
Association for Information Systems
AIS Electronic Library (AISeL)

MCIS 2008 Proceedings Mediterranean Conference on Information Systems
(MCIS)

10-2008

THE KNOWLEDGE-GAP REDUCTION IN
SOFTWARE ENGINEERING
Salem Ben Dhaou Dakhli
Paris-DauphineUniversity, France, sdakhli@computer.org

Ben Chouikha Mouna
Paris-DauphineUniversity, France, mouna.benchouikha@dauphine.fr

Follow this and additional works at: http://aisel.aisnet.org/mcis2008

This material is brought to you by the Mediterranean Conference on Information Systems (MCIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in MCIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Dakhli, Salem Ben Dhaou and Mouna, Ben Chouikha, "THE KNOWLEDGE-GAP REDUCTION IN SOFTWARE
ENGINEERING" (2008). MCIS 2008 Proceedings. 37.
http://aisel.aisnet.org/mcis2008/37

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2008?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2008?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2008/37?utm_source=aisel.aisnet.org%2Fmcis2008%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

THE KNOWLEDGE-GAP REDUCTION IN SOFTWARE
ENGINEERING

Dakhli, Salem Ben Dhaou, Paris-DauphineUniversity, Place du Maréchal de Lattre de
Tassigny, 75016 Paris, France, sdakhli@computer.org

Ben Chouikha, Mouna, Paris-DauphineUniversity, Place du Maréchal de Lattre de Tassigny,
75016 Paris, France, mouna.benchouikha@dauphine.fr

Abstract

Many papers proposed in the software engineering and information systems literature are dedicated
to analysis of software projects missing their schedules, exceeding their budgets, delivering software
products with poor quality and in some cases even wrong functionality. The expression “software
crisis” has been coined since the late 60’s to illustrate this phenomenon. Various solutions has been
proposed by academics and practitioners in order to deal with the software crisis, counter these trends
and improve productivity and software quality. Such solutions recommend software process
improvement as the best way to build software products needed by modern organizations. Among the
well-known solutions, many are based either on software development tools or on software
development approaches, methods, processes, and notations. Nevertheless, the scope of these solutions
seems to be limited and the improvements they provide are often not significant. We think that since
software artifacts are accumulation of knowledge owned by organizational stakeholders, the software
crisis is due to a knowledge gap between resulting from the discrepancy between the knowledge
integrated in software systems and the knowledge owned by organizational actors. In particular,
integrating knowledge management in software development process permits reducing the knowledge
gap through building software products which reflect at least partly the organization’s know-how. In
this paper, we propose a framework which provides a definition of knowledge based on information
systems architecture and describes how to deal with the knowledge gap of a knowledge oriented
software development process which may help organizations in reducing the software crisis impacts.

Keywords: knowledge, software process, organizational actor, business function, business entity,
business process, information.

1 INTRODUCTION

Many papers proposed in the software engineering and information systems literature are dedicated to
analysis of software projects missing their schedules, exceeding their budgets, delivering software
products with poor quality and in some cases even wrong functionality. The expression “software
crisis” has been coined since the late 60’s to illustrate this phenomenon. Various solutions has been
proposed by academics and practitioners in order to deal with the software crisis, counter these trends
and improve productivity and software quality. Such solutions recommend software process
improvement as the best way to build software products needed by modern organizations. Among the
well-known solutions, many are based either on software development tools or on software
development approaches, methods, processes and notations. The Unified Process, the UML notation,
the Object-Oriented paradigm are examples of solutions proposed since the end of the 80’s.
Nevertheless, the scope of these solutions seems to be limited and the improvements they provide are
often not significant. Indeed, the well-established software development approaches, methods and
processes are based on a rational mechanistic view of organizations. According to this view, to be
efficient software development must be compared to traditional manufacturing processes which are
routinized using the Taylorian scientific management principles. Such a view is criticized by many
authors for many reasons. Firstly, it is technology oriented, reductionist and does not reflect the
complexity of the modern organizations reality. Secondly, it is based on the procedural rationality
concept which assumes that to solve a problem, organizations look for the best solution called silver
bullet by (Brooks 1987). On the basis of the Bounded Rationality theory proposed by (Simon 1983),
Brooks demonstrates that there is no miraculous silver bullet and that organizations solve the software
engineering problems they encounter by building satisfycing (i.e. good enough) solutions (Brooks
1987) (Brooks 1995). Moreover the systematic, disciplined and quantitative view of software
engineering induced by the well-known and approaches methods does not take into account all the
dimensions of software in particular organizational, economic, and human dimensions (Toffolon
1999) (Ilavarsan et al. 2003). (Boehm 2006) stresses that the software engineering discipline is
multidisciplinary and oriented toward people. Therefore, software engineering relies not only on
computer science but also on economics, behavioral sciences and management sciences. (Turner et al.
2003) suggest the weaknesses of the methods and approaches - proposed during the last four decades
to deal with the software crisis – are related to the bureaucratic project management process they
induce. These authors use the economic agency theory (Alchian et al. 1972) (Jensen et al. 1976) to
analyze software projects as a temporary organization similar in complexity, uncertainty and risks to
modern organizations. According to this point of view, the management of software projects is
characterized by conflicting relationships between organizational actors linked by principal/agent
contracts. Therefore, the use of project rational and systematic management methods induced by the
well-established software engineering approaches and methods is not appropriate and results in
software projects failures associated with the software chronic crisis. This analysis is not efficient for
addressing the complexity of modern organizations since the economic agency theory is rooted in the
procedural rationality paradigm. We think that since software artifacts are accumulation of knowledge
owned by organizational stakeholders (Baetjer 1998), the software development process must be
knowledge-oriented. In particular, integration of knowledge management in software development
process permits building software products which reflect at least partly the organization’s know-how.
In this paper, we propose a framework of a knowledge oriented software development process which
may help organizations in reducing the software crisis impacts. Our framework is based on a joint
meta-model common to business processes architecture, information systems (functional) architecture
and applicative architecture. In this framework, we define knowledge owned by organizational actors
using the main concepts identified by this meta-model. This paper is organized as follows. In section
2, we present the meta-model on which relies the knowledge-oriented development process proposed
in this paper. Section 3 describes a meta-lifecycle of this process and emphasizes its knowledge-
oriented nature. In section 4, we conclude this paper by listing the problems encountered and the
future research directions.

2 THE PROCESS-APPLICATION-FUNCTION (PAF) META-MODEL

(Dakhli 2008) proposes a software solution architecture multi-layered model which relies on five
interacting layers: the strategy layer, the functional architecture (information system architecture)
layer, the applicative architecture layer, and the software architecture layer (Figure 1). The strategic
layer defines the organizational problems to be solved and their organizational solutions. Such
problems result from the organization’s external and internal constraints. External constraints may be
economic, political, social, legal or related to the evolution of the technology. Internal constraints
reflect the impacts of external constraints on the organization’s components: structure, people,
production technology, tasks and information technology (Toffolon 1996) (Leavitt 1963).
The business process layer describes the business processes architecture at the conceptual and the
organizational levels. The business processes conceptual architecture models business processes as a
nexus of activities exchanging and processing information. The organizational business processes
architecture is the projection of the conceptual business processes architecture on the organization.
Therefore, it models business processes as nexus of operational activities and tasks carried out by
organizational actors in order to create value. The business processes architecture is updated according
to the organizational solutions defined by the strategic layer.
The functional architecture layer describes the information system architecture as a nexus of business
entities and functions. A business entity is a set of information chunks which define a concept used by
the organizational actors while carrying out a business process. A business function is an action which
uses and transforms at least one business entity. A business process manipulates business entities
through the use of business functions. Business entities are described in a business repository. A
business function may be considered as an aggregation of many business sub-functions. Business
functions may be used by many business processes. Such business functions are called reusable
business functions. Business entities manipulated by many business processes are called shared
information. Because of the invariant and stable nature of business entities and business functions,
they are independent of the organizational structure and the roles played by actors within an
organization. Architecture of an organization’s information system is defined as a model describing
the organization’s business functions and business entities as well as the relationships between these
concepts. The business processes architecture is updated by integrating the impacts of the
organizational solutions defined by the strategic layer on the business entities and functions.
The applicative layer provides a map which describes the organization’s applications as well as the
information flows they exchange. An application is a set of software systems which computerizes at
least partly a business process. So, an application provides a software support to the value creation
behavior of organizational actors. This behavior consists in carrying out business processes activities
which manipulate business information by using business functions. An application provides two
categories of services: service-to-user and service-to-application. A service-to-user results from an
interaction between and end-user and an application and helps an organizational actor who carries out
a set of operational activities. A service-to-application is an intermediate service provided by an
application to another application while processing information. An application may be considered as
a dynamic conjunction of a set of business process activities with business entities and business
functions in order to contribute to goods and services production. The applicative layer results from
the interaction between the functional layer and the business process layer which supports the problem
and operation spaces. The applicative layer delivers a first level description of a software solution as a
new or enhanced application which interacts with existing and future applications.
The software layer describes each software solution as a set of software components and connectors
distributed according to a software architecture model (e.g. MVC,…). A software solution is either the
architecture of a new application which supports at least partly a new business process or the
architecture of an existing application which is enhanced in order to take into account the
modifications of an existing business process. Despite the richness of the existing definitions of the
software component concept, we think that these definitions are note appropriate to take into account
all the perspectives of information system architecture. So, we propose in this paper a definition of this
concept which refers to business functions. Our definition states that a software component is an
autonomous and homogeneous logical unit which implements a business function in order to provide a

service either to end users or to other logical units. A software connector is an autonomous and
homogeneous logical unit which facilitates interactions between two software components. A software
solution is composed of reusable and specific software components and connectors. A reusable
software component implements a business function used by many business processes.

Figure 1: The software solution architecture multi-layered model [Adapted from (Dakhli 2008)]

Consequently, the software solution architecture has many facets associated to the four layers
presented above. Each facet corresponds to an architecture meta-model which describes the basic
concepts characterizing this facet and their relationships. The main concepts used by the four meta-
models are interrelated as illustrated by the PAF global meta-model of software solution’s architecture
(Figure 2).

Figure 2: The PAF meta-model of software solution’s architecture

Functional
architecture layer

Business processes
architecture layer

Applicative architecture
layer

Software architecture layer

Strategy layerImpacts of strategy on
business processes

Impacts of strategy on
business functions
and entities

First level description
of a software solution

Problem space

Organizational
Solution

Business
 process

Business
function

Business
entity

Business
sub-function

Application

Service-to-
user

Service-to-
application

Software

component

Connector

Activity

Operational
activity

Task

Organizational
actor

has-a

1..n

has-a

1

is associated
with

1

1

1..n

1

1..n

1..n

executes

11..n

relies on

supports

1

1..n

1

1..n
implements

implements

1

has-a

Service

1

is-a

1..n

1..n
1..n

has-a

1..n

1..n

has-a links

1

1

1 1
implements

computerizes

1

1
carries out

2

1

1..n

processes

1

1..n

has-a

1..n

1..n

1..n

processes

3 THE KNOWLEDGE-ORIENTED SOFTWARE DEVELOMENT
PROCESS META-LIFECYCLE

Prior to the presentation of our knowledge-oriented software development process meta-lifecycle, we
define the concept of knowledge used in this work and analyze how software systems integrates
knowledge.

3.1 The concept of knowledge

Knowledge is defined as information that is relevant for executing certain business actions. According
to (Nonaka et al. 1995) and (Newell et al. 2001), knowledge may be understood as a justified true
belief. This definition emphasizes the temporary nature of knowledge. The knowledge and information
concepts are mutually dependent. On the one hand, information is external to human beings and is
stored in various supports like books or databases while knowledge in internal to the minds of
knowledge workers. On the other hand, information is converted to knowledge through the
internalization process and knowledge is transformed into information once it is externalized (Alavi et
al. 2001). Internalization consists in transforming information which is external into knowledge which
is internal to the minds of knowledge workers. Learning and information processing by knowledge
workers facilitate internalization and result in creation of new knowledge, or alteration of existing
knowledge. Externalization consists in articulating internal knowledge in order to making it external to
the mind of a knowledge worker. Externalized knowledge is called explicit knowledge or information
while tacit knowledge is knowledge which cannot be articulated (Zack 1999). Writing a book is an
example of externalization of knowledge owned by an author. Knowledge is tacit if it is difficult to
express using some understandable symbols like written notations or spoken language. The concept of
tacit knowledge was introduced by (Nonaka 1994), drawing on the more philosophical work of
(Polanyi 1967) which considers that tacit knowledge is the type of knowledge we use to carry out the
actions that we perform routinely without thinking consciously about how to carry these actions.
Another important characteristic of knowledge is that it is related to action (Nonaka 1994) (Nonaka et
al. 1995) (Buckley 2001). This means that the value of knowledge results from the ability of
knowledge workers to impact the real environment in which they operate. Moreover, the action of
knowledge workers within the environment where they operate generates feedback information which
facilitates organizational learning. In particular, tacit knowledge can take the form of embodied
knowledge which is materialized by action of knowledge workers (Blackler 1995). In this paper, we
define knowledge as the interaction between organizational actors, business processes, business
functions, and business entities. Therefore, knowledge determines how an organizational actor
contributes to value creation when he carries out tasks associated with his role within an organization.
This definition suggests three remarks. Firstly, it underlines the dependence of knowledge owned by
an organizational actor on how he perceives tasks and business functions. Secondly, it recalls that
organizational actors create knowledge by processing information. Finally, this definition takes into
account the relationships between knowledge and action as well as the temporary nature of
knowledge. Indeed, interaction between an organizational actor, a business process, business functions
and business entities depends on existing knowledge owned by this actor. Such knowledge is
continuously updated through processing of information provided by the organizational environment
and the business entities manipulated during the organizational actor action.

3.2 The knowledge gap analysis

Since software systems are accumulation of knowledge (Baetjer 1998), they may disseminate
knowledge not only contained in books and stories but also owned by knowledge workers who carry
out business, support and decision-making processes within organizations. Moreover, knowledge
integrated in software systems is made operational to solve problems encountered by organizational
actors who operate within organizations. The effectiveness of knowledge integration in a software
system determines the quality of this system i.e. how they support business, support and decision-

making processes within organizations. Moreover, the difference between the quality of two software
systems results from the amount of knowledge they disseminate. This is because knowledge integrated
in software system determines their ability to support effectively organizational processes.
Consequently, a software system may be thought as knowledge container whatever the method, the
language or the technique used to develop it. This point of view provides us with a different
explanation of the roots of the software crisis. The knowledge gap is the main reason of the rejection
of a software system by the organizational actors it is intended for. Such a gap consists in the
difference between the knowledge integrated in a software system and the knowledge owned by the
organizational actors who use this system while carrying out their activities. Furthermore, the
knowledge gap associated with a software system is dependent on the organizational actors who use it.
This means that the value provided by a software system to an organizational actor using it depends on
the amount of knowledge proper to this actor and integrated in this software system. So, there are
many knowledge gaps associated with a software system, each gap expresses the discrepancy between
the knowledge owned by an organizational actor and the amount of knowledge integrated in the
software system. Consequently, an organizational actor rejects a software system if this system doesn’t
reflect a sufficient part of the knowledge owned by this actor. Besides, the knowledge gap may be
targeted as the root cause of the users resistance (Hirschheim et al. 1988) (Toffolon 1996) (Dakhli
1998). Following the terminology of (Brooks 1987), the knowledge gap seems to be an essential
difficulty associated with software engineering. Nevertheless, even if there are many organizational
actors who consider that a software system integrates a part of their knowledge, the acceptance of such
a system is not easy, as it is not restrict itself to providing a set of services, but induces changes in the
organization and balance of knowledge. Therefore, the knowledge gap has two facets: conservative
and extensive. The conservative facet of the knowledge gap describes the impact of a software system
on the organization and the balance of knowledge owned by an actor or exchanged by many actors.
The extensive facet of the knowledge gap provides an answer to the following question: what is the
part of the knowledge owned by an individual actor is not integrated by a software system used by this
actor?
During the last two decades, many authors have stressed that requirements engineering provides the
appropriate solutions to reduce the impacts of the software crisis (Wiegers 2003) (Neill et al. 2003)
(Davis 2005) (Regnell et al. 2005) (Glinz et al. 2007) (Dieste et al. 2008). Nevertheless, the solutions
proposed by the requirements engineering community do not provide instruments effective enough to
deal with the software crisis in particular because these solutions take into account the knowledge gap.
This means that solutions to the software crisis based on requirements engineering don’t describe how
to gather, combine, transform, and integrate knowledge into a software system through a sequence of
specifications with an increasing degree of formalism. Therefore, to improve software systems quality
through the knowledge gap reduction, the software development process core activities must be
dedicated to cooperative and iterative knowledge engineering (Toffolon et al. 2007).

3.3 Integration of knowledge in software systems

In this work, the expression “knowledge engineering” refers to a set of activities related to knowledge
gathering, storage, combination, transformation and transfer. According to (Toffolon et al. 2007), the
cooperative nature of the knowledge engineering process is due to two types of asymmetries: know-
how asymmetry and understanding asymmetry. Know-how asymmetry is related to tacit and
articulated knowledge owned by human actors and originates from the dispersion of knowledge across
stakeholders and existing software artifacts. For example, there is a know-how asymmetry between
organizational actors belonging respectively to the problem side (end user, customer) and the solution
side (architect, developer). The customer and the end user are domain experts who understand the
practice and know implicitly what the system is supposed to do. They do not know the technological
possibilities for supporting their work. The architect and the developer know how the technology can
do it but they ignore whether the technology they create will be appropriate for the support of
operational and decision processes. Understanding asymmetry results from the differences between
stakeholders understanding of knowledge disseminated in existing software systems and their
perspectives of what the future software system should be.

The reduction of the knowledge gap requires building a common vision of the future software system
shared by all the organizational actors concerned with this system. The know-how and understanding
asymmetries constitute obstacles to this challenge since they contribute to the knowledge gap
aggravation. That is the reason why the software engineering activities and the knowledge engineering
activities they embed must be cooperative i.e. stakeholders have to work together in order to reduce
asymmetries and build a common view of the required future software system. Such a view is based
on knowledge embedded in existing software artifacts or owned by stakeholders combined and
transformed through the knowledge engineering process. Effective cooperation of stakeholders results
in software prototypes which either permit uncertainty reduction or are pieces of the final software
system. In the first case, informative prototypes are built to extract knowledge embedded in existing
artifacts or owned by stakeholders and to illustrate a common understanding of requirements and
needs. In the second case, final versions of software modules, called operational prototypes define and
implement the stakeholder’s common view of what the final software system should be. Operational
prototypes are parts of the software system version delivered to end-users. Informative prototypes
reduce uncertainty inherent in requirements and generated by know-how and understanding
asymmetries. They may be considered as communication tools which facilitates knowledge transfer
between all the stakeholders involved in software systems development, maintenance, and use.
Operational prototypes are dependent on informative prototypes which provide them with knowledge
shared by stakeholders and necessary to build a common vision of the future software system. Such a
common vision may be considered as the smallest common denominator synthesizing knowledge
shared by all the stakeholders. The iterative nature of the software engineering process and the
knowledge engineering activities it embeds stem mainly from the volatility and the fuzziness of
stakeholders’ requirements. During each iteration, informative prototypes are built, discussed and
assessed by stakeholders working together prior to developing a version of the final software system
composed of operational prototypes. Therefore, each version of the final software system, issued from
an iteration of the software development process, reflects the state of the vision of the software
problem and solution shared by stakeholders. Besides, an evolution of the stakeholders shared vision
of the problem and the solution often results in an evolution of a software system integrating this
updated common vision. Consequently, building a shared vision of the software problem and the
software solution - i.e. the future software system required by an organization – conditions the
approval of the future software system by the concerned organizational actors. In the next subsection,
we present a meta-lifecycle on which rests the process which permits building of the shared vision to
be integrated in future version of software systems.

3.4 The meta-lifecycle of knowledge integration in software systems

The proposed meta-lifecycle of knowledge integration in software systems is based on the four-staged
DUCA (Discover-Understand-Construct-Assess) lifecycle due to (Toffolon et al. 2007). In this paper,
we contribute to improvement of this lifecycle by using the PAF (Process-Application-Function)
meta-model presented in a previous section to describe how the DUCA four stages take place.
According to (Toffolon et al. 2007), each iteration of the knowledge-oriented software development
process rests on the DUCA lifecycle which is composed of four stages (Figure 2):

� Discover the problem knowledge i.e. knowledge embodied in existing software artifacts
and other internal and external sources (books, guides, …) or owned by stakeholders

� Understand the body of knowledge issued from the Discovery stage and build a shared
vision of the problem knowledge

� Construct a common vision of the software solution

� Assess the software solution

Figure 2: the DUCA lifecycle [Source (Toffolon et al. 2007)]

3.4.1 The Discovery stage

The Discovery stage consists in gathering knowledge related to problem and the software solution.
Such a knowledge is owned by stakeholders or embodied in existing software artifacts and other
external and internal sources. In addition to information stored in various supports like written guides
and databases, the knowledge discovered at this stage is explicit knowledge externalized by the
stakeholders during brainstorming sessions or interviews. The output of this stage splits into two
categories: static and dynamic. Static knowledge refers to information chunks which describe the
organizational solution and the software problem. Dynamic knowledge has three components. On the
one hand, it includes a description of business processes, support processes and decision-making
processes to be supported by the future software solution. On the other hand, it includes a description
of organizational actors who carry out these processes. Finally, it identifies the information and
knowledge artifacts manipulated by the concerned processes and organizational actors.

3.4.2 The Understanding stage

The knowledge gathered during the first stage is used during the Understanding stage to build shared
visions of the organizational solution and the corresponding software problem. These shared visions
combine articulated knowledge and informative prototypes. The Understanding stage rests on the
business processes and functional (Information System) architecture layers of the software solution
architecture multi-layered model. The conceptual and organizational business processes architecture
models provided by the business processes architecture layer contribute to building a shared vision of
the organizational solution. Not only the business process layer provides a view of the organizational
processes related to the software problem to be solved and supported by the existing software solution
(if such a solution exists). But also, it takes into account the impacts of strategic decisions on business
processes. Such impacts refer to the characteristics of the organizational solution. The information
system architecture models expressed in terms of business functions and business entities contribute to
building a shared vision of the software problem corresponding to the organizational solution. Such
models, provided by the functional architecture layer, reflect the strategic decisions impacts on the
architecture of the organization’s information system. These impacts originate either directly from the
strategic layer or indirectly from interactions between the business processes and the functional

Discover

Understand Construct

Assess

Existing system Future system

Informative prototypes
Articulated knowledge

Operational
prototypes

Informative prototypes

Problems
Requirements

architecture layers. To avoid knowledge asymmetries, domain ontologies which provides
organizations with a common understanding of business domains main concepts may be used, updated
or built from scratch. In particular, domain ontologies provide knowledge foundations of repositories
of the business entities and the business functions manipulated by the organizational processes. Such
repositories play a critical role in building shared visions of the organizational solution and the
software problem.

3.4.3 The Construction stage

During the Construction stage, the stakeholders work together by combining and transforming their
knowledge in order to define a shared vision of what the future system should be. The stakeholders
generally build a sequence of informative prototypes in order to elicit and conciliate their points of
view. Informative prototyping plays a knowledge engineering-related role during the Construction
stage. On the one hand, it reduces uncertainty through integration of tacit knowledge owned by
stakeholders into software artifacts called informative prototypes which catalyse many aspects of the
shared vision of the future software solution. On the other hand, it contributes to knowledge creation
since informative prototypes facilitate communication and interaction between stakeholders.
Knowledge generated by this way may improve the shared vision of the future software solution. Such
a common vision is embodied in a set of operational prototypes which make up a version of the
required software solution to be used and evaluated by users during the Assessment stage. The
construction of informative and operational prototypes relies on the organizational processes and
functional architecture layers which permit identification of operational tasks supported by the future
software solution and the business entities and business functions manipulated by these tasks. The
description of the applicative and software architectures of the future software system is beyond the
scope of this paper. More detailed information related to this topic is provided by (Dakhli 2008).

3.4.4 The Assessment stage

During the Assessment stage, the operational prototype issued from an iteration is evaluated by the
organizational actors it is intended for. These actors use the operational prototype as support to their
operational tasks within the organization. The Assessment stage results in new problems and
requirements to be taken into account during the next iterations. Solutions proposed to these problems
generally generate knowledge which update the shared vision of the software solution and then make
this solution richer.

4 CONCLUSION AND FUTURE RESERACH DIRECTIONS

The framework presented in this paper has been used in a French Insurance company to develop a
software system aimed at supporting the management of the customer’s claims. Let us note that many
architecture guides exist in this company but the software project teams do not always apply the rules
they define. Furthermore, the iterative development approaches including software prototyping are not
applied in this company where the software development process is based on the waterfall sequential
model. Finally, knowledge management is still considered as a long term project and no resources has
been allocated to this project until this year. The goal of the use of our framework within this company
was to demonstrate to the strategic managers that software solutions in knowledge-intensive
companies must be built according to three principles. Firstly, the software development process in
knowledge-intensive organizations includes software engineering traditional activities (design, coding,
testing,…) which are intertwining with knowledge engineering activities. Secondly, the waterfall
software development process is not appropriate to build knowledge-intensive software systems.
Moreover, the development of such systems requires iterative approaches like software prototyping or
agile methods. Finally, modelling organizational processes architecture and functional (Information
System) architecture is required to build effective knowledge-intensive software systems. The
Discovery stage starts by sending a Request for Information to all the entities of this company located
in Europe and in the rest of the world. No significant answers result from this Request for Information.

Then the project manager launched many workshops in order to gather knowledge about the
organizational solution and the solution problem. During this stage the customers claims management
process has been modelled at the conceptual and organizational levels. Moreover, the business entities
and business functions manipulated by the customers claims management process are identified. Two
main problems have been encountered while accomplishing this task. The first problem stems from the
fact that the difference between a task and a business function is not easy to understand while the
second problem is related to the interpretation asymmetries of the business functions and business
entities identified. These problems were solved by organising workshops with a facilitator who doesn’t
belong to the company. The construction of informative prototypes was not easy since there is no
prototyping culture within this company. During the Construction stage, the same problems have been
encountered. Nevertheless, this stage was less difficult than the Discovery and Understanding stages
since the process of solving such problems was more mastered then during the first two stages.
The application of the proposed framework to a real project results in many recommendations and
future research directions. Firstly, the construction of domain ontologies is required to deal with
misunderstanding, misinterpretations and knowledge asymmetries related notably to the activity, task,
business function, and business entity identification and use. Secondly, the relationship between
software design and ontologies has to be described formally in order to build effective informative and
operational prototypes. Finally, domain ontologies has to be integrated in the software architecture
multi-layered model.
The main contribution of this paper consists in explaining the software crisis in terms of knowledge
gap and in stressing the relationships between tacit knowledge owned by the organizational actors,
organizational processes and information system architecture. By contributing to the reduction of the
knowledge gap in software engineering, the proposed framework offers an alternative solution aimed
at minimizing the software crisis impacts. We think that the integration of domain ontologies in this
framework may improve it by clarifying the intertwining nature of software engineering and
knowledge engineering activities and improving the knowledge gap reduction process.

References
Alavi, M., and Leidner, D.E. (2001). Knowledge Management and Knowledge Management Systems:

Conceptual Foundations and Research Issues. MIS Quarterly, 25 (1), 107-136
Alchian, A.A., and Demsetz, H.: (1972). Production, Information Costs and Economic Organization,

American Economic Review, 62 (5), 777-795.
Baetjer H. Jr. (1998). Software as Capital: An Economic Perspective on Software Engineering. The
Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey.
Blackler, F. (1995). Knowledge, Knowledge Work and Organisations: An Overview and

Interpretation, Organisation Studies, 16 (6), 1021-1046.
Boehm, B.W. (2006). A View of 20th and 21th Century Software Engineering. In L. Osterweil, D.

Rombach, and M.L. Soffa (Eds), Proceedings of the 28th International Conference on Software
Engineering (ICSE’2006), pp. 12-29, ACM Press, New York,

Brooks, F.P Jr. (1987). No Silver Bullet-Essence and Accidents of Software Engineering. Computer,
20 (4), 10-19.

Brooks, F.P Jr. (1995). The Mythical Man Month: Essays on Software Engineering. Reading, M.A.,
Addison-Weslay.

Buckley, W. (2001). Mind and Brain: a Dynamic System Model. In Geyer, F., and Van Der Zouwen,
J. (eds). Sociocybernetics: Complexity, Autopoiesis, and Observation of Social Systems,
Knowledge Sharing Over Social Networking Systems.

Dakhli, S. (1998). Le Prototypage. Thèse de doctorat, Université de Paris-IX Dauphine, Paris, Mars.
Dakhli, S.B.D. (2008). The Solution Space Organisation: Linking Information Systems Architecture

and Reuse. In the Proceedings of the ISD’2008 Conference, Paphos, Cyprus, August 25-27, 2008.
Springer-Verlag.

Davis, A. (2005). Requirements Management. Dorset House.
Dieste, O., Juristo, N., and Shull, F. (2008). Understanding the Customer: What Do We Know about

Requirements Elicitation?. IEEE Software, 25 (2), 11-13.

Glinz, M., and Wieringa, R. (2007). Stakeholders in Requirements Engineering. Guest Editor’s
Introduction, IEEE Software, 24 (2), 18-20.

Hirschheim, R., and Newman M. (1988). Information Systems and User Resistance: Theory and
Practice. The Computer Journal, 31 (5), 398-407.

Ilavarasan, K.V. and Sharma, A.K. (2003). Is Software work routinized? Some empirical observations
from Indian software industry. The Journal of Systems and Software, 66 (1), 1-6.

Jensen, M.C., and Meckling, W.H. (1976). Theory of the Firm: Managerial Behavior, Agency Costs
and Ownership Structure. Journal of Financial Economics, 3 (4), 305-360.

Kautz, K. and Mcmaster, T. (1994). The failure to introduce systems development methods: A factor-
based analysis. In Proceedings of the IFIP TC8 Working Conference on Diffusion, Transfer and
Implementation of Information Technology (Levine, L. Ed.), p. 275, IFIP Transactions A-45,
North-Holland, Amsterdam.

Leavitt, H.J., (ed.). (1963). The Social Science of Organizations, Four Perspectives. Prentice-Hall,
Englewood Cliffs, New Jersey.

Neill, C.J., and Laplante, P.A. (2003). Requirements Engineering: The State of the Practice. IEEE
Software, 20 (6),40-45.

Newell, S., Robertson, M., Scarborough, H., and Swan, J. (2002). Managing Knowledge Work, New
York, Palgrave.

Nonaka, I. (1994). A Dynamic Theory of Organisational Knowledge Creation. Organisation Science, 5
(1).

Nonaka, I., and Takeuchi, H. (1995). The Knowledge-Creating Company. Oxford University Press,
New York.

Polanyi, M. (1967). The Tacit Dimension. London: Routledge.
Regnell, B., and Brinkkemper, J. Market-Driven Requirements Engineering for Software Products. A.

Aurum and C. Wohlin (Eds), Springer-Verlag, 287-308.
Simon, H.A. (1983). Models of Bounded Rationality. (2 volumes), MIT Press, Cambridge.
Toffolon, C. (1996). L’Incidence du Prototypage dans une Démarche d’Informatisation, Thèse de

doctorat, Université de Paris-IX Dauphine, Paris, Décembre.
Toffolon, C. (1999). The Software Dimensions Theory. In Joaquim Filipe (Ed.), Enterprise

Information Systems, Selected Papers Book, , KLUWER ACADEMIC PUBLISHERS
Toffolon, C., and Dakhli, S. (2007). KNOC: A Knowledge-Oriented Cooperative Software

Development Process. In the Proceedings of the ISD’2008 Conference, National University of
Ireland, Galway, August 29-31, 2008. Springer-Verlag.

Turner, J.R. and Müller, R. (2003). On the Nature of the Project As a temporary Organization.
International Journal of Project Management, 21, 1-8.

Wiegers, K.E. (2003). Software Requirements. 2nd Edition, Microsoft Press.
Zack, M.H. (1999). Managing Codified Knowledge. Sloan Management Review, 40 (4).

	Association for Information Systems
	AIS Electronic Library (AISeL)
	10-2008

	THE KNOWLEDGE-GAP REDUCTION IN SOFTWARE ENGINEERING
	Salem Ben Dhaou Dakhli
	Ben Chouikha Mouna
	Recommended Citation

	Dakhli_MCIS2008_Camera-Ready-Paper-2

