Design of a Web Snapshot Management System for Decision Support Applications
	Table 1: Possible combinations of web snapshot materialization and delivery options
	
	Materialization Options

	Personalization Web sites today typically provide personalized web pages to users. A snapshot may be embedded or appear as link in a personalized web page. A web snapshot manager must keep track of users and their snapshots in order to create persona
	[6] Lee, K., Si, A., and Leong, H. (1998). Incremental View Update for a Mobile Data Warehouse. ACM Symposium on Applied Computing, Atlanta, 1998

