
Association for Information Systems
AIS Electronic Library (AISeL)

SAIS 2007 Proceedings Southern (SAIS)

3-1-2007

Mapping Rules for ER to XML Using XML
Schema
Sung Jin
s.jin@colostate-pueblo.edu

Woohyun Kang

Follow this and additional works at: http://aisel.aisnet.org/sais2007

This material is brought to you by the Southern (SAIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in SAIS 2007 Proceedings
by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Jin, Sung and Kang, Woohyun, "Mapping Rules for ER to XML Using XML Schema" (2007). SAIS 2007 Proceedings. 38.
http://aisel.aisnet.org/sais2007/38

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fsais2007%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sais2007?utm_source=aisel.aisnet.org%2Fsais2007%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sais?utm_source=aisel.aisnet.org%2Fsais2007%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sais2007?utm_source=aisel.aisnet.org%2Fsais2007%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sais2007/38?utm_source=aisel.aisnet.org%2Fsais2007%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Proceedings of the 2007 Southern Association for Information Systems Conference 211

MAPPING RULES FOR ER TO XML USING XML SCHEMA

Sung Jin
Colorado State University Pueblo

s.jin@colostate-pueblo.edu

Woohyun Kang
Colorado State University Pueblo

w.kang@colostate-pueblo.edu

Abstract
The Extensible Markup Language (XML) has emerged as a de facto standard language for exchanging
data among disparate information systems. Since the majority of data in the world is stored in databases,
the conversion of such data into XML documents is indispensable for real world usage. In this paper, we
propose the algorithm for mapping the Entity Relationship model (ER model) to the XML document at the
metadata level to address this conversion issue effectively. This is a progressive attempt to automatically
generate the XML document from the conceptual database schema using the XML Schema. In this paper,
we introduce a set of ER-to-XML mapping rules and then show the mapping algorithm based on these
rules. We also introduce the XML Schema which forms the groundwork of this mapping algorithm

Keywords: ER, XML Schema, Mapping Algorithm

Introduction

Motivation
Since the Extensible Markup Language (XML) (W3C, 2004a) was developed by World Wide Web Consortium
(W3C) in 1996, it has been adopted in numerous fields for various purposes. Now the XML is considered as a de
facto standard language for exchanging data among disparate information systems. The Document Type Definition
(DTD) has been used to describe XML data structures and constraints. However, due to its limitations such as data
typing, content modeling, and extensibility, several alternatives for describing the XML structure are proposed.
They include RELAX (Murata, 2001), TREX (Clark, 2001), Relax NG (Clark & Murata, 2001), DSD (Moller,
2003), and XML Schema (W3C, 2004b). Among these, XML Schema of W3C is regarded as the most acceptable
one, because it is recommended as a standard by W3C and its development is supported by almost all major IT
companies.

Since the majority of data in the world is stored in databases, the conversion of such data into XML documents is
indispensable for real world usage. In this conversion, rules and algorithms for preserving the information of the
database schema and generating XML documents based on such information are necessary.

In previous research, rules and algorithms to map data between XML and databases have been proposed (Carey et
al, 2000, Fernandez et al, 2000, Florescu & Kossmann, 1999, Kleiner & Lipeck, 2001, Lee et al, 2003, Shanmuga-
sundaram et al, 1999, and Turau, 1999). Most researchers so far, however, use DTD instead of XML Schema in their
research, so their results are often insufficient or inefficient. Moreover, careful intervention of a human expert is
indispensable. To overcome this deficiency, we propose ER-to-XML mapping rules at the schema level using the
XML Schema. By using the XML Schema, we can express mapping rules more efficiently and address the
limitations of DTD. We also present an algorithm, which automatically generates XML-based ER schemas.

The remainder of this paper is organized as follows. In section 2, after a brief re-view of the related research, we
present the ER-to-XML mapping rules. In section 3, we show the algorithm based on the ER-to-XML mapping
rules. Some concluding remarks are presented in section 4.

Related Work
In the last few years, XML-to-Database mapping issues have been studied by several researchers. Shanmugasunda-
ram et al. (1999) develop algorithms that convert XML documents to relational tuples, and translate semi-structured

Proceedings of the 2007 Southern Association for Information Systems Conference 212

queries over XML documents to SQL queries over tables. Florescu & Kossmann (1999) conduct comparative
analysis of eight algorithms which store the XML data in relational database systems. Lee et al. (2003) propose three
semantics-based schema conversion methods between DTD and relational schema.

In the study of Turau on the transformation of data from the relational database into the XML document, the
relational database schema is generated in form of the DTD (Turau, 1999). Kleiner & Lipeck (2001) present an
algorithm that can generate DTDs from conceptual database schemas. Fernandez & Suciu (2000) develop a query
language that can transform relational data to XML data. Carey et al. (2000) publish the XML data from the object-
relational database.

Mapping Rules
In this section, we describe ER-to-XML mapping rules at the schema level. The procedures of each rule are
illustrated using a simple example. The mapping rules are concise and easy to understand. Each entity type and
relationship type in the ER diagram is mapped into the top-level element in the XML document. There are 6 top-
level XML elements that represent different entity types and relationship cardinalities: <entity>, <weak-
entity>, <unary-relationship>, <binary-relationship>, <ternary-relationship>, and <n-ary-
relationship>.

The content (i.e., data value) of a top-level element is the same as the corresponding name of an entity type or a
relationship type. For example, an entity type STUDENT is represented in XML as <entity>STUDENT</entity>.
The attributes of an entity type in the ER diagram are mapped into the sub-element <attribute> of the
corresponding top-level element in XML (i.e., <entity> or <weak-entity>). Similarly, the attributes and other
meta-information of a relationship type in the ER diagram (e.g., cardinality constraints, role names of the
relationship, participating entities, etc.) are described at the sub-element of the corresponding element (i.e.,
<unary-relationship>, <binary-relationship>, etc.). The detailed mapping rules are explained in the
following subsections.

Entity
The strong entity type S in the ER diagram is mapped to the <entity> element in the XML document as shown in
Figure 1. The mapping rule of the weak entity type is similar to that of the strong entity type. The weak entity type
W in the ER diagram is mapped to the <weak-entity> element. Figure 1 presents the weak entity to the XML
element mapping example.

Figure 1. Entity

Attribute

Simple attribute
A simple attribute A of the entity E in the ER diagram is represented in XML using the <attribute> element. The
<attribute> element is placed as a sub-element of the belonging top-level XML element.

Note that other attribute mapping rules described in the ensuing sections (i.e., key attribute, composite key attribute,
multi-valued attribute, and composite attribute) are based on this simple attribute mapping rule. This property allows
us to define the structure of the simple attribute as an XML complex type called attribute-type and reuse it multiple
times in the XML Schema. This example is presented later in section 2.2.5. Figure 2 shows the mapping relationship
between the attribute Profile of the entity type ACTOR and its corresponding XML document and XML schema.
Note that in XML schema, the XML attribute data-type in the XML complex type attribute-type is defined
optional. The reason is that in most ER diagrams the data type of attributes is not specified.

Proceedings of the 2007 Southern Association for Information Systems Conference 213

Figure 2. Simple Attribute

Key Attribute
The key attribute A of the entity E is mapped in a similar way to the simple attribute. In this case, the <key-
attribute> element is added as a sub-element of the top-level element E as shown in Figure 3.

Figure 3. Key Attribute

If the key attribute consists of A1, A2, ... An of the entity type S (i.e., composite key attribute), the <composite-
key-attribute> element is used as the parent element of a set of <key-attribute>.

Multi-valued Attribute
In some cases, an attribute can have a set of values for the same entity (i.e., multi-valued attribute). The multi-valued
attribute in the ER diagram is mapped to the <multivalued-attribute> element. The name of the multi-valued
attribute A of the entity E is mapped to the value of the <multivalued-attribute> element as illustrated in
Figure 4.

Figure 4. Multi-valued Attribute

Derived Attribute
When two or more attribute values are related, the value of one attribute can be determined by the other attribute(s)
(i.e., derived attribute). The derived attribute in the ER diagram is represented as the <derived-attribute>
element in the XML document as shown in Figure 5.

Figure 5. Derived Attribute

Composite Attribute
If the attribute consists of A1, A2, ... An of the entity type S (i.e., composite attribute), the <composite-
attribute> element is used as the sub-element of the top-level element S. A set of <attribute> is placed as a
sub-element of the <composite-attribute> element as shown in Figure 6. All three attributes, Fname, Minit,
and Lname in Figure 6, are simple attributes and described using the <attribute> elements. As discussed
previously, we declare the simple attribute as the XML complex type called attribute-type. This named type feature
of the XML Schema enforces consistency, reduces errors, and simplifies maintenance.

Proceedings of the 2007 Southern Association for Information Systems Conference 214

Figure 6. Composite Attribute

Relationships

Binary Relationship
The binary relationship R between two entity types S and T is mapped to the top-level element <binary-
relationship>. If the relationship type has attributes, each attribute is also mapped to the sub-element
<attribute> of the matched top-level <binary-relationship> element. In addition, the two participating
<entity> elements are also placed as sub-elements. In this case, for the associated <entity> element, there are
two required XML attributes to express the minimum and maximum cardinality constraints (i.e., min-card and
max-card, respectively) and one optional XML attribute for the role name in the ER diagram (i.e., role-name). It
is worth noting that this participating <entity> element is defined by participating-entity-type in the
XML schema which is derived from the XML complex type entity-type (see Figure 7).

Figure 7. Binary Relationship

Unary Relationship
In some cases, a relationship consists of only one entity type. Thus, the two <entity> elements which are placed as
the sub-elements of matched top-level <unary-relationship> element should have the same entity type. In this
case, XML attribute role-name is required instead of optional as shown in Figure 8. The reason for enforcing the
strict rule is that if the role name is not specified in the unary relationship, the semantics of the relationship are
vague.

n-ary Relationship
If the relationship consists of more than three different entity types, each entity type is mapped to the sub-element
<entity> of the corresponding top-level <n-ary-relationship> element. In this case, our XML Schema rule
enforces that the total number of <entity> elements should be at least four.

Proceedings of the 2007 Southern Association for Information Systems Conference 215

Figure 8. Unary Relationship

Mapping Algorithm
In this section, we show the mapping algorithm based on the ER-to-XML mapping rules. The XML Schema is used
as an input with the ER diagram in our algorithm to validate the structure of the XML document. The complete
algorithm in pseudo-code is presented in Figure 9.

By following Step 1 through Step 5 based on the ER-to-XML mapping rules in an appropriate manner, we can
represent all the information in the ER diagram as an XML document correctly. For a clearer explanation, we
illustrate the ER-to-XML algorithm step by step using simple ER diagram (See. http://student.colostate-
pueblo.edu/w.kang/simple_ER-diagram.jpg).

Figure 9. ER-to-XML Algorithm

For Step 1, we define and generate the root element of our XML document which is the <ER-Model>. After
generating the root element, we identify the entity types in the ER diagram. In this case, two strong entities (e.g.,
<ACTOR> and <MOVIE>) and one weak entity (e.g., <DEPENDENT>) are identified. Step 3 is assigning all the
attributes to the proper elements. Thirteen attributes are identified from our example. In this step, it is important that
key attribute type mapping be performed prior to the other attribute types such as simple attribute, composite
attribute, etc. The order of the other attribute type mappings is optional. After mapping all six attributes of the
<ACTOR> element, we perform the same procedure for each element. The fourth step is identifying the relationship

Algorithm: ER-to-XML Mapping
Input: ER diagram, and Predefined mapping-purposed XML Schema
Output: XML document
Method:
Step 1: Define the root element. First, we generate a root element of the XML document. The name of the root

element is <ER-Model>. The content of the root element is determined by the name of the ER diagram.
Step 2: Mapping entity types. First, we identify the entity types in the ER diagram including the weak entity

type. Second, we map the entity types according to the entity type mapping rules. All the XML
elements generated in this step (i.e., <entity> and <weak-entity>) must be placed at the top-level.

Step 3: Mapping attribute types. After mapping all the existing entity types, attributes of each entity types are
checked in step 3. The key attribute type mapping must be checked first among the other attribute types.
After mapping the key attribute types, all the other attribute types are mapped one after another in
accordance with the attribute mapping rules. We can choose the mapping order of attribute type at our
convenience until all the attributes of each entity types are used up.

Step 4: Mapping relationship types. After mapping the entity related information in the ER diagram, we
identify the relationship types in ER diagram. Each relationship type is mapped to the matched XML
element (i.e., <unary-relationship>, <binary-relationship>, <ternary-relationship>
and <n-ary-relationship>) at the top-level in random order. Then, we add the content of a top-
level element that is same as the corresponding name of a relationship type.

Step 5: Mapping semantics of each relationship type. After identifying all the relationship types, we map the
attribute types and all the other meta-information of the relationship types in this step. First, we map the
attribute types. Then, all the other meta-information of the relationship types is mapped as the sub-
element <entity> and its XML attributes.

Proceedings of the 2007 Southern Association for Information Systems Conference 216

types between entities. As we designated, there are four relationship types: unary, binary, ternary, and n-ary. For
example, the HERO relationship, which explains the relationship between <ACTOR> and <MOVIE>, has only two
participant entities in its relationship. So we identify HERO as a binary-relationship. After identifying the relation
type, we identify the meta-information such as information about the cardinality. <ACTOR> element can play a hero
role in this relationship. In most case, however, not every actor plays a hero in one movie. That is the reason why
this element has cardinality (0, 1). After identifying all the relationship types and meta-information, we establish the
relationship between every entity as we illustrated in section 2.3. We assign the HERO relationship to the binary-
relationship type. For the hero role, we designated min-card=0 and max-card=1. Similarly, movie-played role
is granted min-card=1 and max-card=n cardinality.

This mapping example proves the simplicity and efficiency of our ER-to-XML mapping algorithm. Because we
already constructed the predefined mapping-purpose XML Schema, not only experts but also novices in data
modeling can accomplish the ER-to-XML mapping with any ER diagram easily without any mistake.

Conclusion
In this paper, we show the ER-to-XML mapping rules for each component in the ER model and present an algorithm
for mapping the ER model to the XML document at the schema level based on these ER-to-XML mapping rules.
We also introduce the XML Schema which forms the groundwork of this mapping algorithm. Our algorithm is
concise but powerful enough to express ER models in XML form without losing any semantics. Our current work
includes the implementation of automatic translation tool based on the design view. A complete XML document
example used in this paper and the XML Schema that specifies these rules can be downloaded at:
http://student.colostate-pueblo.edu/w.kang/er2xml.html.

References

Carey, M., Florescu, D., Ives, Z., Lu, Y., Shanmugasundaram, J., Shekita, E. & Subramanian, S. (2000),
XPERANTO: Publishing Object-Relational Data as XML, Proc. International Workshop on the Web and
Databases, USA, 2000, 105-110

Clark, J. (2001), TREX - Tree Regular Expressions for XML: language specification, Web Page, 2001,
http://www.thaiopensource.com/trex/spec.html

Clark, J. & Murata, M. (2001), RELAX NG Specification, 2001, http://www.oasis-open.org/ committees/relax-
ng/spec-20011203.html

Fernandez, F., Tan, C. & Suciu, D. (2000), SilkRoute, Trading between Relations and XML, Proc. 9th International
World Wide Web Conference, Netherlands, 2000, 723-745

Florescu, D. & Kossmann, D. (1999), Storing and Querying XML Data Using an RDBMS, IEEE Data Engineering
Bulletin (22), 1999, 27-34

Kleiner, C. & Lipeck, U. (2001), Automatic Generation of XML DTDs from Conceptual Database Schemas, Proc.
Workshop of the Annual Conference of the German and Austrian Computer Societies, Austria, 2001, 396-405

Lee, D., Mani, M. & Chu, W. (2003), Schema Conversion Methods Between XML and Relational Models,
Knowledge Transformation for the Semantic Web, IOS Press, Netherlands, 2003, 1-17

Murata, M. (2001), Document description and processing languages - regular language description for XML
(RELAX): Part 1: RELAX core, Technical report, ISO/IEC, 2001

Moller, A. (2003), Document Structure Description 2.0, 2003, http://www.brics.dk/DSD/ dsd2.html

Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D. & Naughton, J. (1999), Relational Databases for
Querying XML Documents: Limitations and Opportunities, Proc. International Conference on Very Large Data
Bases (VLDB), Scotland, 1999, 302-314

Turau, V. (1999), Making Legacy Data Accessible for XML Applications, 1999, http://www-1.informatik.fh-
wiesbaden.de/~turau/DB2XML/index.html

W3C (2004a), Extensible Markup Language (XML) 1.0 (Third Edition), World Wide Web Consortium, 2004,
http://www.w3.org/TR/2004/REC-xml-20040204/

W3C (2004b), XML Schema Part 0: Primer, World Wide Web Consortium, 2004, http://www.w3.org/TR/xmlschema-0/

	Association for Information Systems
	AIS Electronic Library (AISeL)
	3-1-2007

	Mapping Rules for ER to XML Using XML Schema
	Sung Jin
	Woohyun Kang
	Recommended Citation

	Microsoft Word - SAIS07-47 Jin-Kang.doc

