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Abstract 

Predicting the duration of surgeries is an important task because of the many dependencies between 

surgery processes and the hospital processes within other departments. Thus, accurate predictions 

allow for better coordinating patient processes throughout the hospital. Prior data-driven research 

provides evidence for accurate predictions of surgery durations enhancing the efficiency of surgery 

schedules. However, the current prediction models require large sets of features, which make their 

adoption more intricate. Moreover, prediction models focus on the surgery department and neglect 

potential effects on other departments. We use a unique dataset of about 17,000 surgeries to study how 

particular features and machine learning algorithms affect the prediction accuracy of major surgery 

steps. The prediction models that we study require few features and are easy to apply. The empirical 

findings can be useful for the design of surgery scheduling systems. 

Keywords: Surgery Duration Prediction, Machine Learning, Business Process Management. 

1 Introduction 

Business process management (BPM) in hospitals involving surgeries is complex because multiple 

interdependent departments are affected (Armony et al., 2015). The departments are highly autono-

mous and often dominated by the expensive surgery department (Macario, 2010). Due to limited sur-

gery resources, the business process greatly depends on preceding processes of other patients. Thus, 

process parts in other departments (such as the wards, anesthesia, recovery or intensive care) must be 
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often suspended, are prone to workarounds (Tucker et al., 2014; Röder et al., 2015), and have to react 

in an ad-hoc manner to requests from the surgery department. A parallel process in surgery scenarios 

is the request for the next patient as soon as the end of the concurrent surgery is foreseeable (Figure 1). 

Requesting the next patient too late means its process of being transported to the surgery department 

and the anesthetization will cause the operating room (OR) to idle waiting for a patient. However, 

requesting the patient too early causes unnecessarily long anesthesia time and may have spillover ef-

fects on the resource and location utilization. The optimization of triggering this request usually in-

volves knowledge about coordinating the allocation of operating rooms and resources (Schultz et al., 

2007; Jebali and Diabat, 2015; Saadouli et al., 2015). An accurate prediction of process step durations 

may be used to adapt the triggering of patient requests accordingly and optimize timing of patient re-

quests as well as post-surgery processes. To improve process efficiency in terms of physical and hu-

man resource utilization as well as patient well-being, this work addresses the problem of designing 

accurate prediction models for the major steps of a patient’s process in the surgery department. 
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Figure 1. Dependencies between patient processes. 

Previous studies focused on predicting the surgery duration using the patient's age, gender, body mass 

index, and associated risk, the surgeon, the anesthesiologist, the disease, and the procedure type 

(Cardoen et al., 2010; Eijkemans et al., 2010; Gomes et al., 2012; Lowndes et al., 2016). While some 

studies managed to explain about two-thirds of the variation of surgery durations (ShahabiKargar et 

al., 2014; Kayış et al., 2015) other's prediction models explained up to 81% of the variance (Gomes et 

al., 2012). However, practical utility is limited due to the large number of required features, forming 

the inputs of the prediction models. In practice, the inputs might not be easily available for process 

managers, especially for emergency surgeries that have to be taken into account immediately (Lamiri 

et al., 2008). In this setting, ad-hoc prediction of the process is key to effective process management 

and schedules should be adapted dynamically. Prior research has partly addressed this research gap 

(van Dongen et al., 2008; Van der Aalst et al., 2011; Polato et al., 2014; Polato et al., 2016). However, 

these studies do not use features that are specific to the surgery process and do not compare different 

machine learning (ML) algorithms. Considering prior research, we formulate the research question:  

What is the effect of features and machine learning algorithms on the explained variance (R²) of the 

duration of process steps? 

The outline of the paper is as follows: Section 2 presents our research model. Section 3 reports on the 

dataset and methods used. Section 4 presents the results, which are then discussed in section 5. Finally, 

section 6 concludes. 

2 Research Model 

The research model of our study is shown in Figure 2. The machine learning-based models are de-

signed for predicting the major steps of the operational business process in the surgery department. 

The outcomes of experiments are evaluated using the R² metric, which is defined as the percentage of 

correctly explained variation of the duration of a process step.  
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Figure 2. Research model. 

OPS code: We use the official German classification for surgeries, procedures and general medical 

actions as an adaptation of the international classifications of the procedures in medicine (ICPM) of 

the World Health Organization (WHO), termed OPS - German Procedure Classification1. Li et al. 

(2009) studied the predictive power of the operating procedure, which describes the individual proce-

dures performed during a surgery. They found that regression models, which only use operating pro-

cedures as an explanatory variable, outperform both historical averages for a given department as well 

as models that assume that surgery durations are log-normally distributed. Also several other studies 

found the operating procedure to be an important feature for surgery time prediction (Eijkemans et al., 

2010; Gomes et al., 2012; Master et al., 2016). We assume that adding the operating procedure to the 

features increases the R² of the surgery duration prediction.  

OPS taxonomy: Additionally, we posit that the OPS code bears further predictive power due to its 

taxonomic structure. The OPS code begins with the superclass at the left side of the code and becomes 

more specific towards the right side, e.g., “5-448.00” consists of the subclasses “5: surgical proce-

dures”, “5-44: other operations at the stomach”, “5-448: other reconstructions at the stomach” and “5-

448.42: fundoplication: laparoscopic”. This procedural classification schema can be used for feature 

engineering. The rationale is that there are so many different procedures that many process codes are 

observed only once or twice in the whole dataset. In this case, the OPS super class provides infor-

mation about the business process duration in terms of the most similar operating procedures. There-

fore, we assume that adding the OPS taxonomy to the OPS code increases the R² of all our predictions. 

Weekday and preparation start time: Further factors that we posit to impact the duration of a sur-

gery are the time and the weekday of a surgery. For example, Stepaniak et al. (2010) found the time of 

the day to be a relevant and statistically significant factor for predicting medical operation times 

alongside the experience and the age of the surgeon. However, their results are mixed with some med-

ical procedures taking less time in the morning while others being shorter in the afternoon. Kayis et al. 

(2012) also explicitly tested the predictive power of temporal factors such as time of the day, day of 

the week, month, and year but only found significant results for surgeries performed in January as well 

as after 5 pm. In a follow up study Kayis et al. (2015) reiterated their results with respect to surgeries, 

performed after 5 p.m. Furthermore, they found that the first surgery for the day in a given operating 

room is shorter than if the same surgery was performed later that day as well as durations of surgeries 

performed in June, July and October significantly differ from durations of surgeries, performed 

throughout the rest of the year. Based on previous findings, we assume that adding the weekday and 

surgery time to the features increases the R² of the surgery duration prediction. 

1 https://www.dimdi.de/static/en/klassi/ops/ 

Features

• OPS code

• OPS taxonomy

• Weekday, start time

• Operating room (OR)

Coefficient of determination R² of the 

process step duration predictions:

• Preparation start - end

• Preparation end - OR entry

• OR entry - incision

• Incision - suture

• Suture - OR exit

Machine Learning

• Linear Regression (LR)

• Random Forest (RF)

• Support Vector Regression (SVR)

https://www.dimdi.de/static/en/klassi/ops/
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Operating room: It has been also suggested that the location, which is chosen for a surgery, could 

contain information about the expected complexity of the surgery and the required resources, e.g. pro-

cedures, performed in the Ambulatory Procedure Unit, tend to be shorter and simpler (Master et al., 

2016). In addition, Kayis et al. (2015) found evidence that the operating times in particular operating 

rooms in a large US-based hospital significantly differ from others. Therefore, we expect that the sur-

gery location increases the R² of the surgery duration prediction. 

Machine Learning: Examining the relationship between machine learning algorithms and the result-

ing model quality for surgery durations is necessary due to the no free lunch theorem for machine 

learning, which states that there is no a priori superior machine learning algorithm (Wolpert, 1996). 

First, linear regression (LR) has been used as an algorithm in several studies (Eijkemans et al., 2010; 

Gomes et al., 2012; ShahabiKargar et al., 2014; Hosseini et al., 2015; Thiels et al., 2017). Second, 

research for surgery time prediction has shown that random forests (RF) (Breiman, 2001) outperform 

most other machine learning algorithms and it can increase the prediction accuracy by 30-35% com-

pared to traditional methods used in healthcare facilities (Gomes et al., 2012; ShahabiKargar et al., 

2014). Third, recent literature relies on Support Vector Regression (SVR) (Drucker et al., 1997; Smola 

and Scholkopf, 2004) for process time prediction (Polato et al., 2016). Therefore, we conclude that 

advanced machine learning methods should achieve higher R² than linear regression. 

3 Method 

The prediction models of surgery durations were based on a large dataset from a German university 

hospital. The dataset consisted of over 17,000 surgeries, which were recorded over three years by the 

hospital staff. The operations were manually recorded during and after the surgery procedure, contain 

emergency cases and are associated with timestamps, indicating the beginning and the end of a process 

step. The duration between the timestamps served as target variables for the machine learning algo-

rithms. For the duration of each process step, Table 1 provides the descriptive statistics of each process 

step. The process steps are described in the following: (1) “preparation start – end" is the duration of 

the process step that prepares the patient for the surgery. It includes the preparation and induction of 

the narcosis. (2) “preparation end – OR entry”: in this process step the patient is transported to the OR. 

(3) “OR entry – incision”: in this process step the physician prepares the patient for surgery, sterility is

set up and the Team-Time-Out is performed. (4) “incision – suture”: in this process step the surgery is

conducted. (5) "Suture - OR exit": in this process step a spot in the recovery room is reserved, narcosis

is stopped, the patient is relocated and the patient is transported to the recovery room.

Process step N M SD Q1 Q2 Q3 

Preparation start - end 17,537 34.7 11.4 30 35 45 

Preparation end - OR entry 12,288 46.4 39.9 15 35 65 

OR entry - incision 17,435 27.5 15.1 18 25 34 

Incision - suture 17,694 110.7 104.4 28 70 166 

Suture - OR exit 17,424 18.0 14.3 8 15 25 

Table 1. Descriptive statistics of each process step in minutes. N: sample size, M: mean, SD: 

standard deviation, Q1: first quartile, Q2: second quartile/median, Q3: third quartile. 

The dataset was cleaned using the following procedures. We removed all operating timestamps that 

had no OPS code, had no value or were higher than the default cutoff of three standard deviations. 

“Preparation end – OR entry” had fewer values because emergency surgeries may have surgery prepa-

rations in the OR. This results in negative preparation end - OR entry durations, which we removed 

from the dataset. The features for the prediction of the surgery process duration were: the weekday, the 

time when the surgery preparation started (start time), the OR, the OPS code and the OPS taxonomy.  
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The following preprocessing was applied to the dataset. We used the OPS code, the weekday and the 

time the preparation of the surgery started in minutes as features for the machine learning algorithms. 

The start time was treated as a metric value and was mapped to one feature. For the categorical fea-

tures weekday and OPS code one-hot-encoding was used. For the OPS taxonomy, we also applied 

feature engineering. The OPS code string was cut after three characters (e.g., “5-4”) for the first level 

of the taxonomy, four characters (e.g., “5-44”) for the second level of the taxonomy and five charac-

ters (e.g. “5-448”) for the third level of the taxonomy. The complete OPS code (e.g., “5-448.42”) is 

not included in the OPS taxonomy. We scaled the numerical features by subtracting the median and 

dividing by the interquartile range of the features' values. 

The OPS codes are often recorded for reimbursement after the surgery was conducted, which is also 

the case in our dataset. We can assume that the exact surgery procedure is often not known in advance 

so that the planned OPS code and the actual OPS code differ. Therefore, the probable additional in-

formation of the OPS code requires further investigation towards the extent the missing information 

prior to the surgery affects the prediction. We examined this by comparing the prediction results using 

the OPS taxonomy (first to third level only) vs. using the OPS taxonomy and the complete OPS code. 

The justification is that, for example, a surgery that is classified at the third level of the taxonomy as 

“5-448: other reconstructions at the stomach” will rarely become a subset of the class “5-447 revision 

after gastric resection”. Thus, the third level taxonomy of the OPS code should be the same before and 

after the surgery. We also provide the R² of the model using the even more general first and second 

taxonomy level (e.g., “5-44: other operations at the stomach”).  

We applied the machine learning algorithms with their default configurations as provided in the scikit-

learn machine learning library (Pedregosa et al., 2011) and increased the number of trees to 150, fol-

lowing previous work (Oshiro et al., 2016). For model selection, we calculated the R² metric out of 

sample using 10-fold cross validation, which has been found to be better suited than bootstrapping 

(Kohavi, 1995). 

4 Results 

This section reports results of prediction models for surgery process step durations using different 

features and machine learning algorithms. Table 2 provides the results of all prediction models. The 

best prediction models achieved a R² of 0.73 for the incision – suture duration, a R² of 0.349 for the 

preparation start – end duration, a R² of 0.325 for the suture – OR exit duration and R² of 0.199 for the 

preparation end – OR entry duration. The explained variance of the OR entry – incision duration by 

the best performing model was low (R² = 0.069), leading us to conclude that the prediction of this 

surgery process step duration is not possible with the underlying dataset. In the following, we assess 

the impact of the features and machine learning algorithms.

OPS code: We assumed that the OPS code is an important feature for the prediction model and has a 

positive impact on R². Table 2 indicates that OPS as a single feature is the most important driver of the 

duration of the incision – suture process part and achieves R²=0.71 with linear regression.  

OPS taxonomy: We expected that adding the OPS taxonomy to the OPS code increases R². The addi-

tion of the OPS taxonomy to the OPS code {OPS-tx, OPS} increased R² over the OPS code {OPS} for 

all process steps and machine learning algorithms. For example, the R² for the random forest using 

only OPS increased from 0.692 to 0.723 after adding the {OPS-tx}. Furthermore, we investigated the 

deviation between the preoperative OPS code and the postoperative OPS code. The impact on the 

overall performance is demonstrated by comparing the prediction model of the OPS taxonomy {OPS, 

OPS-tx} with two scenarios where in scenario 1 only the first and second level of the taxonomy {OPS-

tx level 1 and 2} and in scenario 2 the first, second and third level of the taxonomy {OPS-tx} are 

available before all surgeries. For both scenarios the process step incision – suture was the only one to 

show a R² difference of over 0.05. For this step, random forest resulted in a maximum R² difference of 

0.14 with R² = 0.582 for {OPS-tx level 1 and 2} vs. R²=0.723 for {OPS, OPS-tx} and a maximum R² 
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difference of 0.06 with R²=0.668 for {OPS-tx} vs. R²=0.723 for {OPS, OPS-tx}. Both scenarios indi-

cate that excluding the postoperative information of the full OPS code in our prediction models should 

neither increase the R² by more than 0.15 for the incision – suture duration nor reduce the R² for the 

other durations by more than 0.05.  

Weekday and preparation start time: We enquire whether adding the surgery time and weekday to 

the features further increases the R² of the prediction. The R² of the models using the features weekday 

and start time {weekday, start time} are relatively low or negative in the out-of-sample evaluation. 

However, the prediction of the process step preparation start-end is improved from R²=0.190 for 

{OPS-tx, OPS} to R²=0.287 for {OPS, OPS-tx, weekday, start time} using random forest.  

Operating room: We examine the predictive power of the operating room feature for the process step 

durations. Table 2 indicates the operating room {OR} to be a good predictor (R²=0.325 for LR and 

RF) for the suture – OR exit duration. Furthermore, the location feature combined with all other fea-

tures {OPS, OPS-tx, weekday, start time, OR} with linear regression achieves the highest R² of 0.727 

for the incision – suture duration.  

Machine learning algorithms: Here, we investigate whether RF and SVR can explain more variance 

than LR. RF achieved the highest results for the preparation start – end duration (R²=0.349) and prepa-

ration end – OR entry duration (R²=0.199). LR achieves the highest R² of 0.727 for incision – suture 

duration. RF and LR achieved equal results for the suture - OR exit duration R²=0.325. SVR is the 

worst performing method of the 3 methods investigated in this study. 

Features ML 
Preparation 

start – end 

Preparation 

end – OR entry 

OR entry – 

incision 

Incision – 

Suture 

Suture – 

OR exit 

O
P

S
 

co
d

e 

{OPS} 

RF 0.187 0.122 0.063 0.692 0.27 

LR 0.170 0.135 0.047 0.710 0.274 

SVR 0.139 0.099 0.041 0.496 0.238 

O
P

S
 t

a
x
o

n
o

m
y

 

{OPS-tx 

 level 1 and 2} 

RF 0.142 0.162 0.064 0.582 0.299 

LR 0.142 0.162 0.064 0.582 0.299 

SVR 0.049 0.111 0.009 0.555 0.247 

{OPS-tx} 

RF 0.185 0.170 0.077 0.668 0.309 

LR 0.183 0.168 0.074 0.667 0.308 

SVR 0.099 0.123 0.029 0.626 0.259 

{OPS-tx, OPS} 

RF 0.19 0.152 0.067 0.723 0.291 

LR 0.174 0.141 0.048 0.719 0.276 

SVR 0.154 0.137 0.052 0.673 0.27 

W
ee

k
d

a
y

, 

st
a

rt
 t

im
e {start time, 

weekday} 

RF -0.091 -0.007 -0.011 0.092 0.183 

LR  0.011 0.014  0.007 0.035  0.096 

SVR -0.024 -0.047 -0.06 -0.107 0.086 

{OPS, OPS-tx, 

weekday, start 

time} 

RF 0.287 0.154 -0.035 0.682 0.200 

LR 0.215 0.142 0.049 0.72 0.276 

SVR 0.234 0.14 0.056 0.676 0.271 

O
p

er
a

ti
n

g
 

ro
o

m
 {OR} 

RF 0.197 0.146 0.049 0.436 0.325 

LR 0.196 0.145 0.049 0.436 0.325 

SVR 0.147 0.099 -0.022 0.402 0.262 

{OPS, OPS-tx, 

OR} 

RF 0.233 0.125 0.040 0.718 0.271 

LR 0.24 0.149 0.061 0.726 0.295 

SVR 0.235 0.148 0.066 0.689 0.301 

A
ll

 {OPS, OPS-tx, 

weekday, start 

time, OR} 

RF 0.349 0.199 -0.007 0.694 0.244 

LR 0.267 0.152 0.063 0.727 0.295 

SVR 0.284 0.152 0.069 0.691 0.304 

Table 2. Descriptive statistics of the R² metric for predictions of the process step durations. 

Bold are the highest results. OPS-tx: OPS taxonomy, start time: time the surgery 

preparation started, weekday: day of the week the surgery took place, ML: machine 

learning algorithm. 
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5 Discussion 

We find that predicting the process step durations surrounding the incision – suture duration is possi-

ble with R²=0.349 for the preparation start – end duration, R²=0.325 for the suture – OR exit duration 

and R²=0.199 for the preparation end – OR entry duration. The best prediction model achieved a R² of 

0.73 for the duration of the incision – suture process step. This result is comparable to previous work 

(Eijkemans et al., 2010; Gomes et al., 2012).  

The relevant features according to our research are OPS code, OPS taxonomy and operating room, 

whereas the efficacy of the feature start time and weekday is mixed. First, the most decisive feature is 

the OPS code, which is a consistent finding to previous work (Li et al., 2009). Second, the OPS taxon-

omy slightly improves the duration predictions of all process steps by providing more general features, 

which allow the predictions of rare surgery procedures and may reduce overfitting of the machine 

learning algorithms (Hastie et al., 2009). Third, the operating room is a feature with few different cat-

egories, but major impact on suture – or exit durations. This finding could be explained by specific 

devices that are only installed in specific rooms that increase the time until the patient leaves the OR. 

Fourth, our findings concerning mixed results for start time and weekday contradict previous work, 

which used the start time as a feature (Kayış et al., 2012, 2015). A possible explanation for the small 

impact of weekday and start time on the duration of the process steps might be that processes in the 

observed hospital changed several times. Fifth, the R² of the prediction models vary depending on the 

chosen machine learning algorithms and the predicted process steps. The no free lunch theorem pro-

vides a possible explanation for this result, i.e. there is no universally best machine learning algorithm 

(Wolpert, 1996).  

Contributions: First, research on the prediction of surgery durations from a BPM perspective is still 

scarce and previous research has only predicted incision – suture duration or the duration the patient 

stayed in the OR. We extend prior work by predicting process step durations, allowing surrounding 

stations to better assess the status of the OR due to more specific estimates for each process step. Sec-

ond, we introduce the OPS taxonomy as a new feature for process step duration prediction that re-

quires no additional data and increases the R² of the prediction models. The OPS taxonomy has previ-

ously been used in context of process step identification (Meier et al., 2015). Third, by focusing on 

few features, we sustain patient and physician privacy and nevertheless achieve R² comparable to pre-

vious work (Gomes et al., 2012).  

Implications for IS research: First, our results indicate that predictions of almost all process step 

durations depend on features that are easy to record and extract and similar features are available for 

other business processes. Therefore, this study could be expanded by adding further process steps in 

the hospital or even by generalizing to other organizations. Second, research gaps exist towards more 

accurate predictions of the process durations. Exploring new features, applying feature selection 

(Guyon and Elisseeff, 2003; Chandrashekar and Sahin, 2014), applying regularization to the linear 

regression algorithm (Friedman et al., 2010) or training other machine learning algorithms could help 

to increase the models' R². Third, other process parameters may be predictable and relevant to BPM. 

Such parameters could be costs, optimal amount of personnel per process step or required supplement-

ing resources.  

Implications for practice: Our study suggests that preemptive planning of business processes can 

improve business process performance by aligning dependent business processes. The results of the 

study indicate that accurate prediction models for the incision – suture duration can support operating 

room coordination. Surgeries can be planned with higher reliability even if only few features are avail-

able for surgery scheduling. We also demonstrated that process steps before and after the incision – 

suture duration can be predicted, which could improve the process management further. 

Limitations: First, in our dataset the OPS code was recorded after the surgery was conducted. There-

fore, we estimated the impact by constructing features that contained less information than the least 

amount of preoperative information available. Our results indicate that the postoperative information 
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has not a strong impact on R². However, a test set of preoperative OPS codes should be used in future 

work. Second, we note that the no-free lunch theorem in machine learning limits the generalizability 

of our results (Wolpert, 1996). This work's dataset may be different from other hospitals' data and a 

generalization may not be entirely possible. Third, the predictions assume that nothing in the hospital 

changed since the dataset was recorded, i.e., future changes of organizational structure or operating 

procedures are unaccounted for in the prediction models. Fourth, we did not investigate the organiza-

tional structure concerning correlations that might result from scheduling policies that would try to 

conduct complicated surgeries in particular rooms or schedule predictable surgeries first. Fifth, our 

current experiments do not provide statistical hypothesis tests. Further studies should go beyond the 

evaluation in this paper. Sixth, whereas the research model was largely supported, our predictions 

achieved only moderate R² except for the prediction of the duration of the incision – suture process 

step, which is the most important step in practice.  

6 Conclusion 

Our work foremost contributes to IS research by better understanding the factors affecting the duration 

of steps of the operational business process of patients in hospitals. Our research model contains five 

design factors and was tested by experimental evaluation using a unique dataset of over 17,000 surger-

ies. The prediction models address durations of all major steps of operational processes involving pa-

tients in the operating room. Our experimental evaluation achieves high R² of 0.73 for the duration for 

the most important incision – suture process step. However, in contrast to other models, it requires 

only few features. Thus, this research helps to shorten the path for practitioners and researchers to 

design accurate prediction models to support process managers in hospitals. These results should be 

considered for efficient BPM in hospitals and for reducing waiting times for surgery. The code used in 

our experiments can be retrieved from https://wi2.uni-hohenheim.de/analytics. 
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