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Abstract 

This paper deals with the development of a model to predict the products’ terminal call rate (TCR) 

during the warranty period. TCR represents a key information for a quality management 

department to reserve the necessary funds for product repair during the warranty period. TCR 

prediction is often carried out by parametric models such as Poisson processes, ARIMA models 

and maximum likelihood estimation. Little research has been done with machine learning 

methods (MLM). Therefore, this paper addresses the utilization of machine learning methods 

(MLM), such as regression trees, ensembles of regression trees and neural networks in order to 

estimate the parameters of different models for TCR prediction. MLM were tested on exponential 

and logistic non-linear models, which best describe the shape of the cumulative density function 

of the failed products. The estimated cumulative density function was used to predict the TCR. 

The results have shown the ensembles of regression trees yield the smallest TCR prediction error 

among the tested MLM methods. 

Keywords: product failure, prediction, machine learning, regression trees, neural networks, 

ensembles 
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1 Introduction 
All production companies are faced with the problem of failure of products and the provision of 

opportunities to repair those products within the warranty period. The warranty provides 

security to customers in the event of early products’ failure that occur during the warranty 

period and represents a contract between the buyer and the manufacturer, which comes into 

effect when a customer has purchased the product. The purpose of the warranty is basically to 

ensure accountability in the case of premature failure of the product, where the failure is 

considered as the inability of the product to perform its function (Kim et al., 2004). Offering 

warranty causes additional costs to the manufacturer. As a result, the manufacturer wants to 

minimize that cost (Blischke and Murthy, 1994; Zuo et al., 2000). Therefore, predicting the 

proportion of products’ failures during the warranty period is crucial for determining this cost.  

In order to minimize the aforementioned cost, the manufacturers have different ways of 

predicting failure of products, such as lifetime distributions, stochastic processes, artificial 

neural networks, Kalman filters and time series models (Wu, 2012). Nonparametric approaches, 

such as neural networks, have also been applied to predict product failures. Wasserman and 

Sudjianto (1992, 1996) have implemented a neural network (multilayer perceptron, MLP) to 

predict warranty claims, which is able to accommodate non-linearities in the data when it cannot 

be adequately fitted with a low-order polynomial. Rai and Singh (2005) used a special type of 

neural network, i.e. radial basis function (RBF), in order to research the forecast warranty 

performance in the presence of the maturing data. Grabert et al. (2005) developed an early 

detection system using neural networks and probability distribution estimation. However, those 

approaches do not consider the fact that warranty claims reported in the recent months might 

be more important in forecasting future warranty claims than those reported in the earlier 

months, and they are developed on the basis of repair rates, which can cause information loss 

through such an arithmetic-mean operation (Wu, 2012). Therefore, Wu and Akbarov (2011) 

have proposed a weighted support vector regression (SVR) model and a weighted SVR-based 

time series model, which show a better performance compared with that of MLP and RBF as 

well as with ordinary SVR models. 

By examining the literature, we can conclude that machine learning methods (MLM) have been 

used scarcely in the area of product failure prediction. Therefore, our goal was to investigate, 

whether it is possible to use the MLM to make a quality prediction of non-linear model 

parameters, which describe the cumulative failure rate of a product batch in a form of a 

cumulative density function (CDF). The CDF is then used to predict the terminal call rate (TCR). 

Such approach presents a novelty in this research area. 

The rest of the paper is structured as follows. In Section 2 the literature review is provided as 

well as the methodology used to predict the product failures. Section 3 presents the machine 

learning prediction results. Finally, Section 4 gives the conclusions and the guidelines for future 

research. 

2 Problem formulation and methodology 
Manufacturer produces products in batches. Usually, batches are a monthly aggregate of a 

production of a certain product or a product family. When the failed product can be traced back 
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to a specific production batch, we are able to convert such data into a so-called layer cake 

format. This format combines produced and failed products on a monthly basis, as presented in 

Table 1. The data are aggregated as an upper triangular matrix with diagonal. Such a data 

representation allows for the implementation of best-fit approaches (Kleyner & Sandborn, 

2005). The data in Table 1 shows that we can collect 6 data points about the failures, which can 

be used as an input for prediction models. 

Month 

Num. of 

produced 

products 

Number of failures per month 

Month 1 Month 2 Month 3 

1 3256 43 87 120 

2 3590 78 101 

3 3478 66 

Table 1: An example of a layer cake 

The failure process is usually described with the following well-known distributions: Weibull, 

exponential, normal, and log-normal (Kleyner & Sandborn, 2005; Hall & Strut, 2003, Xie & Lai, 

1995). In our case, the time of production of a certain batch is known as well as the time of 

product failure. Hence, we can model this process with the following probability density function 

(PDF, right axis) and its resulting cumulative density function (CDF, left axis), as presented in 

Figure 1.  

Figure 1: An example probability and cumulative density functions 

An expected maximum value of the failed products within the warranty period is called the 

terminal call rate (TCR). To estimate the TCR, a cumulative failure rate over a specific period of 

time, e.g. a month, for a specific product batch must be known (Kofjač et al., 2014).  

2.1 Curve fitting 

In order to predict the TCR for a specific batch, its CDF must be determined. Hence, our goal is 

to estimate a real-valued variable y  given a pattern x (Smola and Vishwanathan, 2008). 

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

f(
x)

F(
x)

x

CDF PDF

505



Kofjač D., Škraba A., Mujanović A., Brglez A. 

The example is presented in Figure 2, where we are given a number of observations (presented 

by black dots) and we would like to estimate the function f which maps the observations X to 

 such that ( )f x is as close to the observed values as possible. 

Figure 2: An example of regression estimation 

The example in Figure 2 represents the CDF of a product batch failure rate (marked with 

dependent variable Y) over time in months (marked with independent variable X), normalized 

to the interval [0, 1]. Such a CDF can be estimated by using non-linear models, such as 

exponential and logistic. The logistic model is generally given by: 

( )
1 cx

a
f x

be



(1) 

while the exponential model is generally given by: 

( )
b

a
xf x e



 (2) 

To evaluate the goodness of fit of the abovementioned non-linear models, we have used 

standard error of the estimate (SEE), which measures the average distance of a non-linear 

model from the observations, and is given by: 

2( ( ) ( ))f i f i
SEE

n p







(3) 

where ( )f i  are the observations, ( )f i  the predictions, n the number of observations and p the 

number of parameters (independent variables) in the non-linear model. Although R2 and R2
adj 

are frequently used in evaluation of non-linear regression models, Spies and Neumeyer (2010) 

argue that these measures do not adequately reflect the goodness of fit. Therefore, those 

measures were not used in our research. 

Finally, the TCR prediction accuracy is measured by mean absolute percentage error, which is 

given by: 
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1

( ) ( )1

( )

n

i

f i f i
MAPE

n f i


  (3) 

Manufacturer has provided us with a database of 313 product batches (instances). The database 

contained the produced batch quantities and their respective number of failures per month. On 

this basis we were able to calculate the 313 CDFs of product failures and normalize them to the 

interval [0,1]. An example of three CDFs is shown in Figure 3. In the next step, we have used the 

Matlab Curve Fitting Toolbox to obtain the values for parameters a, b, and c for the logistic 

model (Eq. 1) and the values for parameters a and b for the exponential model (Eq. 2). The 

parameter values were obtained for each instance. An example of the obtained parameters for 

both non-linear models is presented in Table 2. 

Figure 3: Examples of three different cumulative density functions, which represent a 

cumulative failure rate of three different product batches 

Instance 

Logistic model Exponential model 

a b c a b 

1 1.309 0.839 0.092 0.304 -8.559

2 1.274 0.850 0.091 0.285 -8.438

3 1.318 0.827 0.092 0.312 -8.914

4 1.358 0.817 0.086 0.338 -9.741

5 1.323 0.827 0.088 0.316 -9.272

… … … … … … 

Table 2: An example of the obtained parameters per instance for both non-linear models 

Next, the parameters obtained in the previous step were used to simulate 313 CDFs with both, 

the logistic and the exponential model. The simulated CDFs were compared them to the actual 

CDFs. The result of this modelling process was the evaluation measure SEE, for all instances and 

for both non-linear models. The average, minimum and maximum values and standard deviation 

for SEE are presented in Table 3. We can observe low average SEE values (with regard to the 
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interval [0,1]), indicating that both non-linear models provide a quality fit. However, the logistic 

model provides better results with respect to the exponential model. It yields lower average, 

minimum and maximum values than the exponential model. Further, by observing the 

histogram of SEE values in Figure 4, one can notice that logistic model SEE values are less 

dispersed, indicating a more robust model. 

Measure 

Non-linear model 

Exponential Logistic 

Avg SEE 0.036 0.024 

St.dev. SEE 0.015 0.010 

Min SEE 0.012 0.008 

Max SEE 0.140 0.123 

Table 3: Initial goodness of fit evaluation for the exponential and the logistic models 

Figure 4: A histogram of SEE values in the initial goodness of fit evaluation for both non-linear 

models 

2.2 Machine learning 

By determining the parameter values for non-linear models we have obtained the instances, 

which can be used with MLM. Machine learning is a branch of artificial intelligence dealing with 

the development of techniques and methods that allow the learning of machines. Machine 

learning is used due to the two major reasons: some tasks are too complex to program and the 

need for adaptivity. First, several tasks are performed by humans routinely, yet we do not know 

how to sufficiently elaborate them to make an algorithm, such as driving, speech recognition, 

etc. Second, many tasks change over time or from one user to another. Therefore, it would be 

hard and inefficient to constantly change the algorithm “by hand” (Shalev-Schwartz and Ben-

David, 2014). 

Machine learning can tackle many problems, such as binary classification, multiclass 

classification, structured estimation, regression, novelty detection, etc. (Smola and 
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Vishwanathan, 2008). In our case, we use the regression estimation, where the goal is to 

estimate a real-valued variable TCR given an input pattern of cumulative failure rates. 

Machine learning methods must be trained (taught) in order to be used effectively. They are 

able to learn in several ways. The most common classification of learning techniques is the 

supervised and unsupervised learning (Shalev-Schwartz and Ben-David, 2014). In supervised 

learning, it is assumed that the learning output is known in advance, while in unsupervised 

learning this is not the case. Supervised learning usually includes neural networks, decision trees, 

etc., while unsupervised learning includes different types of clustering, self-organizing maps, etc. 

(Smola and Vishwanathan, 2008).  

In our case, the output is known in advance; we have obtained the values for parameters a, b 

(and c), which represent the desired MLM output values. Hence, we are able to use the 

supervised learning to train the MLM. 

2.3 TCR prediction model and training 

In this section we will present the TCR prediction model shown in Figure 5. The input into the 

model are the values r1, r2, …, rn, which represent the cumulative failure rates for the first n 

consecutive months since the production of a batch. The selected MLM then estimates the 

parameters a, b (and c). These parameters are used to calculate the CDF, which should 

adequately represent the cumulative failure rate of the selected batch. Finally, on the basis of 

the calculated CDF, we are able to predict the TCR.  

Machine 

learning 

method

TCR

prediction

CDF

calculation

a

b

c
CDF TCR

r1

r2

r3

rn

...

Figure 5: TCR prediction model 

In order to train the MLM with supervised learning, we have to provide them with the inputs 

and the desired outputs. The input into the MLM are the partial CDFs, for example, the 

cumulative product failure rates for the first n months since the end of production of a particular 

product batch, where  3,6,9,12,15,18,21,24,27,30,33,36n . For example, if 3n   then 

the input into the MLM are the three values {0, 0.029, 0.093}. The desired output for the 

supervised learning are the estimated parameters a, b and c, which were obtained in the 

previous step, for example {1.309, 0.839, 0.092}. An example of this input-output mapping is 

presented in Table 4, where the partial cumulative product failure rates for the first 3 months 

(Mx denotes the month x) were taken as the input, while the parameters a, b and c were 

estimated for the logistic model. 

Instance 

Input Desired output 

M1 M2 M3 a b c 

1 0 0.029 0.093 1.309 0.839 0.092 
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2 0 0.047 0.129 1.274 0.850 0.091 

3 0.013 0.049 0.101 1.318 0.827 0.092 

4 0 0.017 0.046 1.358 0.817 0.086 

5 0 0.025 0.075 1.323 0.827 0.088 

… … … … … … … 

Table 4: Input and desired output data for machine learning methods 

3 Results 
To estimate the parameters for non-linear models, we have used regression tree, feedforward 

neural network and ensemble of regression trees. The MLM were tested in Matlab environment 

with the setup presented in Table 5. This setup has yielded the best fitting results in the 

preliminary study. 

Regression tree Type of tree: Binary 

Split criterion: MSE 

Number of folds in cross-validation: 10. 

Minimum instances in a leaf: 3 

Minimum number of instances in a parent: 10 

Neural network Learning method: Levenberg-Marquardt backpropagation 

Max. number of epochs: 1000 

Error goal: 0 

Minimum gradient: 1e-7 

Initial combination parameter µ value: 0.001 

Decrease factor of µ: 0.1 

Increase factor of µ: 10 

Maximum µ value: 1e10 

1 hidden layer with different number of neurons: 1, 5 and 10 

Regression tree 

ensemble 

The same parameters as with Regression tree. We have tested three 

different ensembles with 10, 50 and 100 trees, by using Tree Bagging. 

Table 5: Experiment setup for machine learning methods 

To train the MLM we have used the method of repeated random sub - sampling validation 

(RRSSV), also known as Monte Carlo cross-validation (MCCV) (Remesan and Mathew, 2015). We 

have run 10 iterations of MMCV. During each run the instances were divided into the training 

set (70%) and the test set (30%). 

The results of testing the MLM are presented in Table 6. With obtained parameters a, b (and c) 

we have calculated the logistic or exponential CDFs for each instance in the test set and then 

evaluated the goodness of fit with the actual data by the SEE. The values in Table 6 represent 

the mean value and standard deviation across the 10 iterations of the MMCV method and 

 3,6,9,12,15,18,21,24,27,30,33,36n . 

Method's name in Table 6 consists of the following parts, separated by a comma: 

- Type of machine learning method (NN – neural network, RT – regression tree, Ensemble

– ensemble of regression trees).

510



Forecasting terminal call rate with machine learning methods 

- Model (Exp – exponential, Log – logistic).

- The parameter specific for the machine learning method - number of regression trees in

an ensemble or the number of neurons in a hidden layer for neural network.

The results in Table 6 are sorted by the mean value of SEE in an ascending order. The best CDF 

fit results yielded ensembles of regression trees with exponential model, by achieving the lowest 

SEE values (0.04) and the lowest SEE standard deviation (0.01), indicating a robust production 

model. The worst SEE score was achieved by a regression tree with logistic model with the mean 

value of 0.06. 

Method Mean SD 

Ensemble, Exp, 100 0.04 0.01 

Ensemble, Exp, 50 0.04 0.01 

Ensemble, Exp, 10 0.04 0.01 

NN, Exp, 5 0.04 0.01 

NN, Exp, 10 0.05 0.02 

Ensemble, Log, 50 0.05 0.01 

NN, Log, 10 0.05 0.01 

Ensemble, Log, 100 0.05 0.01 

RT, Exp 0.05 0.01 

NN, Log, 5 0.05 0.01 

Ensemble, Log, 10 0.05 0.01 

NN, Exp, 1 0.05 0.02 

RT, Log 0.06 0.01 

Table 6: Mean values and standard deviation for SEE per machine learning method 

We have conducted further research on how the number of input data into the ML method 

affects SEE. For this test, we have selected only ensembles of regression trees with exponential 

model which have yielded the best results in the previous step. The test was performed with 

ensembles containing 10, 50 and 100 trees. The results are presented in Figure 6. As expected, 

one can notice that the SEE decreases for all ensembles with the increased number of input 

data. Obviously, the more input data you provide, the better the prediction result. Second, 

ensembles with higher number of trees yield better SEE values. The largest difference, 

approximately 0.005 among ensembles is with the lowest number of inputs. The more input 

data we provide, the lesser this difference, approximately 0.001, which is almost negligible. 

In the final test, we have researched the TCR prediction accuracy of the ensembles of trees. The 

results are shown in Figure 7. Similar to the experiment setup in the previous step, the test was 

performed with ensembles of regression trees, containing 10, 50 and 100 trees, together with 

the exponential model. The TCR prediction accuracy was measured with mean absolute 

percentage error (MAPE) against the actual TCR. The average MAPE values for (Exp, 10), (Exp, 

50) and (Exp, 100) models are 2.46%, 2.34% and 2.31%, respectively. As expected, (Exp, 100)

model yielded the lowest MAPE values, therefore being the most suitable for TCR prediction.
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Figure 6: A comparison of ensembles with exponential model containing 10, 50 and 300 trees 

with regard to the different number of input data for SEE 

Figure 7: A comparison of ensembles with exponential model containing 10, 50 and 300 trees 

with regard to the different number of input data for MAPE 
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4 Conclusion 
In the scope of this paper we have investigated the estimation of cumulative density function 

with MLM and its impact on the TCR prediction accuracy. The cumulative density functions were 

modelled with exponential and logistic models and their parameters were estimated with MLM, 

such as regression trees, neural networks and ensembles of regression trees.  

In order to evaluate the goodness of fit of cumulative density functions to the actual data, we 

have used the SEE measure. Generally, the best fit results were achieved by ensembles of 

regression trees with SEE as low as 0.04. As expected, it was also shown that the more input 

data you provide, the more accurate estimation you get. With only 3 months of input data for 

ensemble with exponential model and 100 trees, the SEE value is 0.0575. On the contrary, if 

you provide the same ensemble with 12 or 36 months of input data, the SEE drops significantly 

to 0.04 or 0.038, respectively. Finally, cumulative density functions were used to predict the TCR. 

The TCR prediction accuracy was measured with MAPE against the actual TCR. Ensembles of 

100 regression trees yielded the highest prediction accuracy, with the average MAPE value of 

2.31%. Aforementioned results offer a possibility to use the developed TCR prediction model in 

practice. Such low MAPE results could substantially improve the existing TCR prediction 

methods. A possible consequence of using the developed methodology are the substantially 

lower funds needed to be reserved for repairs during the warranty period. 

The results achieved during this research phase reflect only the fundamental research in 

prediction of TCR with MLM. In the future, to improve the prediction accuracy, we intend to 

investigate the impact of other attributes, such as mean time to failure (MTTF), seasonality, 

market, etc. Further, ML methods setup also plays an important role in achieving greater 

prediction accuracy. Therefore, we will also investigate the optimization of ML methods 

attributes, for example, number of instances in leaves for regression trees. 
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