AUTOMATION AS MIGRATION? – IDENTIFYING FACTORS INFLUENCING ADOPTION OF RPA IN LOCAL GOVERNMENT

Fredrik Söderström
Department of Management and Engineering, fredrik.soderstrom@liu.se

Björn Johansson
Information Systems and Digitalization, bjorn.se.johansson@liu.se

Daniel Toll
Linköping university, daniel.toll@liu.se

Follow this and additional works at: https://aisel.aisnet.org/ecis2021_rip

Recommended Citation
https://aisel.aisnet.org/ecis2021_rip/38

This material is brought to you by the ECIS 2021 Proceedings at AIS Electronic Library (AISeL). It has been accepted for inclusion in ECIS 2021 Research-in-Progress Papers by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.
AUTOMATION AS MIGRATION? – IDENTIFYING FACTORS INFLUENCING ADOPTION OF RPA IN LOCAL GOVERNMENT

Research in Progress

Fredrik Söderström, Linköping University, Linköping, Sweden, fredrik.soderstrom@liu.se
Björn Johansson, Linköping University, Linköping, Sweden, bjorn.se.johansson@liu.se
Daniel Toll, Linköping University, Linköping, Sweden, daniel.toll@liu.se

Abstract

This paper is part of a research project that investigates and provides guidance regarding the adoption and implications of automation in the Swedish local government. Automation technologies, such as Robotic Process Automation (RPA), are well established in the private and the public sector. In this paper, we discuss whether the adoption of RPA can be seen as migration towards automation. The aim is to evaluate the Push-Pull-Mooring (PPM) framework to understand better what factors influence local government adoption. By analysing RPA suppliers, RPA developers, and local government representatives' perspectives, we have identified push, pull, and mooring factors potentially influencing the decision to adopt, i.e., accepting or rejecting RPA. We, therefore, argue that the PPM framework seems to be a fruitful way of researching factors influencing the adoption of automation and the concept of automation as migration further.

Keywords: Process Automation, RPA, Push-Pull-Mooring, Local Government.

1 Introduction

Organisations in the public sector face significant challenges and need business improvement and innovation (e.g. OECD, 2018, Bason, 2018, Taylor, 2018, Söderström and Melin, 2019). In Sweden, a central actor\(^1\) states that demographic development demands efficiency improvements, and the public sector needs to take advantage of new technologies to address these challenges (SALAR, 2018b). Thus, public sector organisations perceive new technology as a potential solution to their challenges. This development is part of the public sector's ongoing digitalisation historically related to public sector reforms and new public management with aims such as increased efficiency and effectiveness (Heeks, 2001b, Heeks, 2001a). In the Nordics, these challenges have been acknowledged since the mid-1980s (Lane, 1997). Accordingly, there is a need for business improvement in Sweden’s public sector in general and particularly in local government, since this is a substantial sector, with municipalities being autonomous and having a greater responsibility than the state (Lane, 1997). Central guidelines describe that predictable, rule-governed tasks can be automated with existing technology, and local government need to identify tasks to automate (SALAR, 2018b). These guidelines create pressure to adopt and implement automation technologies, such as Robotic Process Automation (RPA), but there are evident variations in local governments’ prerequisites and ability to do so. Factors potentially affecting the adoption of new technology include financial resources, skills and competence, and political and management support. The ability to restructure the organisation and shift operations are also put forth

\(^1\) The Swedish Association of Local Authorities and Regions (SALAR), a central organisation advocating and representing the local government in Sweden.
Process automation using RPA solves manual data integration between different systems and platforms (Aguirre and Rodriguez, 2017). Thus, RPA is a form of end-user integration that is well-known and has been successfully applied in the private sector (e.g. Willcocks and Lacity, 2016). RPA can be related to the challenges of getting ICT systems to complete entire end-to-end processes (Lacity and Willcocks, 2015). RPA is a software-based solution for automating rules-based business processes (Aguirre and Rodriguez, 2017). Benefits of RPA include easy adoption and implementation, quick return of investment, minimising repetitive tasks and improving productivity (e.g. Willcocks and Lacity, 2016, Asatiani and Penttinen, 2016, Willcocks et al., 2019, Aguirre and Rodriguez, 2017). RPA has become a global trend increasing at a significant rate. Gartner reported RPA software growing by 63% in 2018 (Gartner, 2019). In 2017, a market estimate stated that over 70 per cent of organisations would, by 2019, be either using or piloting RPA (ISG, 2017). Consequently, the public sector in Sweden seems to be following this trend describing RPA as a suitable technology for public sector process automation (SALAR, 2018a).

Meanwhile, research has put forth challenges when adopting automation in a public sector context, for example, how automation affects public sector values (e.g. Wihlborg et al., 2016, Ranerup and Henriksen, 2019, Borry and Getha-Taylor, 2019) and how national adaptations of the European General Data Protection Regulation (GDPR) affect public sector automation efforts (Choroszewicz and Mäihäniemi, 2020). Based on this background, we argue that the described pressure to adopt RPA in local government combined with identified challenges in research and practice related to process automation motivate further studies in this area. In this paper, we describe research in progress focusing on the decision to adopt new technology in the form of RPA in a local government context. Since the organisational effects of RPA is a well-researched area, we instead want to focus on what influences the decision-making process to adopt, i.e. to accept or reject, this technology in a local government context.

In research, adoption is often related to the adoption and diffusion of innovations where innovation is something perceived as new such as an object, practice or idea (Rogers, 1995). However, adoption refers to the acceptance or rejection of innovation at the individual or micro level, while diffusion refers to the spread of innovation in a given context, i.e. the macro-level (Straub, 2009). Since this study focuses on the process of adoption per see, i.e. pre-acceptance and implementation, in line with Straub (2009), we argue that adoption is a complex social process influenced by individuals’ perceptions of technology and organisational factors. Accordingly, in this study, we define adoption as the choices of individuals during the process of accepting or rejecting a technological innovation such as RPA.

In line with Straub (2009), we argue that adoption also can be understood as a change in behaviour and to analyse adoption as behaviour further, we evaluate the Push-Pull-Mooring (PPM) framework (e.g. Bansal et al., 2005, Chang et al., 2017). We motivate this by the PPM framework's focus on the intentions and behaviour of migrating from an origin, associated with evident challenges, towards a destination with clearly defined opportunities, i.e. a change or switch in behaviour. The framework also offers a way of categorizing and conceptualizing various factors during the process. Our aim is also to test the idea of perceiving the process of adopting automation technology as an act of migration from an origin with manual tasks towards a destination with automated processes. Moreover, the framework’s mooring factors that potentially facilitate or obstruct migration enables us to focus on contextual factors such as organisational and social. Accordingly, this research in progress aims to discuss and evaluate the PPM framework in the context of deciding to adopt RPA in local government. For this purpose, we formulated the following tentative research questions:

1. What factors affect the decision to adopt RPA technology in local government in Sweden?
2. How can these factors be conceptualised and analysed further by applying the PPM framework?

The rest of the paper is structured as follows; section two covers related research, and the research approach applied is presented in section three. Preliminary findings are presented in section four, and in
section five, we discuss our findings as factors as prescribed by the PPM framework. The paper is then concluded in section six.

2 Related research

2.1 Robotic Process Automation (RPA)

Automation by technology that replaces human work is far from new; this is a phenomenon that can be traced back to Aristotle (Akst, 2013). Current automation approaches, such as RPA, also resembles previous iterations of automation technology such as Straight Through Processing (STP), i.e. fully automated transaction processing (Pan and Viña, 2004). To cut cost, increase efficiency, and improve quality have always been the imperatives of industrialisation, mechanisation, and automation. Automation is the concept of letting non-human actors, i.e. a virtual workforce, perform regulated and repetitive work (Willcocks and Lacity, 2016), i.e. non-intelligent tasks. This paper focuses on Robotic Process Automation (RPA), i.e. internal front-end automation, a phenomenon described as service automation, workplace automation, and robotic automation. An RPA robot usually refers to one software license (Aguirre and Rodriguez, 2017) that can be instructed to perform software-based tasks done by an end-user. RPA utilises the current back-office infrastructure, and the automation includes input, transformation and output across systems (Willcocks and Lacity, 2016). Despite a long tradition and practice of business process development, there are still many business processes in organisations that could be further improved and optimised (Penttinen et al., 2018), thus feeding the hype and interest in RPA. RPA is especially interesting for the public sector (Uskenbayeva et al., 2019) since it could be claimed that there are many processes in this sector that most likely are suitable for RPA automation. We claim that automation by RPA could, especially in the public sector, be seen as a first step to reengineer, develop and improve business processes.

2.2 RPA in the public sector

Although ICT enabled automation in government is far from a new concept (e.g. Heeks, 2001b), RPA research in the public sector (e-government) seems to be limited to date. There are, however, some notable examples, for example, studying public sector automated decision making (Ranerup and Henriksen, 2019, Wihlborg et al., 2016). Moreover, public sector studies have emphasised the need for acknowledging ethical impacts and trade-offs of automation (Borry and Getha-Taylor, 2019). These impacts can, in turn, affect specific jobs, for example, in administrative functions (c.f. Frey and Osborne, 2017). The growing interest in automation in a public sector context will also imply a significant change in work function and context (Borry and Getha-Taylor, 2019). Studies of RPA in the public sector emphasise the inherent issues of accountability, transparency, trust in citizens, professionals' role, and cost-sharing of automation (Ranerup and Henriksen, 2019). Other findings include employees becoming merely mediators in the context of automated (decision) systems and that related legislation and policies are not yet adapted for automated systems (Wihlborg et al., 2016). Therefore, we argue that public sector automation is significantly different. Unlike the private sector, we sense potential challenges and contradictions when trying to realise the benefits of automation and RPA while keeping underlying public sector values in a balanced state. These arguments are also in line with value-focused government research in general (e.g. Bannister and Connolly, 2014, Cordella and Bonina, 2012, Toll et al., 2019) and value-focused public sector automation studies in particular (Wihlborg et al., 2016, Ranerup and Henriksen, 2019, Borry and Getha-Taylor, 2019).

2.3 The PPM framework

The Push-Pull-Mooring (PPM) framework originates from human migration research to analyse residential mobility (Bogue, 1969). Various factors cause migration, such as "push" factors related to negative conditions at the origin and "pull" factors as positive opportunities at the destination (Bogue,
The concept of mooring factors was later added to the framework to integrate factors influenced by the individual's own experience and institutional impact in the decision-making process related to migration (Moon, 1995). Outside the field of demography, the PPM framework has been applied in a variety of studies to investigate different cases of switching behaviour in areas including child-care services (Grace and O’Cass, 2001), energy services (Wieringa and Verhoef, 2007) and auto repair services (Bansal et al., 2004). Moreover, this framework has also come to be used to investigate different kinds of information technology (e.g. Chang et al., 2017, Susanty et al., 2020, Chang et al., 2014). Historically, PPM studies have often applied a transactional focus but have, over time, also come to include a relational focus; thus, drawing on research regarding customer commitment (Bansal et al., 2004). The behaviour of switching between, e.g. services or goods, is, therefore, subordinated to behavioural intention (Jung et al., 2017). Accordingly, it is the study context in which PPM is applied that then decides if commitment or switch of behaviour is favourable or not.

The PPM framework is often applied in studies to investigate customers' behaviour in providing services or goods. However, in this study, we intend to apply this framework in an organisational setting in line with Susanty et al. (2020). In summary, the PPM framework offers an approach for understanding switching behaviour, and the concept of migration seems to fit well in the context of adopting technologies for automation. We motivate this by arguing that the decision to adopt automation entails a change or switch in organisational behaviour, a migration from manual work towards the acceptance and realisation of automated processes. Also, mooring factors expand the concept of intervening factors or variables (Bansal et al., 2005), which we believe will be essential in our further studies in public sector automation.

3  Research approach

This paper describes the first steps of research in progress intended to be conducted in two stages. The first stage aims to, by using a qualitative approach, identify factors that potentially influence the decision to adopt RPA technology in a local government. In the forthcoming second stage of the study, we intend to use these factors to formulate hypotheses to be tested quantitatively, i.e. a mixed-methods approach (Yin, 2014). As described, one aim is to assess the future applicability of the PPM framework; hence, we will discuss preliminary findings regarding push, pull, and mooring factors in later sections of the paper. In the first stage, we apply an empirically grounded qualitative (e.g. Myers, 2009) and interpretive approach (e.g. Walsham, 1993) where three empirical perspectives are investigated: RPA suppliers, RPA developers and local government. We motivate these perspectives by arguing that potential customers’ perceptions and expectations are affected by suppliers’ and developers’ arguments and marketing. Suppliers' marketing is also something that developers must relate to and deal with towards their customers. Instead of using a literature review as a basis for identifying factors and formulating hypotheses (e.g. Chang et al., 2017), this approach will enable identified factors to be empirically grounded in the study's actual context. We argue that this brings validity as well as credibility to identified factors. Relevant literature was identified using a hermeneutic approach (Boell and Cecez-Kecmanovic, 2014). The data collection consisted of the following three processes:

1. **RPA suppliers:** Based on content from websites of the five most prominent RPA suppliers of 2018 (Gartner, 2019), a ranking based on estimated market share in 2018. Data was collected from the “What is RPA?”-webpages from RPA suppliers’ websites and webpages that portray what RPA is according to the respective supplier (UiPath, 2020, Automation Anywhere, 2020, Blue Prism, 2020, NICE, 2020, Pegasystems, 2020b, Pegasystems, 2020a). All selected RPA suppliers are active in the Swedish market.

2. **RPA developers:** Data was collected from six qualitative interviews between June and October 2020. Digital conferencing software, i.e. Microsoft Teams and Zoom, was used due to travel...
restrictions\textsuperscript{2}. Two different consultancy firms specialising in RPA development are represented with three representatives each. Collected data were analysed using inductive or open coding followed by categorisation (e.g. Corbin and Strauss, 2008). The following roles were represented: HR manager/branding, Business analyst, Senior partner and RPA Developer.

3. Local government: A workshop was conducted with 15 representatives from five different Swedish municipalities of different sizes. The following roles were represented: Project lead digitalisation, Development lead, IT management, IT-architect, System integration/administration, Digital strategist, Automation manager, Business developer and, IT maintenance. These municipalities did not have any RPA technology at their disposal at the workshop time but were all planning to acquire the technology in the future\textsuperscript{3}. The workshop covered the themes of perceptions, prerequisites, characteristics, and impact of automation in the form of RPA. During the workshop, participants were also given questions regarding current challenges, perceived benefits and potential factors influencing future adoption of RPA. Data was then analysed inductively using thematic analysis (Gavin, 2008, Lacity and Janson, 1994).

4 Preliminary findings

4.1 RPA Suppliers

Since data collected about suppliers consists of marketing information regarding RPA technology, it is no surprise that this technology is described in superlatives. After several iterations of analysis, the following six categories/themes emerge (1) Business growth and success, (2) Cost and ROI, (3) Implementation and use, (4) Scalability and flexibility, (5) Data handling and (6) Repetitive tasks and error reduction. Business growth and success: One supplier describes the growth and success facilitated by RPA in terms of quantifiable and immediate benefits, including audit savings and compliance and that the technology will facilitate digital transformation (Automation Anywhere, 2020). RPA will empower operations in turn, bringing competitive advantage and accelerating time to market (Blue Prism, 2020). Cost and ROI: The return on investment is described to be realized from within days (Automation Anywhere, 2020) up to less than 12 months (UiPath, 2020) as a positive consequence of the rapid implementation of RPA (UiPath, 2020). RPA is a cheaper alternative to other digital transformation solutions, often associated with high costs and long implementation times (Blue Prism, 2020). Implementation and use: RPA brings the opportunity to quickly and easily automate business processes, and since the software is intuitive, this brings the opportunity for organisations to automate on their own (Automation Anywhere, 2020). Software robots are described as easy to train and integrate into any system (UiPath, 2020). Scalability and flexibility: RPA solutions bring very high flexibility and high scalability, one of the most critical features (UiPath, 2020). Data handling: The capability of RPA handling data is described as ranging from collection, consolidation and backup to validation, calculation and migration (Automation Anywhere, 2020). Repetitive tasks and error reduction: With RPA, high-volume repetitive tasks can be executed with a zero error rate (Automation Anywhere, 2020) or, as stated by a supplier: “an RPA software robot never sleeps and makes zero mistakes” (UiPath, 2020).

4.2 RPA Developers

RPA is described as only one of several potential technologies for business process automation. Moreover, the potential need for RPA is described as related to integration challenges between different kinds of legacy systems, hence bringing an efficient way to address integration needs and adopt

\textsuperscript{2} Due to the Corona – Covid-19 pandemic.

\textsuperscript{3} Since the workshop, three of the participating municipalities have adopted and implemented RPA solutions.
During analysis, the following categories/themes are emerging: (1) Process preparation, (2) Structured digital input, (3) Knowledge and competence and (4) Organisational support. **Process preparation:** The organisation must have good knowledge and map processes that are relevant to automation. It is also required that processes to be automated are rule-governed since there is no cognitive ability in RPA technology today (Manager 2, 2020). Developers usually have a clear set of indicators of what are appropriate processes to automate. These indicators include factors such as volume, error rate, complexity, and exceptions. **Structured digital input:** Although the requirement for structured input in the form of data was stricter in the past, modern technology allows for handling an increasing degree of unstructured input. However, structured input is still an essential prerequisite for automating processes (Manager 2, 2020). **Knowledge and competence:** Developers also emphasize the need for developing knowledge for developing and implementing RPA solutions (Manager 1, 2020). **Organisational support:** In RPA projects, there are often challenges regarding organisational support and the relationship between operations and the IT function (Manager 1, 2020). That the organisation has a strong steering group with a clear mandate to handle potential organisational challenges and consequences as a result of automation is described as another critical factor (Business Analyst 1, 2020).

### 4.3 Local government

During the workshop, the following four themes were considered: (1) Perceptions of automation, (2) Prerequisites for automation, (3) Process characteristics and (4) Organisational impact. Hence, the workshop's purpose was to allow participants, given these overarching themes, to think, associate and discuss automation and RPA freely in a local government context. **Perceptions of automation:** To automate manual, repetitive processes performed manually to free up time for more valuable work. There were also perceptions about RPA potentially becoming a facilitator enabling digitalisation in a traditional organisation. Furthermore, there are hopes for efficiency and automation facilitating operations. Also crucial for government organisations is the perception that process automation will ensure equal and fair treatment and safer handling of data without human factors as a potential error source. However, participants described a fear of creating technical dependence and losing control of automated processes. The risk of putting technology first is also put forth. For example, the risk that process automation becomes a goal in itself. Hence, there is a clear risk of overconfidence in technology. Finally, concerns about how a government organisation will collaborate on this type of technology are put forth.

**Prerequisites for automation:** The prerequisites for automation include a willingness and positive attitude towards change. It also takes courage and competence to deal with a fear of new technology among employees. Competence is a fundamental prerequisite in several areas such as requirements specifications, responsibilities and roles, technology, organisational needs, and change management. Also, commitment and participation are presented as critical vital factors in this type of organisational change projects. **Process characteristics:** Local government representatives describe the characteristics of processes potentially suitable for automation as processes with a high volume, repetitive processes, rule-based processes, having clear conditions, few exceptions and digital input. Also, there must be no legal obstacles to making the process digital and automated in a public sector context. **Organisational impact:** The organizational effects of automation are described as related to, for example, higher efficiency, processes are made more explicit, including processes that need to be performed by humans, minimized repetitive and tedious steps and the possibility of better process monitoring. Potential challenges regarding impact are described, such as ownership of technologies, governance, management, and leadership, including digital employees.
5 Discussion

5.1 Negative factors (push)

As previously described, organisations in the public sector face challenges, need business improvement and seek efficiency and effectiveness (e.g. Bason, 2018, Heeks, 2001b). However, as research points out, especially in the public sector, it becomes essential to emphasize that this technology's gains are not universal to all organisations (Borry and Getha-Taylor, 2019). Nevertheless, our empirical findings from the local government context so far point towards some notable push factors, i.e. negative conditions, and challenges at the origin. Some of the perceptions point towards, for example, that repetitive and tedious processes are still being performed manually, risk of human bias in decision-making processes, and lack of control and monitoring of processes. As mentioned, RPA is also seen as a potential driver and facilitator of digitalisation in local government. However, we argue that this argument might be subject to an inherent contradiction, i.e. to what extent digitalisation measures can facilitate the same, especially if seen as challenging. RPA developers also describe several push factors from the customer's view, such as lack of integration between legacy systems and RPA as a way to adopt automation in an organisation. Thus, in summary, push factors for the migration towards automation in local government seems to be in line with research describing that public sector automation is driven by the economy, efficiency and effectiveness (Borry and Getha-Taylor, 2019).

5.2 Positive factors (pull)

Based on findings from RPA suppliers’ perspective, the opportunities of RPA automation seem overwhelming, facilitating growth and success, rapid ROI, quick implementation, ease of use, scalability, and flexibility. On the other hand, RPA developers offer a more realistic and business-driven perspective since they emphasize that RPA is just one of several automation technologies. Moreover, developers acknowledge a common need to integrate legacy systems. If the organisation lacks the possibility of back-office integration, RPA offers organisations opportunities to automate at the front end. While representatives of the local government acknowledge several of the pull factors mentioned by suppliers and developers, they mention placing RPA automation in the broader digitalisation context. Hence, because of a potentially lower buy-in cost and quicker results than traditional IT projects, RPA automation could well offer a clear and entirely hands-on solution facilitating other measures of digitalisation. Moreover, the research presents a more nuanced and realistic view of the potential pull factors of RPA automation, especially in a public sector context. Research state that with automation, organisations can increase their process rate while keeping time and effort to a minimum (Issac et al., 2018) and that benefits of RPA include improved efficiency, productivity and accuracy while employees are relieved from tedious and repetitive tasks (Bourgouin et al., 2018).

5.3 Mooring factors

With mooring factors, we refer to factors potentially affecting the decision to adopt RPA. From RPA developers’ perspective, we see several implications of potential mooring factors, i.e. factors related to the customer's organisational context. First, processes to automate must meet the RPA software requirements, including assessing and potential preparation of processes. The organisation must also have mapped out its processes in order to identify suitable candidates for automation. This means that significant preparatory work is required that is not mentioned in the suppliers' sales arguments. Second, based on our empirical findings, we argue that taking advantage of RPA automation benefits is not only about a successful adoption and implementation of RPA technology; factors such as organisational support and change management also become critical factors in this context. Moreover, suppliers describe the relationship between operations and the IT function as a potential challenge. Another potential mooring factor described by suppliers and local government is that the organisation adopting automation must have access to the needed competence regarding technology and organisational issues.
From research, we also learn that RPA projects can be associated with some of the more classical ICT-related problems, such as being delayed, not scaling and ultimately being abandoned (Willcocks et al., 2019). Other factors negatively affecting RPA projects are organisational resistance, lack of funding, security, compliance and governance (Willcocks et al., 2019); hence a significant part of problems arising in this context can be related to management. Research describes the application of automation technologies as particularly challenging in the public sector, for example, how automation will affect value-based commitments (Borry and Getha-Taylor, 2019). While the risk of negative bias towards customers or citizens in decision-making processes performed by humans has been described as a push factor, this needs to be problematised further, especially in a government context. As Borry and Getha-Taylor (2019) point out, automated decision making processes may not be free of any bias since humans program them. Hence, there is a risk of automated processes being black-boxed and reinforced instead of minimising bias. Moreover, RPA suppliers’ selling arguments can also be seen as overstating the capabilities of RPA; hence positive effects of the technology are exaggerated in marketing; a phenomenon described as ‘RPA-washing’ (Willcocks et al., 2019).

6 Concluding remarks and further research

In this paper, we identify factors potentially affecting the decision to adopt RPA in local government in Sweden and propose applying the PPM framework for further investigations of the intention and behaviour of migrating from manual to automated processes by adopting RPA technology. Like other studies applying the PPM framework, we argue that the migration at focus will significantly impact the organisation (e.g. Bansal et al., 2005). Our preliminary findings of negative factors at the origin (push) and positive factors at the destination (pull) so far seem straightforward. Local government organisations face challenges regarding efficiency and effectiveness, and automation technology such as RPA offers the opportunity to relieve the organisation from tedious, time-consuming, and repetitive tasks. However, the findings regarding mooring factors have proven to be a fruitful perspective to investigate further what factors potentially influence the decision to adopt automation. For example, developers and the local government acknowledge the need for preparedness regarding process management. Developers also emphasize the need for automation initiatives to be firmly established and supported in the organisation. Also, local government representatives show awareness of automation technology, potentially challenging public sector values.

We, therefore, conclude that there are potential benefits of applying the PPM framework and using the term migration as an analogy to develop knowledge about what influences local government organisations to adopt process automation. The concept of migration also brings potentially interesting dimensions to the adoption process. For example, early adopters of RPA in local government can be seen as migrating voluntarily, whereas other local government organisations, being subjected to central pressures to automate, become forced similarly as refugees. The expected future contribution to research includes adding to the body of knowledge regarding local government automation and how the PPM framework can be applied to bring new insights in relational contexts involving migrating towards a specific technological destination. In our ongoing study, we aim to continue the empirical work of identifying factors that influence the decision to automate and conceptualize these using the PPM framework. In this process, local government organisations in different states of migration towards automation will be included. At the next stage of the study, the empirically grounded factors will be used as a basis for formulating hypotheses to be tested quantitatively among local government organisations in Sweden.

References


SALAR 2018b. Automatisering av arbete - Möjligheter och utmaningar för kommuner, landsting och regioner. Stockholm: SALAR.


