Association for Information Systems

AIS Electronic Library (AISeL)

Mediterranean Conference on Information Systems

MCIS 2008 Proceedings (MCIS)

10-2008

THE KNOWLEDGE-GAP REDUCTION IN
SOFTWARE ENGINEERING

Salem Ben Dhaou Dakhli
Paris-DauphineUniversity, France, sdakhli@computer.org

Ben Chouikha Mouna

Paris-DauphineUniversity, France, mouna.benchouikha@dauphine.fr

Follow this and additional works at: http://aisel.aisnet.org/mcis2008

Recommended Citation

Dakhli, Salem Ben Dhaou and Mouna, Ben Chouikha, "THE KNOWLEDGE-GAP REDUCTION IN SOFTWARE
ENGINEERING" (2008). MCIS 2008 Proceedings. 37.
http://aisel.aisnet.org/mcis2008/37

This material is brought to you by the Mediterranean Conference on Information Systems (MCIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in MCIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please

contact elibrary@aisnet.org.


http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2008?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2008?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2008/37?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

THE KNOWLEDGE-GAP REDUCTION IN SOFTWARE
ENGINEERING

Dakhli, Salem Ben Dhaou, Paris-DauphineUniversttace du Maréchal de Lattre de
Tassigny, 75016 Paris, France, sdakhli@computer.org

Ben Chouikha, Mouna, Paris-DauphineUniversity, @ldie Maréchal de Lattre de Tassigny,
75016 Paris, France, mouna.benchouikha@dauphine.fr

Abstract

Many papers proposed in the software engineering) iaformation systems literature are dedicated
to analysis of software projects missing their sithes, exceeding their budgets, delivering software
products with poor quality and in some cases evewngvfunctionality. The expression “software
crisis” has been coined since the late 60’s tositate this phenomenon. Various solutions has been
proposed by academics and practitioners in ordest@al with the software crisis, counter these teend
and improve productivity and software quality. Susblutions recommend software process
improvement as the best way to build software prtedneeded by modern organizations. Among the
well-known solutions, many are based either onwso# development tools or on software
development approaches, methods, processes, aatibnst Nevertheless, the scope of these solutions
seems to be limited and the improvements they ggaaie often not significant. We think that since
software artifacts are accumulation of knowledgenea by organizational stakeholders, the software
crisis is due to a knowledge gap between resulfiogn the discrepancy between the knowledge
integrated in software systems and the knowledgeedwby organizational actors. In particular,
integrating knowledge management in software deveémt process permits reducing the knowledge
gap through building software products which reflat least partly the organization’s know-how. In
this paper, we propose a framework which providetefinition of knowledge based on information
systems architecture and describes how to deal thithknowledge gap of a knowledge oriented
software development process which may help orgtoiws in reducing the software crisis impacts.

Keywords: knowledge, software process, organizatiaactor, business function, business entity,
business process, information.



1 INTRODUCTION

Many papers proposed in the software engineeridgrgormation systems literature are dedicated to
analysis of software projects missing their schesluexceeding their budgets, delivering software
products with poor quality and in some cases evesng functionality. The expression “software
crisis” has been coined since the late 60’s tcstithte this phenomenon. Various solutions has been
proposed by academics and practitioners in ordde&b with the software crisis, counter these tsend
and improve productivity and software quality. Sushblutions recommend software process
improvement as the best way to build software prtglneeded by modern organizations. Among the
well-known solutions, many are based either onwso# development tools or on software
development approaches, methods, processes artbnstad he Unified Process, the UML notation,
the Object-Oriented paradigm are examples of gwistiproposed since the end of the 80’s.
Nevertheless, the scope of these solutions seeiys limited and the improvements they provide are
often not significant. Indeed, the well-establistemftware development approaches, methods and
processes are based on a rational mechanistic efiewganizations. According to this view, to be
efficient software development must be comparettaditional manufacturing processes which are
routinized using the Taylorian scientific managetngrnciples. Such a view is criticized by many
authors for many reasons. Firstly, it is technolagiented, reductionist and does not reflect the
complexity of the modern organizations reality. @y, it is based on the procedural rationality
concept which assumes that to solve a problemnag@ons look for the best solution called silver
bullet by (Brooks 1987). On the basis of the Bouh&ationality theory proposed by (Simon 1983),
Brooks demonstrates that there is no miraculousrsiullet and that organizations solve the soféwar
engineering problems they encounter by buildingsBaing (i.e. good enough) solutions (Brooks
1987) (Brooks 1995). Moreover the systematic, gistdd and quantitative view of software
engineering induced by the well-known and approsahethods does not take into account all the
dimensions of software in particular organizatipretonomic, and human dimensions (Toffolon
1999) (llavarsan et al. 2003). (Boehm 2006) stedbat the software engineering discipline is
multidisciplinary and oriented toward people. Tliere, software engineering relies not only on
computer science but also on economics, behawseorahces and management sciences. (Turner et al.
2003) suggest the weaknesses of the methods anolapps - proposed during the last four decades
to deal with the software crisis — are relatedhte bureaucratic project management process they
induce. These authors use the economic agencyytifatohian et al. 1972) (Jensen et al. 1976) to
analyze software projects as a temporary orgaoizaimilar in complexity, uncertainty and risks to
modern organizations. According to this point oéwj the management of software projects is
characterized by conflicting relationships betweawganizational actors linked by principal/agent
contracts. Therefore, the use of project ratiomal systematic management methods induced by the
well-established software engineering approachets rapthods is not appropriate and results in
software projects failures associated with thevgafé chronic crisis. This analysis is not efficiémt
addressing the complexity of modern organizationsesthe economic agency theory is rooted in the
procedural rationality paradigm. We think that sisoftware artifacts are accumulation of knowledge
owned by organizational stakeholders (Baetjer 1998 software development process must be
knowledge-oriented. In particular, integration afokwledge management in software development
process permits building software products whidlece at least partly the organization’s know-how.
In this paper, we propose a framework of a knowdeddented software development process which
may help organizations in reducing the softwarsigrimpacts. Our framework is based on a joint
meta-model common to business processes archéeatfiormation systems (functional) architecture
and applicative architecture. In this framework, degine knowledge owned by organizational actors
using the main concepts identified by this meta-ehod@his paper is organized as follows. In section
2, we present the meta-model on which relies trevkedge-oriented development process proposed
in this paper. Section 3 describes a meta-lifecyélehis process and emphasizes its knowledge-
oriented nature. In section 4, we conclude thisepdgy listing the problems encountered and the
future research directions.



2 THE PROCESS-APPLICATION-FUNCTION (PAF) META-MODEL

(Dakhli 2008) proposes a software solution architec multi-layered model which relies on five
interacting layers: the strategy layer, the fun@ioarchitecture (information system architecture)
layer, the applicative architecture layer, and sh&ware architecture layer (Figure 1). The striateg
layer defines the organizational problems to bevesbland their organizational solutions. Such
problems result from the organization’'s external artiernal constraints. External constraints may be
economic, political, social, legal or related te thvolution of the technology. Internal constraints
reflect the impacts of external constraints on trganization’s components: structure, people,
production technology, tasks and information tedbay (Toffolon 1996) (Leavitt 1963).

The business process layer describes the busimesespes architecture at the conceptual and the
organizational levels. The business processes paralearchitecture models business processes as a
nexus of activities exchanging and processing mégion. The organizational business processes
architecture is the projection of the conceptuaimess processes architecture on the organization.
Therefore, it models business processes as nexopeshtional activities and tasks carried out by
organizational actors in order to create value. Giginess processes architecture is updated acgordi
to the organizational solutions defined by thetsg® layer.

The functional architecture layer describes thermftion system architecture as a nexus of business
entities and functions. A business entity is aofébformation chunks which define a concept used b
the organizational actors while carrying out a bass process. A business function is an actionhwhic
uses and transforms at least one business entityusiness process manipulates business entities
through the use of business functions. Businessiesntaire described in a business repository. A
business function may be considered as an aggoegafi many business sub-functions. Business
functions may be used by many business processeh I8usiness functions are called reusable
business functions. Business entities manipulatedniany business processes are called shared
information. Because of the invariant and stableuneaof business entities and business functions,
they are independent of the organizational strectand the roles played by actors within an
organization. Architecture of an organization’soimhation system is defined as a model describing
the organization’s business functions and busieesises as well as the relationships between these
concepts. The business processes architecture dstagp by integrating the impacts of the
organizational solutions defined by the strategjet on the business entities and functions.

The applicative layer provides a map which deserithe organization’s applications as well as the
information flows they exchange. An applicatioraiset of software systems which computerizes at
least partly a business process. So, an applicatiovides a software support to the value creation
behavior of organizational actors. This behaviansists in carrying out business processes acsvitie
which manipulate business information by using hess functions. An application provides two
categories of services: service-to-user and setoiepplication. A service-to-user results from an
interaction between and end-user and an applicatonhelps an organizational actor who carries out
a set of operational activities. A service-to-aggiion is an intermediate service provided by an
application to another application while processinfgrmation. An application may be considered as
a dynamic conjunction of a set of business proeeswities with business entities and business
functions in order to contribute to goods and sswiproduction. The applicative layer results from
the interaction between the functional layer aradlibsiness process layer which supports the problem
and operation spaces. The applicative layer dalig€irst level description of a software solutama
new or enhanced application which interacts witistexg and future applications.

The software layer describes each software sol@n set of software components and connectors
distributed according to a software architecturelehde.g. MVC,...). A software solution is either the
architecture of a new application which supportsleatst partly a new business process or the
architecture of an existing application which ishanced in order to take into account the
modifications of an existing business process. egpe richness of the existing definitions of the
software component concept, we think that thesmitiehs are note appropriate to take into account
all the perspectives of information system architec So, we propose in this paper a definitiothif
concept which refers to business functions. Ouindiefn states that a software component is an
autonomous and homogeneous logical unit which imphas a business function in order to provide a



service either to end users or to other logicatsunh software connector is an autonomous and
homogeneous logical unit which facilitates intei@ts between two software components. A software
solution is composed of reusable and specific soffwcomponents and connectors. A reusable
software component implements a business functed by many business processes.

Impacts of strategy on
business functions

Impacts of strategy on ‘
,Yand entities

businessprocesses - _

“ Organizational
Solution

Problem space

First level description
of a softwar e solution

Figure 1: The software solution architecture multi-layereald@l [Adapted from (Dakhli 2008)]

Consequently, the software solution architecture h@mny facets associated to the four layers
presented above. Each facet corresponds to antemttine meta-model which describes the basic
concepts characterizing this facet and their @stiips. The main concepts used by the four meta-

models are interrelated as illustrated byPi#d- global meta-model of software solution’s architeet
(Figure 2).

Operational
activity

carriesout

Organizational
actor

Service-to-
application

Figure 2: ThePAF meta-model of software solution’s architecture



3 THE KNOWLEDGE-ORIENTED SOFTWARE DEVELOMENT
PROCESSMETA-LIFECYCLE

Prior to the presentation of our knowledge-oriergeftware development process meta-lifecycle, we
define the concept of knowledge used in this wankd analyze how software systems integrates
knowledge.

3.1 The concept of knowledge

Knowledge is defined as information that is reldvian executing certain business actions. According
to (Nonaka et al. 1995) and (Newell et al. 200howledge may be understood as a justified true
belief. This definition emphasizes the temporarureof knowledge. The knowledge and information
concepts are mutually dependent. On the one hafahmation is external to human beings and is
stored in various supports like books or databagleide knowledge in internal to the minds of
knowledge workers. On the other hand, informatienconverted to knowledge through the
internalization process and knowledge is transfdrineo information once it is externalized (Alati e
al. 2001). Internalization consists in transforminfprmation which is external into knowledge which
is internal to the minds of knowledge workers. In#ag and information processing by knowledge
workers facilitate internalization and result ireation of new knowledge, or alteration of existing
knowledge. Externalization consists in articulatinggrnal knowledge in order to making it extertaal

the mind of a knowledge worker. Externalized knalgle is called explicit knowledge or information
while tacit knowledge is knowledge which cannotdsgculated (Zack 1999). Writing a book is an
example of externalization of knowledge owned byaathor. Knowledge is tacit if it is difficult to
express using some understandable symbols likéewnitotations or spoken language. The concept of
tacit knowledge was introduced by (Nonaka 1994awiing on the more philosophical work of
(Polanyi 1967) which considers that tacit knowledgthe type of knowledge we use to carry out the
actions that we perform routinely without thinkiognsciously about how to carry these actions.
Another important characteristic of knowledge iattt is related to action (Nonaka 1994) (Nonaka et
al. 1995) (Buckley 2001). This means that the vabfieknowledge results from the ability of
knowledge workers to impact the real environmenthich they operate. Moreover, the action of
knowledge workers within the environment where tbhpgrate generates feedback information which
facilitates organizational learning. In particuldacit knowledge can take the form of embodied
knowledge which is materialized by action of knosge workers (Blackler 1995). In this paper, we
define knowledge as the interaction between orgdioizal actors, business processes, business
functions, and business entities. Therefore, kndgde determines how an organizational actor
contributes to value creation when he carries askg associated with his role within an organizratio
This definition suggests three remarks. Firstlyritlerlines the dependence of knowledge owned by
an organizational actor on how he perceives taskishaisiness functions. Secondly, it recalls that
organizational actors create knowledge by procgssiformation. Finally, this definition takes into
account the relationships between knowledge antbracs well as the temporary nature of
knowledge. Indeed, interaction between an orgaizalt actor, a business process, business functions
and business entities depends on existing knowlemgeed by this actor. Such knowledge is
continuously updated through processing of inforomaprovided by the organizational environment
and the business entities manipulated during thardzational actor action.

3.2 The knowledge gap analysis

Since software systems are accumulation of knowde(aetjer 1998), they may disseminate
knowledge not only contained in books and storigsatso owned by knowledge workers who carry
out business, support and decision-making proces#sn organizations. Moreover, knowledge

integrated in software systems is made operatitmablve problems encountered by organizational
actors who operate within organizations. The eiffeciess of knowledge integration in a software
system determines the quality of this system imw lthey support business, support and decision-



making processes within organizations. Moreoves,difference between the quality of two software
systems results from the amount of knowledge thgsedhinate. This is because knowledge integrated
in software system determines their ability to <suppeffectively organizational processes.
Consequently, a software system may be thoughhewlkdge container whatever the method, the
language or the technique used to develop it. Paimt of view provides us with a different
explanation of the roots of the software crisise Kmowledge gap is the main reason of the rejection
of a software system by the organizational actors iintended for. Such a gap consists in the
difference between the knowledge integrated infawspe system and the knowledge owned by the
organizational actors who use this system whileryoayg out their activities. Furthermore, the
knowledge gap associated with a software systatapgndent on the organizational actors who use it.
This means that the value provided by a softwaséesy to an organizational actor using it depends on
the amount of knowledge proper to this actor aridgrated in this software system. So, there are
many knowledge gaps associated with a softwaremsystach gap expresses the discrepancy between
the knowledge owned by an organizational actor #wedamount of knowledge integrated in the
software system. Consequently, an organizatiorial aejects a software system if this system ddesn’
reflect a sufficient part of the knowledge ownedthis actor. Besides, the knowledge gap may be
targeted as the root cause of the users resist{aticehheim et al. 1988) (Toffolon 1996) (Dakhli
1998). Following the terminology of (Brooks 198Te knowledge gap seems to be an essential
difficulty associated with software engineering.vigheless, even if there are many organizational
actors who consider that a software system integraipart of their knowledge, the acceptance df suc
a system is not easy, as it is not restrict itseffroviding a set of services, but induces chamngéise
organization and balance of knowledge. Therefdre, knowledge gap has two facets: conservative
and extensive. The conservative facet of the kndgdegap describes the impact of a software system
on the organization and the balance of knowledgeealnby an actor or exchanged by many actors.
The extensive facet of the knowledge gap provigearswer to the following question: what is the
part of the knowledge owned by an individual actanot integrated by a software system used by this
actor?

During the last two decades, many authors havesstcethat requirements engineering provides the
appropriate solutions to reduce the impacts ofstifévare crisis (Wiegers 2003) (Neill et al. 2003)
(Davis 2005) (Regnell et al. 2005) (Glinz et al02P(Dieste et al. 2008). Nevertheless, the satstio
proposed by the requirements engineering commulaityiot provide instruments effective enough to
deal with the software crisis in particular becatsse solutions take into account the knowledge ga
This means that solutions to the software crissgetan requirements engineering don’t describe how
to gather, combine, transform, and integrate kndgdeinto a software system through a sequence of
specifications with an increasing degree of forsmali Therefore, to improve software systems quality
through the knowledge gap reduction, the softwageebpment process core activities must be
dedicated to cooperative and iterative knowledggrerering (Toffolon et al. 2007).

3.3 Integration of knowledge in software systems

In this work, the expression “knowledge engine€rirgders to a set of activities related to knowledg
gathering, storage, combination, transformation taadsfer. According to (Toffolon et al. 2007), the
cooperative nature of the knowledge engineeringgs® is due to two types of asymmetries: know-
how asymmetry and understanding asymmetry. Know-remymmetry is related to tacit and
articulated knowledge owned by human actors arginaies from the dispersion of knowledge across
stakeholders and existing software artifacts. F@m®le, there is a know-how asymmetry between
organizational actors belonging respectively tophablem side (end user, customer) and the solution
side (architect, developer). The customer and tite isser are domain experts who understand the
practice and know implicitly what the system is poged to do. They do not know the technological
possibilities for supporting their work. The areut and the developer know how the technology can
do it but they ignore whether the technology thegate will be appropriate for the support of
operational and decision processes. Understandipignraetry results from the differences between
stakeholders understanding of knowledge dissenmdnate existing software systems and their
perspectives of what the future software systenulshioe.



The reduction of the knowledge gap requires bujjdircommon vision of the future software system
shared by all the organizational actors concernigldl this system. The know-how and understanding
asymmetries constitute obstacles to this challesigee they contribute to the knowledge gap
aggravation. That is the reason why the softwagineering activities and the knowledge engineering
activities they embed must be cooperative i.e.edtaklers have to work together in order to reduce
asymmetries and build a common view of the requitgdre software system. Such a view is based
on knowledge embedded in existing software arsfamt owned by stakeholders combined and
transformed through the knowledge engineering m®deffective cooperation of stakeholders results
in software prototypes which either permit uncewtiaireduction or are pieces of the final software
system. In the first case, informative prototypes lauilt to extract knowledge embedded in existing
artifacts or owned by stakeholders and to illustratcommon understanding of requirements and
needs. In the second case, final versions of soétwendules, called operational prototypes defirge an
implement the stakeholder's common view of whatfthal software system should be. Operational
prototypes are parts of the software system verdilivered to end-users. Informative prototypes
reduce uncertainty inherent in requirements andegged by know-how and understanding
asymmetries. They may be considered as commumctdimls which facilitates knowledge transfer
between all the stakeholders involved in softwaystesns development, maintenance, and use.
Operational prototypes are dependent on informatie¢otypes which provide them with knowledge
shared by stakeholders and necessary to build aoarwision of the future software system. Such a
common vision may be considered as the smallestmmymdenominator synthesizing knowledge
shared by all the stakeholders. The iterative eatfr the software engineering process and the
knowledge engineering activities it embeds stemniyairom the volatility and the fuzziness of
stakeholders’ requirements. During each iteratiofgrmative prototypes are built, discussed and
assessed by stakeholders working together prideteloping a version of the final software system
composed of operational prototypes. Therefore, gacsion of the final software system, issued from
an iteration of the software development procesfieats the state of the vision of the software
problem and solution shared by stakeholders. Besale evolution of the stakeholders shared vision
of the problem and the solution often results ineanlution of a software system integrating this
updated common vision. Consequently, building areshaision of the software problem and the
software solution - i.e. the future software systmmuired by an organization — conditions the
approval of the future software system by the corex organizational actors. In the next subsection,
we present a meta-lifecycle on which rests the ggeavhich permits building of the shared vision to
be integrated in future version of software systems

3.4 The meta-lifecycle of knowledge integration in gafte systems

The proposed meta-lifecycle of knowledge integratio software systems is based on the four-staged
DUCA (DiscoverUnderstand=onstructAssess) lifecycle due to (Toffolon et al. 2007).tHis paper,

we contribute to improvement of this lifecycle bging the PAF (Process-Application-Function)
meta-model presented in a previous section to ibesdrow theDUCA four stages take place.
According to (Toffolon et al. 2007), each iteratiohthe knowledge-oriented software development
process rests on tlHJCA lifecycle which is composed of four stages (fFégR):

© Discover the problem knowledge i.e. knowledge etiigmb in existing software artifacts
and other internal and external sources (bookslegui...) or owned by stakeholders

® Understand the body of knowledge issued from tisedYery stage and build a shared
vision of the problem knowledge

© Construct a common vision of the software solution
O Assess the software solution



Existing system

Future system

|
Informative prototypes
|

|

|

|

|

| \
l Construct

| J/
|

|

|

|

|

|

|

Infor mative prototypes
Articul ated knowledge

Oper ational
prototypes

Problems

|
|
|
|
|
|
|
|
|
|
|
|
: Requirements
|

Figure 2: theDUCA lifecycle [Source (Toffolon et al. 2007)]

3.4.1 The Discovery stage

The Discovery stage consists in gathering knowleddgted to problem and the software solution.
Such a knowledge is owned by stakeholders or emdoiti existing software artifacts and other
external and internal sources. In addition to imfation stored in various supports like written gsd
and databases, the knowledge discovered at thie staexplicit knowledge externalized by the
stakeholders during brainstorming sessions or\vigess. The output of this stage splits into two
categories: static and dynamic. Static knowledderseto information chunks which describe the
organizational solution and the software problenymn@mic knowledge has three components. On the
one hand, it includes a description of businescgs®es, support processes and decision-making
processes to be supported by the future softwdnéicam On the other hand, it includes a descriptio
of organizational actors who carry out these preeesFinally, it identifies the information and
knowledge artifacts manipulated by the concernedgsses and organizational actors.

3.4.2 The Understanding stage

The knowledge gathered during the first stage &l uhuring the Understanding stage to build shared
visions of the organizational solution and the esponding software problem. These shared visions
combine articulated knowledge and informative pigies. The Understanding stage rests on the
business processes and functional (Informationefystarchitecture layers of the software solution
architecture multi-layered model. The conceptua arganizational business processes architecture
models provided by the business processes arahiéeletyer contribute to building a shared vision of
the organizational solution. Not only the busingsscess layer provides a view of the organizational
processes related to the software problem to eda@nd supported by the existing software solution
(if such a solution exists). But also, it takeiatcount the impacts of strategic decisions ombas
processes. Such impacts refer to the charactsrisfithe organizational solution. The information
system architecture models expressed in termsafiess functions and business entities contriloute t
building a shared vision of the software problemresponding to the organizational solution. Such
models, provided by the functional architectureelayeflect the strategic decisions impacts on the
architecture of the organization’s information gyst These impacts originate either directly from th
strategic layer or indirectly from interactions Wween the business processes and the functional



architecture layers. To avoid knowledge asymmetridemain ontologies which provides
organizations with a common understanding of bissirmains main concepts may be used, updated
or built from scratch. In particular, domain onigies provide knowledge foundations of repositories
of the business entities and the business functimarspulated by the organizational processes. Such
repositories play a critical role in building shargisions of the organizational solution and the
software problem.

3.4.3 The Construction stage

During the Construction stage, the stakeholderskwaogether by combining and transforming their
knowledge in order to define a shared vision of mtha future system should be. The stakeholders
generally build a sequence of informative protosype order to elicit and conciliate their points of
view. Informative prototyping plays a knowledge emgring-related role during the Construction
stage. On the one hand, it reduces uncertaintyugtrantegration of tacit knowledge owned by
stakeholders into software artifacts called infaiuaprototypes which catalyse many aspects of the
shared vision of the future software solution. @& tther hand, it contributes to knowledge creation
since informative prototypes facilitate communiocati and interaction between stakeholders.
Knowledge generated by this way may improve theezhgision of the future software solution. Such
a common vision is embodied in a set of operatigmatotypes which make up a version of the
required software solution to be used and evaluatedisers during the Assessment stage. The
construction of informative and operational propsy relies on the organizational processes and
functional architecture layers which permit idepttion of operational tasks supported by the fitur
software solution and the business entities andhess functions manipulated by these tasks. The
description of the applicative and software ardtitees of the future software system is beyond the
scope of this paper. More detailed informationteslao this topic is provided by (Dakhli 2008).

3.4.4 The Assessment stage

During the Assessment stage, the operational pqoissued from an iteration is evaluated by the
organizational actors it is intended for. Thes@i@ctise the operational prototype as support tio the
operational tasks within the organization. The Asssent stage results in new problems and
requirements to be taken into account during the iberations. Solutions proposed to these problems
generally generate knowledge which update the dhasion of the software solution and then make
this solution richer.

4 CONCLUSIONAND FUTURE RESERACH DIRECTIONS

The framework presented in this paper has been insadFrench Insurance company to develop a
software system aimed at supporting the manageaig¢he customer’s claims. Let us note that many
architecture guides exist in this company but tifeasare project teams do not always apply the rules
they define. Furthermore, the iterative developnagmtroaches including software prototyping are not
applied in this company where the software develmnprocess is based on the waterfall sequential
model. Finally, knowledge management is still cdased as a long term project and no resources has
been allocated to this project until this year. Gbal of the use of our framework within this compa
was to demonstrate to the strategic managers thfitvase solutions in knowledge-intensive
companies must be built according to three priesipFirstly, the software development process in
knowledge-intensive organizations includes softveargineering traditional activities (design, coding
testing,...) which are intertwining with knowledge gémeering activities. Secondly, the waterfall
software development process is not appropriatbuitd knowledge-intensive software systems.
Moreover, the development of such systems requeestive approaches like software prototyping or
agile methods. Finally, modelling organizationabgesses architecture and functional (Information
System) architecture is required to build effectieowledge-intensive software systems. The
Discovery stage starts by sending a Request forrmtion to all the entities of this company locate
in Europe and in the rest of the world. No sigmifitanswers result from this Request for Infornmatio



Then the project manager launched many workshopsriler to gather knowledge about the
organizational solution and the solution problemriBg this stage the customers claims management
process has been modelled at the conceptual aadipagional levels. Moreover, the business entities
and business functions manipulated by the custonteims management process are identified. Two
main problems have been encountered while accamdjghis task. The first problem stems from the
fact that the difference between a task and a bssifunction is not easy to understand while the
second problem is related to the interpretationmasgtries of the business functions and business
entities identified. These problems were solvedtganising workshops with a facilitator who doesn’t
belong to the company. The construction of infoimgaprototypes was not easy since there is no
prototyping culture within this company. During t@enstruction stage, the same problems have been
encountered. Nevertheless, this stage was lessutlifthan the Discovery and Understanding stages
since the process of solving such problems was mastered then during the first two stages.

The application of the proposed framework to a praject results in many recommendations and
future research directions. Firstly, the constarctof domain ontologies is required to deal with
misunderstanding, misinterpretations and knowlemigenmetries related notably to the activity, task,
business function, and business entity identifocatand use. Secondly, the relationship between
software design and ontologies has to be descfdyethlly in order to build effective informative dn
operational prototypes. Finally, domain ontologihes to be integrated in the software architecture
multi-layered model.

The main contribution of this paper consists inlaixpng the software crisis in terms of knowledge
gap and in stressing the relationships between kaowledge owned by the organizational actors,
organizational processes and information systemitacture. By contributing to the reduction of the
knowledge gap in software engineering, the propdsadework offers an alternative solution aimed
at minimizing the software crisis impacts. We thihlat the integration of domain ontologies in this
framework may improve it by clarifying the interting nature of software engineering and
knowledge engineering activities and improving khewledge gap reduction process.

References

Alavi, M., and Leidner, D.E. (2001). Knowledge Mgeanent and Knowledge Management Systems:
Conceptual Foundations and Research Issues. MI8&@ya25 (1), 107-136

Alchian, A.A., and Demsetz, H.: (1972). Productitnformation Costs and Economic Organization,
American Economic Review, 62 (5), 777-795.

Baetjer H. Jr. (1998)Software as Capital: An Economic Perspective onvwaoe Engineering. The

Institute of Electrical and Electronics Engineéns,, Piscataway, New Jersey.

Blackler, F. (1995). Knowledge, Knowledge Work ar@rganisations: An Overview and
Interpretation, Organisation Studies, 16 (h6), 10046.

Boehm, B.W. (2006). A View of 2Dand 21" Century Software Engineering. In L. Osterweil, D.
Rombach, and M.L. Soffa (Eds), Proceedings of &8 Iaternational Conference on Software
Engineering (ICSE’2006), pp. 12-29, ACM Press, Néavk,

Brooks, F.P Jr. (1987). No Silver Bullet-Essencd Aacidents of Software Engineering. Computer,
20 (4), 10-19.

Brooks, F.P Jr. (1995). The Mythical Man Month: &ss on Software Engineering. Reading, M.A.,
Addison-Weslay.

Buckley, W. (2001). Mind and Brain: a Dynamic SystModel. In Geyer, F., and Van Der Zouwen,
J. (eds). Sociocybernetics: Complexity, Autopoiesiéxd Observation of Social Systems,
Knowledge Sharing Over Social Networking Systems.

Dakhli, S. (1998). Le Prototypagéhése de doctorat, Université de Paris-IX DaupHais, Mars.

Dakhli, S.B.D. (2008). The Solution Space OrgaitsatLinking Information Systems Architecture
and Reuse. In the Proceedings of the ISD’2008 Genée, Paphos, Cyprus, August 25-27, 2008.
Springer-Verlag.

Davis, A. (2005). Requirements Management. Dorsetsd.

Dieste, O., Juristo, N., and Shull, F. (2008). Ustinding the Customer: What Do We Know about
Requirements Elicitation?. IEEE Software, 25 (2)1B.



Glinz, M., and Wieringa, R. (2007). Stakeholders Requirements Engineering. Guest Editor's
Introduction, IEEE Software, 24 (2), 18-20.

Hirschheim, R., and Newman M. (1988). Informatiopstéms and User Resistance: Theory and
Practice. The Computer Journal, 31 (5), 398-407.

llavarasan, K.V. and Sharma, A.K. (2003). Is Sofevaork routinized? Some empirical observations
from Indian software industry. The Journal of Sgsdeand Software, 66 (1), 1-6.

Jensen, M.C., and Meckling, W.H. (1976). Theoryh& Firm: Managerial Behavior, Agency Costs
and Ownership Structure. Journal of Financial Ecans, 3 (4), 305-360.

Kautz, K. and Mcmaster, T. (1994). The failurenitréduce systems development methods: A factor-
based analysis. In Proceedings of the IFIP TC8 VWMgriConference on Diffusion, Transfer and
Implementation of Information Technology (Levine, Ed.), p. 275, IFIP Transactions A-45,
North-Holland, Amsterdam.

Leavitt, H.J., (ed.). (1963). The Social ScienceQrfjanizations, Four Perspectives. Prentice-Hall,
Englewood Cliffs, New Jersey.

Neill, C.J., and Laplante, P.A. (2003). RequirerseBhgineering: The State of the Practice. IEEE
Software, 20 (6),40-45.

Newell, S., Robertson, M., Scarborough, H., andr§wa(2002). Managing Knowledge Work, New
York, Palgrave.

Nonaka, 1. (1994). A Dynamic Theory of Organisatibknowledge Creation. Organisation Science, 5
Q).

Nonaka, I., and Takeuchi, H. (1995). The Knowle@yeating Company. Oxford University Press,
New York.

Polanyi, M. (1967). The Tacit Dimension. London:uRedge.

Regnell, B., and Brinkkemper, J. Market-Driven Riegments Engineering for Software Products. A.
Aurum and C. Wohlin (Eds), Springer-Verlag, 287-308

Simon, H.A. (1983). Models of Bounded Rational{® volumes), MIT Press, Cambridge.

Toffolon, C. (1996). L'Incidence du Prototypage dame Démarche d’Informatisatiolmhese de
doctorat, Université de Paris-IX Dauphine, Pariéc&nbre.

Toffolon, C. (1999). The Software Dimensions Theotg Joaquim Filipe (Ed.), Enterprise
Information Systems, Selected Papers Book, , KLUWERDEMIC PUBLISHERS

Toffolon, C., and Dakhli, S. (2007). KNOC: A Knowlge-Oriented Cooperative Software
Development Process. In the Proceedings of the 288 Conference, National University of
Ireland, Galway, August 29-31, 2008. Springer-V@grla

Turner, J.R. and Miiller, R. (2003). On the Natufettee Project As a temporary Organization.
International Journal of Project Management, 28, 1-

Wiegers, K.E. (2003). Software Requirementé Ezlition, Microsoft Press.

Zack, M.H. (1999). Managing Codified Knowledge. &ldanagement Review, 40 (4).



	Association for Information Systems
	AIS Electronic Library (AISeL)
	10-2008

	THE KNOWLEDGE-GAP REDUCTION IN SOFTWARE ENGINEERING
	Salem Ben Dhaou Dakhli
	Ben Chouikha Mouna
	Recommended Citation


	Dakhli_MCIS2008_Camera-Ready-Paper-2

