
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2009 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

July 2009

UNDERSTANDING PARTICIPATION
BEHAVIOR AND STATUS ATTAINMENT OF
OPEN SOURCE SOFTWARE DEVELOPERS –
A LATENT CLASS GROWTH MODELING
APPROACH
Israr Qureshi
Hong Kong Polytechnic University, msisrar@inet.polyu.edu.hk

Yulin Fang
City University Hong Kong, ylfang@cityu.edu.hk

Follow this and additional works at: http://aisel.aisnet.org/pacis2009

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Qureshi, Israr and Fang, Yulin, "UNDERSTANDING PARTICIPATION BEHAVIOR AND STATUS ATTAINMENT OF OPEN
SOURCE SOFTWARE DEVELOPERS – A LATENT CLASS GROWTH MODELING APPROACH" (2009). PACIS 2009
Proceedings. 37.
http://aisel.aisnet.org/pacis2009/37

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2009%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2009?utm_source=aisel.aisnet.org%2Fpacis2009%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2009%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2009%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2009?utm_source=aisel.aisnet.org%2Fpacis2009%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2009/37?utm_source=aisel.aisnet.org%2Fpacis2009%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 1

UNDERSTANDING PARTICIPATION BEHAVIOR AND STATUS
ATTAINMENT OF OPEN SOURCE SOFTWARE DEVELOPERS –

A LATENT CLASS GROWTH MODELING APPROACH

Abstract

The success of open source software (OSS) projects heavily depends on voluntary participation by a

large number of developers. Developers new to an OSS community must participate by engaging in

community interactions before they are qualified by the community as core developers. This exploratory

study examines new peripheral developers’ temporal participation behavior and its impacts on the time

taken to attain core developer status. Using the novel latent class growth modeling approach on 133

peripheral developers across 40 OSS projects, we found that these peripheral developers differed in the

initial levels and growth trajectories of participation, and distinct classes of participation behavior were

identified. We also found that different classes of developers differ in their time taken to attain core

developer status. Implications to research and practice are discussed.

INTRODUCTION

The open source software development (OSS) model originated in the 1970s, partially as a defensive
reaction to the move by some private software companies to appropriate publicly-available software into
their proprietary applications (Stallman and Lessig 2002). Over the last decade this intriguing software
development model has emerged as a viable alternative to the commercial software projects (Fitzgerald
2006), and has attracted increasing academic and corporate attention (Sen 2007; Stewart, Ammeter and
Maruping 2006). Some OSS projects have achieved remarkable adoption success. Among the best known
OSS projects are the Linux operating system, as well as the Apache web server, which answers 70% of
all the Web pages requests through the Internet (Netcraft 2004). For the commercial market, Gartner
group estimates that the market for open source software services could reach US $4.3 billion by 2010.
Other report that 60 per cent of the largest companies in North America had planned to implement OSS
applications, half of these for mission-critical functions (Schadler 2004).

The notable success of open source software projects would not have been accomplished without
individual developers’ voluntary participation (Roberts, Hann and Slaughter 2006). Indeed, research has
identified that failure in OSS development is frequently due to shortage of volunteer participation,
whereas successful OSS projects often feature a large number of active participants (Crowston, Annabi
and Howison 2003; Krishnamurthy 2002; Markus, Manville and Agres 2000). For this reason,
considerable research has been motivated towards developing a deep understanding of OSS developer
participation (von Krogh and von Hippel 2006).

A two-tier structure of OSS developers with differential roles of participation have been identified in the
literature: the tier of core developers with authorization to submit code changes and that of peripheral
developers with the permission to participate in the mailing list only (Lee and Cole 2003). Both types of
developers are important for the success of OSS projects: while core developers have direct
administrative responsibilities in maintaining the software codebase, peripheral developers make indirect
contributions through their participation in the mailing list (Lee and Cole 2003). These tiers of developers
are ecologically dependent on each other. On the one hand, core developers draw intellectual input from
peripheral developers by relying on the periphery to generate patches of computer codes and bug reports.
On the other hand, candidates of core developers must be drawn from the large pool of peripheral
developers, per evaluation and nomination by the existing core developers (Fang and Neufeld 2009).

OSS research to date has tended to exclusively focus on core developer participation by understanding
motivations to participate (Franke and von Hippel 2003; Hertel, Niedner and Herrmann 2003; Shah 2006;
Von Hippel 2001; Von Krogh, Spaeth and Lakhani 2003) and performance impacts of participating
(Fielding 1999; Roberts et al. 2006). However, our understanding of peripheral developers’ participation
behavior and performance outcomes have been limited despite their aforementioned importance, with

 2

very few exceptions (Fang and Neufeld 2009; Von Krogh et al. 2003). It is important to understand
peripheral developers’ participation behavior as it is through continued participation that peripheral
developers make themselves likely to be nominated as future core developers, which in turn sustains the
coding activities in the OSS project (Lee and Cole 2003). Yet, the few studies with a partial focus on
peripheral developers either established the association between levels of participation and individual
performance, or identified types of participation required for a peripheral developer to become a core
developer, without providing a clear picture about how their participation behaviors are changed over
time and how such temporal changes affect their prospect as core developers (Von Krogh et al. 2003). It
is likely that peripheral developers with different “career prospects” might exhibit differential temporal
participation patterns; developing such a temporal perspective can enrich our understanding of peripheral
developers’ participation dynamics. The objective of the present exploratory study is thus to contribute to
the OSS literature by identifying peripheral developers’ temporal participation patterns and exploring
their relationships with individual performance in terms of attainment of core developer status.

To address this research question, we base our conceptual argument on the existing OSS literature and
empirically model the longitudinal participation trajectories of 133 peripheral developers in 40 OSS
projects with differing progresses regarding attainment of core developer status, using the latent class
growth analysis (LCGA) technique (Muthén and Muthén 2000; Nagin 1999). The nature of our research
question entails an analytical technique that supports both the person-centered approach, which model
individual trajectories based on intra-individual changes over time and classify individuals into distinct
categories based on inter-individual differences in behavioral patterns (i.e., different classes of
participation trajectories), as well as the variable-centered approach, which describes the relationships
among variables (i.e., participation trajectories and developer status attainment). However, the existing
methods in the information systems field has either only focused on the variable-center approach, such as
regression and structural equation modeling (Gefen, Straub and Boudreau 2000), or on the person-
centered approach, such as cluster analysis (Jain, Ramamurthy, Ryu and Yasai-Ardekani 1998; Malhotra,
Gosain and El Sawy 2005) that account for inter-individual differences only and does not explain intra-
individual changes. LCGA is an analytical technique that summarizes longitudinal data by modeling
intra-individual and inter-individual variability in developmental trajectories through a small number of
classes defined by unique sizes (initial values) and shapes (growth) (Nagin 1999), thus effectively
consolidating the two approaches. This technique has found widespread usage in research on psychology
and sociology (Kreuter and Muthén 2008; Pinquart and Schindler 2007; Wang and Bodner 2007; Wu and
Witkiewitz 2008.). However, it has not yet been used in the information systems field. The second
objective of this study is thus to introduce LCGA by demonstrating its usability within the context of
OSS developer participation.

The remainder of the paper is organized as follows. In the next section, we review the OSS literature and
identify four classes of peripheral developers with differing initial levels of participation and differing
temporal patterns of participation. Hypotheses are developed to empirically explore the existence of these
four classes of developers. We then introduce the latent class growth analysis technique and conduct an
empirical investigation by drawing on a longitudinal dataset of 133 peripheral developers from 40
projects. Finally, empirical results are discussed in conjunction with the existing OSS literature.

CONCEPTUAL BACKGROUND AND HYPOTHESES

An OSS project involves a decentralized community of volunteer developers who collaborate to produce
a software product using Internet-based tools such as e-mail, mailing lists, Web-based concurrent
versioning systems (CVS), and bug reporting software. To date, OSS researchers and practitioners have
been primarily interested in three sub-areas of research: (1) individual developer participation; (2)
competitive dynamics; and (3) innovation processes, governance and organization [see (von Krogh and
von Hippel 2006) for a summary of these areas]. While much additional research is required within each
area, the focus of the present study is on developer participation and more precisely on temporal
participation trajectories of peripheral developers prior to their attainment of the core developer status.

 3

Peripheral developers differ from core developers in that they have limited access to codebase. Research
has found that, while access to certain areas (e.g., CVS systems) was restricted to core developers who
took on key technical activities and demonstrated advanced technical knowledge, access to the OSS
community was free and open to everyone, resulting in a large pool of peripheral developers (Von Krogh
et al. 2003). Participation by peripheral developers in an OSS community usually take the form of
interacting with core developers and other peripheral developers on a variety of technical issues, such as
reporting bugs, offering bug fixes, discussing on feature development (Von Krogh et al. 2003). However,
only a small number of peripheral developers whose performance is successfully recognized and valued
by the existing core developers can eventually be granted core developer status (Fang and Neufeld 2009),
implying that joining the core developer community is not effortless. Software development is a
knowledge-intensive activity that often requires high levels of domain knowledge, experience, and
intensive learning by those contributing to it (Fichman and Kemerer 1997; Pliskin, Balaila and
Kenigshtein 1991), and integration of newcomers into the process is arduous. Only those who
continuously involved in the development process over a period of time could contribute in a meaningful
way, and many might find it too effort-taking to join the core developer team of the project (Kohanski
1998). Using qualitative investigation, limited prior research has indicated that peripheral developers are
more likely to be granted core status if they participate according to a “joining script” in terms of
intensity and type of participation they engaged in (Von Krogh et al. 2003) and those who participate
continuously in an active fashion are more likely to be granted core status (Fang and Neufeld 2009).

While the prior research has been successful in establishing the association between peripheral
developers’ level of participation and their likelihood of attaining a core status, they do not offer a
longitudinal perspective as to whether all the peripheral developers who eventually obtained core
developer status follow similar participation processes. Yet, it is noteworthy that different types of
peripheral developers might follow different participation trajectories, which in turn have implications on
the developer’s success with core status attainment. It is important to uncover how project members join
a particular project, and “the nature and emergence of social categories in such projects” (Von Hippel and
Von Krogh 2003) [p.218].

Summarizing the existing literature, we identify four classes of peripheral developers who may exhibit
differential participation trajectories, and term them as domain experts, quick learners, goal drifters, and

community lurkers. Domain experts come into a project with sufficient relevant knowledge and skills that
they can apply to generate immediate results. For instance, Fang and Neufeld (2009) identified that some
developers had possessed deep software development expertise prior to joining a community. Shah
(2006) reported similar findings. Thanks to the existing expertise, domain experts can effectively engage
themselves into the community discussion as soon as they started participating, and are likely to keep on
participating actively as their earlier contributions to the community is recognized (Fang and Neufeld
2009). Thus, domain experts may start with a high initial level of participation in the community, and
remain steadily active over time.

Quick learners, on the other hand, join a community with a specific, clear objective in mind, e.g., fixing a
bug or adding a feature to the existing code so that their own needs for an enhanced version would be
satisfied. While they do come with general competence and skills, quick learners lack project-specific
knowledge that would otherwise enable them to perform as soon as they joined the community. Thus,
they stay relatively silent on the developer mailing list, at least for a short initial period, in order to
familiarize themselves with the specific project context and gain project-specific knowledge (Shah 2006).
Having learned about the technical details of the project, they would contribute more actively, than other
contributors, to an ongoing technical discussion as a way of increasing their recognition (Von Krogh et
al. 2003). Indeed, numerous research has identified that one of the major benefits from participating in
OSS communities is learning and competence development (Hertel et al. 2003; Lakhani and Wolf 2005;
Shah 2006). Thus, quick learners may start with a relative medium level of participation in the
community, but become increasingly active over time.

Goal drifters join a community in a similar capacity as quick learners, i.e., they do not come with the
ability to get started contributing immediately. They differ from quick learners in that they are interested

 4

in participating, yet without a predefined focus. Thus, it may take them longer to familiarize with what
they thought they would need to know, and participate not as intense as quick learners over time. For
instance, research has found that a number of new participants solicit assignments upon their joining a
community, implying that they are interested yet do not know what they should do (Von Krogh et al.
2003).

The fourth type of developers is termed as community lurkers. Lurkers never actively participate in the
community discussion. They choose to remain peripheral as their goal is not for contributing to the
community, but for benefiting from the intellectual discussion in the community. For instance, a group of
developers have been identified as observing and learning from certain OSS projects not for improving
the focal software per se, but for understanding its underlying mechanisms so as to apply the knowledge
somewhere else (Ye and Kishida 2003). These peripheral developers began with very low levels of
participation and remained at that level.

Given the discussion on the four types of peripheral developers, we develop hypotheses that distinguish
peripheral developers in terms of their initial levels of participation as well as their growth patterns. We
expect that domain experts’ initial participation should be more frequent than the other classes of
developers because by definition they join a community with hands-on skills that enable them to
participate immediately. In contrast, we expect that community lurkers’ initial participation should be the
least frequent because they choose to remain peripheral for reasons not related to contributing to the
community. Similarly, we expect to see differences between different classes of developers in terms of
their participation growth patterns. Despite quick learners’ relatively low frequency of participation at the
initial stage, they are likely to increase their participation over time as they keep learning project
particulars and become competent in contributing to the community. In contrast, goal drifters, who began
with a similar modest level of initial participation, may increase their participation at a slower rate,
because they are not specialized enough to keep involved in a specialized area. Community lurkers, on
the other hand, may never increase their participation over time, but remain peripheral throughout. Given
that peripheral developers’ participation in the community is exclusively manifested as interactions via
mailing list with other developers, including both core developers and other peripheral developers, and
the impact of interactions with core developer and that with other peripheral developer is likely be
different in terms of status attainment by the prospective peripheral developer. We separate hypotheses
between peripheral developers and core developers for the purpose of exploration.
Thus, we hypothesize:

H1: There are significant differences in peripheral developers’ initial level of interactions with

core developers

H2: There are significant differences in peripheral developers’ growth of interactions with core

developers over time

H3: There are significant differences in peripheral developers’ initial level of interactions with

other peripheral developers

H4: There are significant differences in peripheral developers’ growth of interactions with other

peripheral developers over time

Furthermore, to the extent that these four classes of peripheral developers do exist and their initial
levels and temporal growth patterns may differ from one another, we hypothesize:

H5: Distinct classes of peripheral developers can be identified based on their initial level of

interaction and growth over time with the core developers

H6: Distinct classes of peripheral developers can be identified based on their initial level of

interaction and growth over time with the other peripheral developers

 5

The prior research has suggested that more active participation leads to higher possibility of advancing an
OSS developer’s performance rank (Roberts et al. 2006). Similarly, it stands to reason that peripheral
developers who participate in mailing list more actively should attain core developer status sooner than
others because their performance is generally better recognized. Since different classes of peripheral
developers engage in different levels of initial participation and have different growth trajectories of
ongoing participation, we expect that the time it takes for peripheral developers to attain core developer
status will differ across different classes of developers, such that those with high initial interaction and
high levels of ongoing interaction will gain the core developer status sooner. Thus, we hypothesize that:

H7: Peripheral developers that have high initial interactions with core developers and continue

to interact at higher levels with core developers will be promoted sooner than others

H8: Peripheral developers that have high initial interactions with other developers and continue

to interact at higher levels with other peripheral developers will be promoted sooner than others.

RESEARCH METHODOLOGY

To test these hypotheses, we need an empirical method that can (1) estimate initial levels of participation
and participation trajectories for each individual developer, (2) identify classes of peripheral developers
based on trajectories (growth patterns) of their interactions with core developers and other peripheral
developers, and (3) examine relationships of identified classes with time taken for status attainment.

The objective of such an analysis is to capture information about inter-individual differences in intra-
individual cumulative pattern of interactions (Muthén and Muthén 2000; Nesselroade 1991). Such a
technique is useful when observed differences in the patterns are a result of unobserved heterogeneity in
the population (Muthén and Muthén 2000; Nagin 1999). Thus, heterogeneity in the observed interaction
patterns may emerge from the unobserved difference amongst the developers towards, for example,
utility, convenience, ease of use and other aspects of email as a medium of interactions.

Population heterogeneity, such as gender, race, and organizational designation, is either observable or
available from company records, and thus can be explicitly represented by variables in a model. When
population heterogeneity is unobservable, it cannot be accounted for in the model using simple regression
or structural equation modeling techniques; however, latent class analysis framework can take it into
account by using latent classes in the model (Muthén and Muthén 2000; Nagin 1999). This is achieved
through a use of categorical latent variable that represent the latent classes (i.e. unobserved
heterogeneity). The basic idea involve in latent class analysis is that that each latent class corresponds to
an unobservable subpopulation that has its own growth trajectory that is define by a set of parameter
values.

Latent Class Analysis

At the simplest level latent class analysis (LCA) describes how the probabilities of a set of observed
variables or latent variables measured by observed indicators vary across groups of individuals where
group membership is not observed (Muthén and Muthén 2000). For example, the observed variables may
be various measure of community participation: frequency of participation and duration of participation.
These participation variables may define latent classes that differ on relative participation, i.e. members
of a group may participate in an OSS community more frequently yet their interaction may last only for a
shorter period each time, whereas members of another group may participate less frequently but their
interactions may last longer each time. LCA refers to these unobserved groups of individuals as latent
classes. The objective of LCA is to find the optimal number of latent classes that can describe the
associations among a set of observed variables. In the analysis, classes are added (or reduced) stepwise
until the model fits the data well, and probabilities of being in each class are provided. This basic LCA
may be extended to include outcomes of class membership, such as status attainment. Clogg (1995)
provides an excellent overview of this method.

 6

Latent Class Growth Analysis
Latent class growth analysis (LCGA) combines techniques of LCA and latent curve modeling (LCM)
(Bollen and Curran 2006). In this technique a single outcome variable or a latent variable is measured at
multiple time points to define different growth trajectories for each individual. LCM helps the researcher
identify the pattern of changes over time by utilizing the set of repeated observed measures to estimate
“an unobserved trajectory that gave rise to the repeated measures” (Bollen and Curran 2006, p. 34). The
primary interest is not in the repeated measures themselves but rather in the unobserved path of change,
which is referred to as latent trajectory (MacCallum, Kim, Malarkey and Kiecolt-Glaser 1997). To that
extent LCM resembles the traditional latent variable SEM approach where indicators of a latent construct
are used to understand the unobserved construct. LCM models estimate random intercepts and random
slopes (linear or higher order) for each individual (i.e., subject) in the sample so that trajectories over
time for each individual can be constructed.

LCGA builds on LCM and LCA. LGCA represents a latent class analysis in which the latent classes
correspond to differences in growth trajectories for the outcome variable. For example, in a two-class
model, one class may have high intercept and moderate linear growth of the outcome variable while the
other may have low intercept but quadratic growth. The object of the analysis is to estimate the different
growth curve patterns, and based on these patterns, the class membership of each individual (Nagin
1999). This model is flexible and more than one growth process can be used to identify classes. In
addition, the model may include antecedents and outcome variables that might be related to the class
membership (Muthén and Muthén 2000).

SamplingSamplingSamplingSampling

We sampled developers from OSS projects hosted in Source Forge (SF) (http://sourceforge.net), the
largest Web-based hosting service for OSS projects, and a major data source for empirical OSS studies
(Colazo and Fang 2009; Koch and Schneider 2002; Mockus, Fielding and Herbsleb 2002; Newby,
Greenberg and Jones 2002). Due to the longitudinal nature of our study that focused on temporal
interaction among developers, we needed to sample developers from healthy, collaborative OSS projects
that have tractable activity data in both CVS repository and mailing list. To accomplish that, we followed
the approach introduced by Colazo and Fang by focusing on projects hosted in SF that met three criteria:
they must be collaboratively developed, ported, and had activity data publicly available in CVS and
mailing list (2009). This effort results in 62 OSS projects comprised of 870 core developers. As the focus
of our study was participation trajectories of peripheral developers who were eventually promoted to core
developer, these 870 core developers became our sample frame, of which 206 developers were
successfully identified in both the developer mailing list and CVS. The time taken for the 206 developers
to achieve the core developer status (hereafter termed as promotion time) ranged from 1 week to 207
weeks.

We captured mailing-list interactions as and when they actually happened but for modeling purpose we
used weekly interval in order to avoid idiosyncrasies associated with specific day of a week. For
example, developers who have a full time job may interact intensely over a week-end compare to other
week-days. Similarly in order to be consistent with “development trajectory” philosophy of latent growth
models, we used cumulative email interactions instead of actual week to week interaction. In order to
identify growth patterns in mailing-list interaction a sufficiently long period of observation should be
identified. We decided to use a cut-off of seven weeks, i.e. we used only those peripheral developers
whose promotion time was more than seven weeks. This condensed the final sample to 133 peripheral
developers spanning over 40 projects1.

Analysis Technique
We used Mplus (5.2 version) software for our analysis because it uses generalized structural equation
modeling framework and implementation is flexible to incorporate continuous, categorical, and count

1 We repeated our analysis for peripheral developer with promotion time greater six weeks, the results were comparable but

parameters were less stable. For promotion time less than six weeks, we could only fit simple patent growth model, model with

quadratic, cubic and higher order suffered from identification problem.

 7

variables (Muthén and Muthén 2007). To test our hypotheses, we constructed the LGCA model
visualized in figure 1, and performed following stepwise analysis.

Step 1- Estimation of latent curve models (LCM): As a first step two separate models shown in block ‘A’
and ‘B’ in the Figure 1 were estimated. We tried to fit linear (LCM1), quadratic (LCM2) and cubic
(LCM3) models. Table 1 provide model fit indices for these models. Based on model fit indices it can be
concluded that LCM3 is best fit model for both the processes. Table 1 also provide information about
variances in intercepts and slopes. There is significant variance in intercepts (i.e. initial level of
interactions) for the process of interactions with core developer (var(ICD) =21.92, p<0.001). Thus,
hypothesis H1, which stated that there are significant differences in peripheral developers’ initial level of
interactions with core developers, was supported. We also found support for hypothesis H2, as all the
three components of slope (i.e. linear [var(LCD) =21.82, p <0.001], quadratic [var(QCD) =.06, p <0.01],
and cubic [var(CCD) =.012, p <0.001]) for peripheral developers’ interactions with core developer have
significant variations. Similarly, Table 1 indicates that there are significant variations in intercept, and
linear, quadratic and cubic components of slope for peripheral developers’ interactions with other
peripheral developer. Thus, hypothesis H3 and H4 were supported.

Table 1: LCM Models

Variance
Models CFI TLI RMSEA

Intercept Lin Quad/Cubic

Interactions with core developer

LCM1 .562 .600 .842 26.82*** 36.58** ---

LCM2 .804 .784 .619 21.57*** .30.28*** .65***/---

LCM3 .992 .987 .12 21.92*** 21.82*** .06**/ .012***

Interactions with other peripheral developer

LCM1 .537 .577 .935 209.69*** 46.95*** ---/---

LCM2 .738 .710 .774 78.935*** 121.13*** 1.73***/---

LCM3 .985 .977 .15 80.19*** 91.51*** .21***/.041***

LCM1, LCM2, LCM3 represent linear, quadratic, and cubic LCM models. For variance:
*** p<.001, ** p<.01. Row with bold numbers indicates the best fit model for that
process. For example, LCM3 is the best fit model for both processes modelled.

 8

Step 2- Estimation of classes for each growth process: Once latent curve model is estimated, the next
step is to identify number of classes for each growth process. The latent class growth analysis for
interactions with core developer yielded four classes (we used various information criteria provided by
Mplus to decide best solution for number of classes, details of analysis is not included because of space
constraint and could be obtained from the author team). These four classes are shown in Figure 2. As
there are four clearly identifiable classes based on intercept and slope of growth trajectories, hypothesis
H5 was supported.

Similarly, LCGA for interactions with other peripheral developers also resulted in four classes as shown
in the Figure 32. Thus, hypothesis H6 was supported.

2 These classes are based on the community building activity. However, due to space constrain, we do not discuss the mechanism

behind formation of these four classes. We intend to include detail explanation of significance of these four classes in later

expanded version of this paper.

 9

Step 3-Relationship of classes with promotion time: The next step is to establish whether each of the
identified classes differ on some observed outcome variable. Table 2 presents mean promotion time for
each of these classes. For interaction with core developer, mean promotion time for class ‘experts’ is
lowest (7.5 weeks) and that for lurkers is highest (83.2). Using t-test, we found that mean promotion time
for each class is significantly different from all the other three classes. Thus, hypothesis H7 was
supported. Similarly, Table 2 also shows that there are significant differences in mean promotion time for
classes based on interactions with other peripheral developers. Thus, hypothesis H8 was supported.

Table 2: Mean promotion time (PT) in weeks for various classes

Interactions with core Developer Interactions with other developers

Class Mean PT Class Mean PT

Domain experts 7.5*** I 8.7***

Quick learners 13.4*** II 17.9***

Goal drifters 28.7*** III 35.5***

Community lurkers 83.2*** IV 86.4***
*** indicate ‘mean PT’ for this class is significantly (p<.001) different from mean PT of all other three classes.

Discussion and Conclusion

By using latent class growth modeling approach, the present study explores the participation behaviour of
peripheral OSS developers before they attain core developer status. Our empirical results add to the
existing OSS literature by revealing several important findings. First, the results support our hypotheses
that there are significant differences in the peripheral developers’ initial levels of interactions, as well as
subsequent changes in interactions, with core developers and other peripheral developers respectively.
Second, our results empirically identify that there are four distinct classes of peripheral developers
characterized with differential initial levels of participation and temporal participation behavior, in terms
of their interactions with core developers and other peripheral developers, respectively. Specifically, the
participation trajectories of the observed classes are highly consistent with the patterns of domain experts,
quick learners, goal drifters, and community lurkers, as were summarized from the literature. Finally, our
findings reveal that the different classes of peripheral developers are associated with different time taken
for attainment of core developer status. Domain experts, featured with high initial levels of participation
and stable growth of participation, attain core developer status most quickly. By contrast, community
lurkers, featured with low initial levels and subsequent stagnating growth of participation, take the longest
time to advance their status. The two classes of developers, featured with modest levels of initial
participation and delayed temporal growth of participation, rank between domain experts and lurkers.

In addition, it is noteworthy that since same individuals were classified into four classes based on
interactions with core developer and separately into four classes based on interactions with other
peripheral developers, there should be a degree of overlap in these two schemes of classification.
Depending on the degree of overlap, the number of combined classes could range between four and
sixteen (four by four). We found in our post-hoc analysis that there were six combination classes
identified in our sample (Table 3), representing a good degree of overlaps between two classification
schemes, except for two additional classes (classes 2 and 4 in table 3). In class 2, developers classified as
quick learner by their interaction with core developers were classified as domain expert by their
interaction with other peripheral developers. In class 4, developers classified as goal drifter by their
interaction with core developers were classified as quick learner by their interaction with other peripheral
developers. The emergence of these two additional classes may imply that interaction with core
developers might be more demanding than interaction with other peripheral developers, such that those
who are qualified as domain experts for their interaction with peripheral developers may not be qualified
in the interaction with core developers. Similarly, those perceived as quick learner in the peripheral
developer group might not be so in their interaction with core developers.

 10

Table 3: Combination classes sorted by mean promotion time (PT)

Class Interaction with core developer Interaction with other peripheral developer Class size Mean PT

#1 Domain expert Domain expert 15 7.53

#2 Quick learner Domain expert 13 10.08

#3 Quick learner Quick learner 27 14.93

#4 Goal drifter Quick learner 21 21.71

#5 Goal drifter Goal drifter 22 34.14

#6 Lurker Lurker 35 86.4

Our study makes several important contributions to the OSS literature. First, although peripheral
developers play an important role in OSS communities (Lee and Cole 2003; Von Hippel and Von Krogh
2003), little research has explicitly focused on understanding peripheral developers’ participation
behavior, with only very few exceptions (Fang and Neufeld 2009; Von Krogh et al. 2003). Even the few
exceptions, which qualitatively identified key participation activities associated with peripheral
developers’ promotion, fail to offer a longitudinal view of these developers’ participation patterns,
leaving the dynamics of developer participation unexamined. Our study is among the first to provide a
nuanced understanding that distinguishes peripheral developers’ temporal participation behavior. On the
one hand, by synthesizing the existing OSS literature, we theoretically identify the four classes of OSS
developers with distinct temporal patterns of participation (domain experts, quick learners, goal drifters,
and community lurkers), thus offering a conceptual contribution to the existing OSS literature. On the
other hand, we empirically identify several classes of peripheral developers who follow different
participation trajectories that are generally consistent with what were expected, thus adding empirical
support to our reasoning. Although it is premature to establish that the four empirically identified classes
of developers capture the four conceptual categories identified in the literature, our empirical results do
evidence that all peripheral developers do not participate in a similar pattern. Instead, they differ
significantly. Future research can conduct in-depth qualitative analysis of the mailing-list interactions to
identify the latent variables that maximize intra-class similarity and inter-class differences.

Second, our study provides a more nuanced understanding of the relationship between developer
participation and status attainment. Prior OSS research generally established that developer participation
is positively associated with their status advancement (Fang and Neufeld 2009; Roberts et al. 2006),
without taking a step further by understanding differences that underlie developers’ participation growth
patterns and the subsequent implications to the speed of status advancement. Our study provides strong
evidence that peripheral developers’ status attainment depends not only on how much he/she participates
as studied in the prior literature, but also on the growth trajectories of their participation. Such differential
performance impacts of the distinct classes of peripheral developers provide further justifications of the
theoretical and empirical importance of understanding the latent classes of peripheral developers.

Third, our study offers a novel methodological contribution by introducing the latent class growth
modeling approach. The information systems field has been populated with a variety of analysis
techniques. They are either variance-based approaches or person-centered approaches; no existing
methods combine the two approaches by simultaneously estimating temporal growth curves, clustering
classes based on growth patterns, and examining the relationships of clustered classes with outcomes.
Latent class growth modeling is such an analytical approach that enables us to distinguish classes based
on growth trajectories. Our study demonstrates the usage of this approach by applying it to the OSS
context.

There are several opportunities for future research. First, as noted earlier, although it is evidenced that
several latent classes of peripheral developers exhibit conceptually expected behavioral patterns, further
research is needed to verify the underlying factors clustering these classes are consistent with our
theorizing. Second, although we conceptualized four latent classes of peripheral developers, empirically

 11

six classes were identified by combining interactions with the core and the peripheral developers. Further
study is required to have a deeper understanding of the two additional classes. Qualitative analysis on the
interactions of these peripheral developers could add more insights.

In conclusion, the present study explores the relationships between temporal participation behavior and
status attainment of OSS peripheral developers by applying the latent class growth modeling approach.
We identify distinct classes of peripheral developers with differential participation behavior at the
beginning and over time, and find significant differences between classes of developers in terms of the
time required for attaining the core developer status. The results advance our theoretical understanding of
OSS peripheral developers’ participation behavior from a longitudinal perspective, as well as contribute
the novel latent class growth modeling approach to the information systems field in general and the OSS
research in particular.

References

Bollen, K.A., and Curran, P.J. "Latent curve models: A structural equation perspective," John Wiley and

Sons, Hoboken, NJ, 2006.
Colazo, J., and Fang, Y. "The Impact of License Choice on Open Source Software Development

Activities," Journal of the American Society for Information Science and Technology (forthcoming)
2009.

Crowston, K., Annabi, H., and Howison, J. "Defining Open Source Software Project Success.,"
International Conference on Information Systems, Seattle,, 2003, pp. 327-340.

Fang, Y., and Neufeld, D. "Understanding Sustained Participation in Open Source Software Projects,"
Journal of Management Information Systems (forthcoming) 2009.

Fichman, R.G., and Kemerer, C.F. "The Assimilation of Software Process Innovations: An
Organizational Learning Perspective," Management Science (43:10) 1997, pp 1345-1363.

Fielding, R.T. "Shared Leadership in the Apache Project," Communications of the ACM (42:4) 1999, pp
42-43.

Fitzgerald, B. "The Transformation of Open Source Software," MIS Quarterly (30:3) 2006, pp 587-598.
Franke, N., and von Hippel, E. "Satisfying heterogeneous user needs via innovation toolkits: The case of

Apache security software," Research Policy (32:7) 2003, pp 1199-1215.
Gefen, D., Straub, D., and Boudreau, M.-C. "Structural equation modeling and regression: Guidelines for

research practice," Communications of the Association for Information Systems (4:7) 2000, pp 1-78.
Hertel, G., Niedner, S., and Herrmann, S. "Motivation of software developers in Open Source projects:

an Internet-based survey of contributors to the Linux Kernel," Research Policy (32) 2003, pp 1159-
1177.

Jain, H., Ramamurthy, K., Ryu, H.S., and Yasai-Ardekani, M. "Success of data resource management in
distributed environments: An empirical investigation," MIS Quarterly (22:1) 1998, pp 1-29.

Koch, S., and Schneider, G. "Effort, Cooperation and Coordination in an Open Source Software Project:
GNOME," Information Systems Journal (12:1) 2002, pp 27-42.

Kohanski, D. Moths in the Machine St. Martin’s Press, New York, NY., 1998.
Kreuter, F., and Muthén, B. "Analyzing Criminal Trajectory Profiles: Bridging Multilevel and Group-

based Approaches Using Growth Mixture Modeling.," Journal of Quantitative Criminology (24:1)
2008, p 1.

Krishnamurthy, S. "Cave or Community? An empirical examination of 100 mature open source projects,"
University of Washington, Bothell.

Lakhani, K., and Wolf, B. "Why hackers do what they do: Understanding motivation and effort in
free/open source software projects.," in: Perspectives on Free and Open Source Software, J. Feller, B.
Fitzgerald, S. Hissam and K. Lakhani (eds.), MIT Press, Boston, MA, 2005.

Lee, G.K., and Cole, R.E. "From a Firm-Based to a Community-Based Model of Knowledge Creation:
The Case of the Linux Kernel Development," Organization Science (14:6) 2003, pp 633-649.

MacCallum, R., Kim, C., Malarkey, W., and Kiecolt-Glaser, J. "Studying Multivariate Change Using
Multilevel Models and Latent Curve Models," in: Multivariate Behavioral Research, Lawrence
Earlbaum, 1997, pp. 215-253.

 12

Malhotra, A., Gosain, S., and El Sawy, O.A. "Absorptive capacity configurations in supply chains:
Gearing for partner-enabled market knowledge creation," MIS Quarterly (29:1) 2005, pp 145-187.

Markus, M.L., Manville, B., and Agres, C.E. "What makes a virtual organization work," California

Management Review (Fall) 2000, p 13.
Mockus, A., Fielding, R.T., and Herbsleb, J. "Two case studies of Open Source Software development:

Apache and Mozilla," ACM Transactions on Software Engineering and Methodology (11:3) 2002, pp
309-346.

Muthén, B., and Muthén, L. " Integrating Person-Centered and Variable-Centered Analyses: Growth
Mixture Modeling With Latent Trajectory Classes," Alcoholism: Clinical and Experimental Research
(24:6) 2000, pp 882-891.

Muthén, L.K., and Muthén, B.O. "Mplus User’s Guide," Muthén & Muthén, Los Angeles, CA, 2007.
Nagin, D.S. "Analzying developmental trajectories: A semi-parametric group-based approach,"

Psychological Methods (4) 1999, pp 139-157.
Nesselroade, J.R. " Interindividual differences in intraindividual change," in: Best methods for the

analysis of change: Recent advances, unanswered questions, future directions, J.L. Horn (ed.),
American Psychological Association, Washington, D.C., 1991, pp. 92-105.

Netcraft "February 2004 Web Server Survey," Netcraft, 2004.
Newby, G.B., Greenberg, J., and Jones, P. "Open source software development and Lotka's Law:

Bibliometric patterns in programming," Journal of the American Society for Information Science and

Technology (54:2) 2002, pp 169-178.
Pinquart, M., and Schindler, I. "Changes of Life Satisfaction in the Transition to Retirement: A Latent-

Class Approach," Psychology and Aging (22:3) 2007, p 442.
Pliskin, N., Balaila, I., and Kenigshtein, I. "The knowledge contribution of engineers to software

development: a case study.," IEEE Transactions on Engineering Management (38:4) 1991, p 344–
348.

Roberts, J.A., Hann, I.-H., and Slaughter, S.A. "Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A Longitudinal Study of the Apache Projects,"
Management Science (52:7) 2006, pp 984-999.

Schadler, T. "Open Source moves into the mainstream," Forrester Research, Inc., Cambridge, MA, pp. 1-
5.

Sen, R. "A Strategic Analysis of Competition Between Open Source and Proprietary Software," Journal

of Management Information Systems (24:1) 2007, pp 233-257.
Shah, S.K. "Motivation, Governance, and the Viability of Hybrid Forms in Open Source Software

Development," Management Science (52:7) 2006, pp 1000-1014.
Stallman, R.M., and Lessig, L. Free software, free society: Selected essays of Richard M. Stallman GNU

Press, Boston, Massachusets, 2002.
Stewart, K.J., Ammeter, A.P., and Maruping, L.M. "Impacts of License Choice and Organizational

Sponsorship on User Interest and Development Activity in Open Source Software Projects,"
Information Systems Research (17:2) 2006, pp 126-144.

Von Hippel, E. "Innovation by User Communities: Learning from Open Source Software," MIT Sloan

Management Review:Summer) 2001, pp 82-86.
Von Hippel, E., and Von Krogh, G. "Open source software and the "private-collective" innovation model:

issues for organization science," Organization Science (14:2) 2003, pp 209-223.
Von Krogh, G., Spaeth, S., and Lakhani, K. "Community, joining and specialization in open source

software innovation," Research Policy (32) 2003, pp 1217-1241.
von Krogh, G., and von Hippel, E. "The Promise of Research on Open Source Software," Management

Science (52:7) 2006, pp 975-983.
Wang, M., and Bodner, T.E. "Growth Mixture Modeling: Identifying and Predicting Unobserved

Subpopulations With Longitudinal Data," Organizational Research Methods (10:4) 2007, p 635.
Wu, J., and Witkiewitz, K. "Network Support for Drinking: An Application of Multiple Groups Growth

Mixture Modeling to Examine Client-Treatment Matching," Journal of Studies on Alcohol and Drugs
(69:1) 2008., p 5.

Ye, Y., and Kishida, K. "Toward an understanding of the motivation of Open Source Software
Developers," IEE Proceedings - Software) 2003, pp 419-429.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	July 2009

	UNDERSTANDING PARTICIPATION BEHAVIOR AND STATUS ATTAINMENT OF OPEN SOURCE SOFTWARE DEVELOPERS – A LATENT CLASS GROWTH MODELING APPROACH
	Israr Qureshi
	Yulin Fang
	Recommended Citation

	Microsoft Word - 168835-text.native.1247566615.doc

