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Abstract 
The Extensible Markup Language (XML) has emerged as a de facto standard language for exchanging 
data among disparate information systems. Since the majority of data in the world is stored in databases, 
the conversion of such data into XML documents is indispensable for real world usage. In this paper, we 
propose the algorithm for mapping the Entity Relationship model (ER model) to the XML document at the 
metadata level to address this conversion issue effectively. This is a progressive attempt to automatically 
generate the XML document from the conceptual database schema using the XML Schema. In this paper, 
we introduce a set of ER-to-XML mapping rules and then show the mapping algorithm based on these 
rules. We also introduce the XML Schema which forms the groundwork of this mapping algorithm 

Keywords: ER, XML Schema, Mapping Algorithm 

Introduction 

Motivation 
Since the Extensible Markup Language (XML) (W3C, 2004a) was developed by World Wide Web Consortium 
(W3C) in 1996, it has been adopted in numerous fields for various purposes. Now the XML is considered as a de 
facto standard language for exchanging data among disparate information systems. The Document Type Definition 
(DTD) has been used to describe XML data structures and constraints. However, due to its limitations such as data 
typing, content modeling, and extensibility, several alternatives for describing the XML structure are proposed. 
They include RELAX (Murata, 2001), TREX (Clark, 2001), Relax NG (Clark & Murata, 2001), DSD (Moller, 
2003), and XML Schema (W3C, 2004b). Among these, XML Schema of W3C is regarded as the most acceptable 
one, because it is recommended as a standard by W3C and its development is supported by almost all major IT 
companies. 

Since the majority of data in the world is stored in databases, the conversion of such data into XML documents is 
indispensable for real world usage. In this conversion, rules and algorithms for preserving the information of the 
database schema and generating XML documents based on such information are necessary. 

In previous research, rules and algorithms to map data between XML and databases have been proposed (Carey et 
al, 2000, Fernandez et al, 2000, Florescu & Kossmann, 1999, Kleiner & Lipeck, 2001, Lee et al, 2003, Shanmuga-
sundaram et al, 1999, and Turau, 1999). Most researchers so far, however, use DTD instead of XML Schema in their 
research, so their results are often insufficient or inefficient. Moreover, careful intervention of a human expert is 
indispensable. To overcome this deficiency, we propose ER-to-XML mapping rules at the schema level using the 
XML Schema. By using the XML Schema, we can express mapping rules more efficiently and address the 
limitations of DTD. We also present an algorithm, which automatically generates XML-based ER schemas.  

The remainder of this paper is organized as follows. In section 2, after a brief re-view of the related research, we 
present the ER-to-XML mapping rules. In section 3, we show the algorithm based on the ER-to-XML mapping 
rules. Some concluding remarks are presented in section 4. 

Related Work 
In the last few years, XML-to-Database mapping issues have been studied by several researchers. Shanmugasunda-
ram et al. (1999) develop algorithms that convert XML documents to relational tuples, and translate semi-structured 
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queries over XML documents to SQL queries over tables. Florescu & Kossmann (1999) conduct comparative 
analysis of eight algorithms which store the XML data in relational database systems. Lee et al. (2003) propose three 
semantics-based schema conversion methods between DTD and relational schema. 

In the study of Turau on the transformation of data from the relational database into the XML document, the 
relational database schema is generated in form of the DTD (Turau, 1999). Kleiner & Lipeck (2001) present an 
algorithm that can generate DTDs from conceptual database schemas. Fernandez & Suciu (2000) develop a query 
language that can transform relational data to XML data. Carey et al. (2000) publish the XML data from the object-
relational database. 

Mapping Rules 
In this section, we describe ER-to-XML mapping rules at the schema level. The procedures of each rule are 
illustrated using a simple example. The mapping rules are concise and easy to understand. Each entity type and 
relationship type in the ER diagram is mapped into the top-level element in the XML document. There are 6 top-
level XML elements that represent different entity types and relationship cardinalities: <entity>, <weak-
entity>, <unary-relationship>, <binary-relationship>, <ternary-relationship>, and <n-ary-
relationship>. 

The content (i.e., data value) of a top-level element is the same as the corresponding name of an entity type or a 
relationship type. For example, an entity type STUDENT is represented in XML as <entity>STUDENT</entity>. 
The attributes of an entity type in the ER diagram are mapped into the sub-element <attribute> of the 
corresponding top-level element in XML (i.e., <entity> or <weak-entity>). Similarly, the attributes and other 
meta-information of a relationship type in the ER diagram (e.g., cardinality constraints, role names of the 
relationship, participating entities, etc.) are described at the sub-element of the corresponding element (i.e., 
<unary-relationship>, <binary-relationship>, etc.). The detailed mapping rules are explained in the 
following subsections. 

Entity 
The strong entity type S in the ER diagram is mapped to the <entity> element in the XML document as shown in 
Figure 1. The mapping rule of the weak entity type is similar to that of the strong entity type. The weak entity type 
W in the ER diagram is mapped to the <weak-entity> element. Figure 1 presents the weak entity to the XML 
element mapping example. 

 

Figure 1. Entity 

Attribute 

Simple attribute 
A simple attribute A of the entity E in the ER diagram is represented in XML using the <attribute> element. The 
<attribute> element is placed as a sub-element of the belonging top-level XML element.  

Note that other attribute mapping rules described in the ensuing sections (i.e., key attribute, composite key attribute, 
multi-valued attribute, and composite attribute) are based on this simple attribute mapping rule. This property allows 
us to define the structure of the simple attribute as an XML complex type called attribute-type and reuse it multiple 
times in the XML Schema. This example is presented later in section 2.2.5. Figure 2 shows the mapping relationship 
between the attribute Profile of the entity type ACTOR and its corresponding XML document and XML schema. 
Note that in XML schema, the XML attribute data-type in the XML complex type attribute-type is defined 
optional. The reason is that in most ER diagrams the data type of attributes is not specified. 
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Figure 2. Simple Attribute 

Key Attribute 
The key attribute A of the entity E is mapped in a similar way to the simple attribute. In this case, the <key-
attribute> element is added as a sub-element of the top-level element E as shown in Figure 3. 

 

Figure 3. Key Attribute 

If the key attribute consists of A1, A2, ... An of the entity type S (i.e., composite key attribute), the <composite-
key-attribute> element is used as the parent element of a set of <key-attribute>.  

Multi-valued Attribute 
In some cases, an attribute can have a set of values for the same entity (i.e., multi-valued attribute). The multi-valued 
attribute in the ER diagram is mapped to the <multivalued-attribute> element. The name of the multi-valued 
attribute A of the entity E is mapped to the value of the <multivalued-attribute> element as illustrated in 
Figure 4. 

 

Figure 4. Multi-valued Attribute 

Derived Attribute 
When two or more attribute values are related, the value of one attribute can be determined by the other attribute(s) 
(i.e., derived attribute). The derived attribute in the ER diagram is represented as the <derived-attribute> 
element in the XML document as shown in Figure 5. 

 

Figure 5. Derived Attribute 

Composite Attribute 
If the attribute consists of A1, A2, ... An of the entity type S (i.e., composite attribute), the <composite-
attribute> element is used as the sub-element of the top-level element S. A set of <attribute> is placed as a 
sub-element of the <composite-attribute> element as shown in Figure 6. All three attributes, Fname, Minit, 
and Lname in Figure 6, are simple attributes and described using the <attribute> elements. As discussed 
previously, we declare the simple attribute as the XML complex type called attribute-type. This named type feature 
of the XML Schema enforces consistency, reduces errors, and simplifies maintenance. 
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Figure 6. Composite Attribute 

Relationships 

Binary Relationship 
The binary relationship R between two entity types S and T is mapped to the top-level element <binary-
relationship>. If the relationship type has attributes, each attribute is also mapped to the sub-element 
<attribute> of the matched top-level <binary-relationship> element. In addition, the two participating 
<entity> elements are also placed as sub-elements. In this case, for the associated <entity> element, there are 
two required XML attributes to express the minimum and maximum cardinality constraints (i.e., min-card and 
max-card, respectively) and one optional XML attribute for the role name in the ER diagram (i.e., role-name). It 
is worth noting that this participating <entity> element is defined by participating-entity-type in the 
XML schema which is derived from the XML complex type entity-type (see Figure 7).  

 
Figure 7. Binary Relationship 

Unary Relationship 
In some cases, a relationship consists of only one entity type. Thus, the two <entity> elements which are placed as 
the sub-elements of matched top-level <unary-relationship> element should have the same entity type. In this 
case, XML attribute role-name is required instead of optional as shown in Figure 8. The reason for enforcing the 
strict rule is that if the role name is not specified in the unary relationship, the semantics of the relationship are 
vague. 

n-ary Relationship 
If the relationship consists of more than three different entity types, each entity type is mapped to the sub-element 
<entity> of the corresponding top-level <n-ary-relationship> element. In this case, our XML Schema rule 
enforces that the total number of <entity> elements should be at least four. 
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Figure 8. Unary Relationship 

Mapping Algorithm 
In this section, we show the mapping algorithm based on the ER-to-XML mapping rules. The XML Schema is used 
as an input with the ER diagram in our algorithm to validate the structure of the XML document. The complete 
algorithm in pseudo-code is presented in Figure 9. 

By following Step 1 through Step 5 based on the ER-to-XML mapping rules in an appropriate manner, we can 
represent all the information in the ER diagram as an XML document correctly. For a clearer explanation, we 
illustrate the ER-to-XML algorithm step by step using simple ER diagram (See. http://student.colostate-
pueblo.edu/w.kang/simple_ER-diagram.jpg).   

 

Figure 9. ER-to-XML Algorithm 

For Step 1, we define and generate the root element of our XML document which is the <ER-Model>. After 
generating the root element, we identify the entity types in the ER diagram. In this case, two strong entities (e.g., 
<ACTOR> and <MOVIE>) and one weak entity (e.g., <DEPENDENT>) are identified. Step 3 is assigning all the 
attributes to the proper elements. Thirteen attributes are identified from our example. In this step, it is important that 
key attribute type mapping be performed prior to the other attribute types such as simple attribute, composite 
attribute, etc. The order of the other attribute type mappings is optional. After mapping all six attributes of the 
<ACTOR> element, we perform the same procedure for each element. The fourth step is identifying the relationship 

Algorithm: ER-to-XML Mapping 
Input: ER diagram, and Predefined mapping-purposed XML Schema 
Output: XML document 
Method: 
Step 1: Define the root element. First, we generate a root element of the XML document. The name of the root 

element is <ER-Model>. The content of the root element is determined by the name of the ER diagram. 
Step 2: Mapping entity types. First, we identify the entity types in the ER diagram including the weak entity 

type. Second, we map the entity types according to the entity type mapping rules. All the XML 
elements generated in this step (i.e., <entity> and <weak-entity>) must be placed at the top-level. 

Step 3: Mapping attribute types. After mapping all the existing entity types, attributes of each entity types are 
checked in step 3. The key attribute type mapping must be checked first among the other attribute types. 
After mapping the key attribute types, all the other attribute types are mapped one after another in 
accordance with the attribute mapping rules. We can choose the mapping order of attribute type at our 
convenience until all the attributes of each entity types are used up. 

Step 4: Mapping relationship types. After mapping the entity related information in the ER diagram, we 
identify the relationship types in ER diagram. Each relationship type is mapped to the matched XML 
element (i.e., <unary-relationship>, <binary-relationship>, <ternary-relationship> 
and <n-ary-relationship>) at the top-level in random order. Then, we add the content of a top-
level element that is same as the corresponding name of a relationship type. 

Step 5: Mapping semantics of each relationship type. After identifying all the relationship types, we map the 
attribute types and all the other meta-information of the relationship types in this step. First, we map the 
attribute types. Then, all the other meta-information of the relationship types is mapped as the sub-
element <entity> and its XML attributes. 
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types between entities. As we designated, there are four relationship types: unary, binary, ternary, and n-ary. For 
example, the HERO relationship, which explains the relationship between <ACTOR> and <MOVIE>, has only two 
participant entities in its relationship. So we identify HERO as a binary-relationship. After identifying the relation 
type, we identify the meta-information such as information about the cardinality. <ACTOR> element can play a hero 
role in this relationship. In most case, however, not every actor plays a hero in one movie. That is the reason why 
this element has cardinality (0, 1). After identifying all the relationship types and meta-information, we establish the 
relationship between every entity as we illustrated in section 2.3. We assign the HERO relationship to the binary-
relationship type. For the hero role, we designated min-card=0 and max-card=1. Similarly, movie-played role 
is granted min-card=1 and max-card=n cardinality. 

This mapping example proves the simplicity and efficiency of our ER-to-XML mapping algorithm. Because we 
already constructed the predefined mapping-purpose XML Schema, not only experts but also novices in data 
modeling can accomplish the ER-to-XML mapping with any ER diagram easily without any mistake. 

Conclusion 
In this paper, we show the ER-to-XML mapping rules for each component in the ER model and present an algorithm 
for mapping the ER model to the XML document at the schema level based on these ER-to-XML mapping rules. 
We also introduce the XML Schema which forms the groundwork of this mapping algorithm. Our algorithm is 
concise but powerful enough to express ER models in XML form without losing any semantics. Our current work 
includes the implementation of automatic translation tool based on the design view. A complete XML document 
example used in this paper and the XML Schema that specifies these rules can be downloaded at: 
http://student.colostate-pueblo.edu/w.kang/er2xml.html. 
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