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Abstract: 
Digital fingerprinting is used in several domains to identify and track variable activities and 

processes. In this paper, we propose a novel approach to categorize and recognize 

computational tasks based on thermal system information. The concept focuses on all kinds of 

data center environments to control required cooling capacity dynamically. The concept 

monitors basic thermal sensor data from each server and chassis entity. The respective, 

characteristic curves are merged with additional general system information, such as CPU load 

behavior, memory usage, and I/O characteristics. This results in two-dimensional thermal 

fingerprints, which are unique and achievable. The fingerprints are used as input for an 

adaptive, pre-active air-conditioning control system. This allows a precise estimation of the 

data center health status. First test cases and reference scenarios clarify a huge potential for 

energy savings without any negative aspects regarding health status or durability. In 

consequence, we provide a cost-efficient, light-weight, and flexible solution to optimize the 

energy-efficiency for a huge number of existing, conventional data center environments. 
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1. Introduction 

Conventional data centers are wasting a massive amount of energy for cooling installed, 

heterogeneous hardware components. The cooling capacity is calculated as a static value, which 

represents a worst case cooling scenario with maximum thermal load. In order to optimize the 

air-conditioning baseline, several best practice approaches are used. Some of them are focusing 

on individual adaptations based on practical administrator experiences, i.e., static / periodical 

schedules of different cooling capacities or physical rearrangements of the given hardware 

components (Patel et al. (2002), Greenberg et al. (2006), Lent (2016)). Also DCIM solutions 

for an optimized data center management are well-known toolkits (Gilbert et al. (2013)). 

Many other approaches deal with technical solutions, for example cold aisle containments or 

additional air boosters inside the double-floor. Another well-known approach deals with the 

migration from conventional CRAC concepts (computer room air conditioning) to more 

efficient, local cooling systems for each rack. And of course very familiar solutions represent 

the modernization of core units inside the air-conditioning system (optimized supercharger, DX 

evaporative coolers, radiators, EC brushless fans etc.) (Vogel et al. (2007), Pakbaznia & Pedram 

(2009)). Further, more innovative approaches are introducing additional sensor units inside the 

data centers (Liu & Terzis (2012), Wang et al. (2014)). Due to an easy installation and fast 

maintenance routine, wireless solutions are preferred (Jia et al. (2011), Zanatta et al. (2014)). 



2 

The key issues for all of these solutions are very simple. Either the approach is not flexible and 

provides only a reduced safety buffer, or, on the other hand, the optimization of the energy-

efficiency requires massive hardware modifications which costs a huge amount of money and 

engineering efforts (Buyya et al. (2010)). 

In contrast, our approach focuses on the usage of given sensor data sources which are merged 

into an adaptive software framework, which is able to control the cooling capacity of the 

available air-conditioning systems (Vodel et al. (2015)). The core feature represents thermal 

fingerprints—a promising and innovative instrument to classify computational tasks regarding 

its impact on the thermal behavior inside the data center.  

Accordingly, the following paper is structured as follows. First of all, section 2 summarizes 

related approaches in the domain of data center monitoring, adaptive control loops, and sensor 

extensions for data center environments. After that, section 3 presents the key concept of 

thermal fingerprints, their specific parameters, and the use cases for optimizing the cooling 

capacity. The following section 4 deals with the reference scenarios, detailed environmental 

conditions, and the setup for the adaptive learning algorithm. The respective results are 

presented in section 5, including a critical discussion on system behavior and worst case 

scenarios. The final section summarizes the paper and clarifies the practical benefits of the 

approach. 

 

2. Related Work 

During the last decade, digital fingerprints were started to be used in multiple application 

domains. One important aspect deals with conventional security scenarios, e.g. digital forensics 

(Swaminathan et al. (2008)) or authentication/authorization concepts based on biometric 

watermarking (Noore et al. (2007)). The authors are using specific parameters from inside 

hardware & operating system, the software applications, and the characteristic content 

representation of the peripheral components. 

Further application scenarios for digital fingerprinting deal with tracking and profiling of user 

or process behavior. This area includes OS fingerprinting to identify host operating systems 

without direct access to the hardware (Fifield et al. (2015)) as well as browser and canvas 

fingerprinting for the analysis of user behavior during web-sessions without using dedicated 

cookie techniques (Takei et al. (2015)). 

Another well-known domain for digital fingerprinting are services for music, video or image 

identification, e.g. the Shazam app or the Amazon Firefly service (Han et al. (2015)). Here, 

complex multimedia content is reduced to simple, categorisable hashes, allowing the user to 

recognise contents within almost any playback environment. Therefore, only some media 

snippets are required, which may only contain poor quality samples. With respect to the 

application domain for energy-efficient cooling concepts for data centres, other and yet 

complex approaches have been explored. For example, by Li et al., who proposed a forecasting 

model for the health status inside data centers (Liu et al. (2011)). The model allows multiple 

data sources as well as self-learning capabilities. The key problem of this approach correlates 

with the training efforts as well as missing features for classification and event recognition. 

Furthermore, Liang et al. (2009) developed RACNet—a high-fidelity data center sensing 

network based on several sensor units. This system also tries to enable a more precise 
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adjustment of the given cooling capacities. Here, the aggregated sensor data is processed with 

static rule sets in order to calculate a single health status level. 

 

Figure 1. Visualization of two different methods for shot detection available in the AMOPA 

framework for automated video analysis. Top row: Original frame (left), motion estimation 

(middle) and representative key-frame of the last detected sequence (right). 2nd row: Course of 

motion-compensated error functions; spikes indicate a detected shot boundary. 3rd and 4th row: 

Conventional histograms of the current frame and their statistical measures in the course of time 

that are harder to trace and to predict than the method shown in the top rows. Bottom: Table of 

the detected sequences. (From: (Ritter, p.268)) 

We are now focusing on the adaptation of AMOPA (Automated MOving Picture Annotator) 

(Ritter (2014), Ritter & Eibl (2011)), a powerful educational and research software framework, 

that was originally build for the analysis of multimedia content. AMOPA was developed at 

Chemnitz University of Technology in the Professorships of Media Informatics and Media 

Computing. The framework automatically segments the structure of videos by applying state-
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of-the-art shot detection approaches (cf. to Fig. 1) Another layer introduces concepts and 

algorithms to identify and track predefined sequences or objects in unknown video content. 

Here, the operator is able to annotate samples, train classifiers and rapidly evaluate the 

classification outcomes. The application for the processing and detection of object instances in 

the big data context has been proven within the successful participation in the international 

TRECVid evaluation campaign (Ritter et al. (2015), Ritter et al. (2014)). 

These basic concepts and the data analysis workflows of AMOPA are used for multimedia 

content identification. For the proposed approach, we adapt the workflows to the demands of 

computational software tasks. Accordingly, the system must be able to handle the respective 

thermal sensor data originating from different kinds of sensor classes. 

 

3. Thermal Fingerprints 

The proposed thermal fingerprint concept represents a feasible toolkit for software-based 

health-status estimation in heterogeneous data center environments. We try to solve the already 

mentioned challenges. At the same time, we avoid critical issues of related research projects, 

i.e. no hardware efforts, scalable usage for different environmental conditions and a short 

learning stage/initial setup. Based on the individual fingerprint patterns and the respective 

classification features, the expected re-use factor of the generated knowledge appears to be very 

high. 

3.1 AMOPA Framework 

A very important part for this approach is a sufficient software integration and the respective 

UI. Our goal is to integrate the entire data processing chain into the introduced AMOPA 

framework. In this context, we have to modify several input modules in order to support the 

following types of sensor sources: 

 CPU temperature 

 Memory temperature 

 Chassis temperature 

 GPU temperature 

 Power supply temperature 

 CPU load 

 I/O load 

 Network load 

 S.M.A.R.T. information (work in progress) 

 

Figure 2. Scheme for the generic creation of a simplified linear processing chain in AMOPA 

(Ritter (2014)). 
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The basic operational workflow (single process instance) is shown in Figure 2. Each process is 

derived from a single thread class that works on the input data and stores the resulting data for 

further processing steps. The chain can be flexibly concatenated as well as branched by using 

XML patterns. The data is automatically transmitted to the next process by the AMOPA 

framework. The adapted input process aggregates the already mentioned sensor types as well 

as predefined, environmental parameters. One key result of the workflow represents the 

calculation of two-dimensional thermal fingerprints. 

In a further step, these fingerprints can be used to derive and assess multiple risk levels shown 

as different types of blue colored bars on the left hand side of Figure 3. Here, an adaptive 

Gaussian distribution curve allows a domain-specific, individual balancing of the threshold 

values. These levels are not static and represent an adaptive perspective to the health monitoring 

of the data center. Based on these levels, the system grants the operators or administrators to 

manage generic notification events and alert traps.  

 

Figure 3. Data input for the calculation of two-dimensional, thermal fingerprints. 

3.2 Thermal Pattern Calculation 

In order to calculate two-dimensional, individual thermal patterns, a dedicated data analysis 

sequence has to be processed. For this purpose, we are working with dynamic sliding window 

approaches in the time domain, as often used for distributed network simulators (Vodel et al. 

(2008), Vodel (2014)). Accordingly, the given sensor data will be merged and analyzed in 

several time spans in parallel by using different window sizes. Starting from the last 60 seconds 

and up to 7200 seconds of logged sensor data, the signal curves are processed. This allows both, 

the analysis of short term computational load behaviour as well as long term thermal sequences. 

The workflow is structured as follows being supplemented by Figure 4. 

At first, we define a specific window size. Let the size be for example 120 units, what can be 

either seconds or minutes. Then we process each data channel of input sensors separately and 

on each specific window with overlap (e.g. at step size 10) in the top row (left). Here, the input 

sensors show values of CPU load (green), Temperature (red), and CPU relative load. The 

current classification of the original computation pattern is illustrated on the right being a set 

of Computing (red), Web services (yellow), and Backup & Maintenance (green). We used the 

traffic scheme in order to indicate the computational load of the machine. For each of the 

obtained windowed data distributions, we apply the following procedure: 
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Figure 4. Example set for thermal fingerprint of backup & maintenance tasks in data center 

environments. 

 Subtract the mean from the current data distribution window. 

 Compose (multiply) the data with a sinusoidal wave that works as a carrier function 

ranging from 0 to 86 in quarter steps of  (middle row). 

 Calculate the histogram from the composed data (bottom row). 

As an intermediary result, we receive specific histograms for different time slots, which 

represent deviations from the given baseline. The threshold value between the different 

deviation zones represent the already mentioned risk levels.  

In order to stabilize those results, we apply the window data distributions from step 2) to another 

method. The analysis of spectrograms is very common in the audio domain. The 

composed/transformed sinusoidal waveform allows us to use such methods in this domain of 

data. In order to yield reasonable spectrograms, we first have to transform the signal with a 

Butterworth filter that was designed by using the MATLAB DSP Toolbox for high-pass filters 

with the coefficients of filter order 10, a cutoff frequency for the point 3 dB point below the 

passband value of 25, and a sampling frequency of 200 Hz. For the already mentioned example 

above (120 units), we generate a spectrogram over the whole window with MATLAB standard 

parameters1. By default, those parameters divide the window data distribution into 8 segments 

with 50 % overlap using a Hamming window. The number of frequencies points is limited to 

128. 

                                                           
1 cmp. to http://de.mathworks.com/help/signal/ref/spectrogram.html, 2016-06-09 
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Figure 5. Example set for thermal fingerprint of the computational task in our data center 

environment for the CPU load (left) and the CPU relative load (right). 

The results are two-dimensional, colored patterns, which represent unique fingerprints. 

Examples of the acquired spectrogram fingerprints are shown in Figure 5, providing several 

kinds of information. On the X axis, the time domain in the sample window sequence of 120 

units is given whereas the Y axis contains the corresponding segments. The individual colored 

cells describe the signals intensities in pseudocolors. The figure clarifies higher frequencies 

(red) in the patterns for CPU load (left) and CPU relative load (right) at around 100 units within 

this window. 

3.3 Fingerprints Storage & Discussion 

The pattern can be stored in a database as a simple concatenation of the hexadecimal color 

values of each sector. The pattern resolution is predefined with a static number of X columns 

and Y rows. The fingerprint pattern can be used as a general knowledge base to identify and 

recognize repeating tasks. 

Actual and future research work investigate topics for an efficient classification or 

categorization of these patterns. Here, the key challenge is represented by the different 

variations of similar tasks. These challenges are comparable to the already mentioned music 

and multimedia databases like Shazam or Amazon Firefly. The system must be able to detect 

similar computational tasks with modified environmental conditions or different initial system 

states. E.g., there is a huge thermal impact if several parallel tasks are executed at the same 

time. Also, the thermal pattern varies if the actual cooling capacity is different to the reference 

measurement. Accordingly, the patterns provide significant, domain-specific characteristics 

with scenario-specific, adapted shapes. Our system must be able to detect these constant 

characteristics in a generic way and with minimal training efforts.  

The self-learning capabilities as well as the pattern classification are not in the focus of this 

paper and represent early work in progress. 
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4. Reference Scenarios & Test Bench 

In order to test the proposed approach under real-world conditions, we've done some proof-of-

concept. The test environment represents the Chemnitz University of Technology Computing 

Centre with its central server locations. The data centre consists of more than 200 server, 

storage, and network components. The hardware is cooled by a conventional air-conditioning 

system. The server racks are organised as cold aisle containment groups to shrink the air volume 

for cooling. Additional booster components inside the double floor allow the dynamic 

adaptation of the airflow and the respective local cooling capacity (see Figure 6).  

 

Figure 6. Schematic visualization of the TU Chemnitz data center. Cold aisle zones Z1 to Z3 

(blue), booster fans (yellow). 

4.1 Setup & Environmental Conditions 

In order to provide sufficient sensor data, we measured all available temperature sensor inside 

the individual hardware nodes (CPU, chassis, memory, power supply, and GPU if available). 

The sampling rate is static and predefined with one measurement per second. Furthermore, the 

logging system grabs the CPU load, I/O load and network load with the same sampling 

frequency. The data was stored on a dedicated logging server for the entire post-analysis 

routines. 

4.2 Limitations & Constraints 

One limitation deals with the given sampling rate of one measurement per second. Here, a 

higher data resolution allows more precise data analysis. 

Another limitation represents the missing reference values for the temperature measurements. 

We are using standard system interfaces for extracting the sensor data from the hardware 

components. These values are not referenced and may differ between similar systems. Only a 
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few global reference temperature sensors inside the data center location are available, which 

are used as conventional control input for the air-conditioning system. 

Further constraints address the mapping between sensor data and software tasks. In order to 

define the relation between measurement sets and the respective computational tasks, we are 

using the log files of the systems. Minimal time drifts between different systems are possible 

but uncritical. The system log correlates with the time stamps of the measurement sets and 

enables a direct mapping of a system load to the thermal load as well as the respective estimation 

for the thermal impact. 

For this contribution, we analyzed different hardware from our IT infrastructure. This includes 

a Cisco UCS chassis for our desktop virtualization, a central storage system (NetApp FAS 

series) as well as Dell PowerEdge servers as dedicated compute nodes as service-providing 

systems. The proof-of-concept consists of 48 hours’ log data for each system. 

 

Figure 7. Six different thermal fingerprints for different types of computational tasks. 

5. Result Analysis & Scale-Out 

Based on the given data center infrastructure, several systems are monitored and processed. The 

proposed approach generated individual fingerprints for any type of system (both physical or 

virtual). Figure 7 illustrates a small number of reference patterns. 

The figure includes the following tasks: 
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1. Top left: Cisco UCS virtualization cluster → cluster-internal VM migration task for 

cluster maintenance preparation. 

2. Top right: Cisco UCS virtualization cluster → boot up sequence for a virtual PC pool 

of 20 hosts. 

3. Center left: DELL PowerEdge 710 server → short term batch $<$5 minutes (user-

specific computational task) 

4. Center right: DELL PowerEdge 710 server → parallelized long term batch (about 60 

minutes’ user-specific task with I/O and computational load)  

5. Bottom left: NetApp FAS 3240C → copy process for 25 GB of user data 

6. Bottom right: NetApp FAS 3240C → data integrity test for 25 GB of user data 

The measured thermal fingerprints are stored in a database knowledge base. This data is used 

to trigger an adaptive control loop for the air-conditioning system of our data center. This 

specific control system is called "TUCool" (TU Chemnitz Cooling Approach) (Vodel et al. 

(2015)). The system is able to adapt the cooling capacity dynamically, dependent on the system 

behavior and given temperature data. Basically, TUCool is working with a predefined or self-

learned rule set. The different parameters are used to calculate possible future environmental 

conditions inside the data center.  

The proposed thermal patterns represent the second stage for this adaptive software-based 

optimization approach. The fingerprints allow more accurate, faster prediction for the required 

(near-future) cooling capacity.  

If we scale-out the approach to the usage at several locations or institutions, the system allows 

an open exchange of the fingerprint data. In consequence, an open access database for thermal 

fingerprints provides the opportunity to minimize efforts for learning the initial setups and 

schedules. At this point the authors would like to clarify, that such an open access database will 

be very hard to manage. Due to endless different environmental conditions and operational 

scenarios, the classification and recognition of known thermal loads at different locations is not 

that simple. 

In discussion of possible worst case scenarios, the following example may summarize the 

critical points: Here, a similar computational task would be executed periodically on several 

comparable hardware platforms but with changing environmental conditions. In consequence, 

a suboptimal data handling results in numberless variations of thermal fingerprints for an 

identical task. Accordingly, such a scenario generates massive amounts of useless data and 

makes the identification / recognition process much more complicated. Thus, a robust 

implementation of the proposed core features is essential for a feasible and efficient solution. 

 

6. Conclusion 

The paper has introduced a very promising thermal fingerprint approach for the classification 

and recognition of thermal loads in heterogeneous data center environments. Administrators 

are able to optimize the cooling baseline for the given air-conditioning system without 

additional hardware efforts. This results in significant savings with regards to energy and 

money. At the same time, we are able to ensure a constant health status for any hardware 

component within the entire data center.  
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Furthermore, the proposed solution does not require an initial invest for additional monitoring 

hardware or system upgrades. TUCool as well as the thermal fingerprint patterns are software-

only approaches, which are using the given hardware environment and the given sensor data. 

In a further step, the approach also allows the integration of different rooms and locations into 

one central database.  

Accordingly, our research goal can be summarized as follows: provide an economic, easy-to-

use toolkit to minimize the power consumption as well as the carbon footprint for hundreds of 

existing, conventional data center. 

Based on the results from this proof-of-concept, current and future research work focuses on 

robust classification and recognition capabilities for this approach. 
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