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Abstract 

This study contributes with a methodology to evaluate the differences between different groups 

of individuals, using a prototype with different interactive visualizations, created with the Shiny 

package, using 6 quantitative and qualitative metrics for the validation. Using an ANOVA single 

factor test only 1 of the 6 variables showed statistically significant differences between both 

groups: the engagement. This means that this is the only metric where results can be improved 

in order to close the gap between the group of experts and novices. The heatmap and the bar 

chart were considered the best visualizations for both groups, and the worst were the choropleth 

map and the stacked bar chart. Regarding the interactive component, the select box was a better 

option for the group of novices and the radio box for the group of experts. Using this study, 

organizations will be able to create visualizations that are suitable for different audiences.  

 Keywords: Data visualization; Interactivity; Experts; Novices; Shiny 

 

1. INTRODUCTION 

Data is beginning to be more and more accessible to the public and is, therefore, important to realize 

what exactly is the best way for not only the experts but also the general audience to understand a 

visualization (Blascheck et al., 2019). Data visualization is important in a broad set of fields, for 

instance, organizations that work in education (Mottus, Kinshuk, Graf & Chen, 2013) or in finance 

(Zhang, 2015). Therefore, it could be interesting to analyse how different types of individuals 

discover interactivity and which are the best visualization techniques for each group, since 

organizations can create visualizations that will be exposed to different types of audience. 

Currently, there is a gap in how general individuals understand interactive functionality (Blascheck 

et al., 2019). Although there are some studies that tried to find differences between how different 

types of individuals react to interactivity (Blascheck et al, 2019; Oghbaie, Pennock & Rouse, 2016; 

Rouse, Pennock, Oghbaie & Liu, 2017), none had the specific goal of testing which were the best 

visualization idioms for each type of group.   

This study investigates the differences on how two different types of individuals discover 

interactivity, through the creation of a prototype with different interactive visualizations and using 

an ANOVA single factor test to find statistically significant differences between both groups. The 
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prototype will be developed using the Shiny package in the R programming language, with different 

interactive visualizations techniques to understand which are the most effective visualizations for 

different types of individuals. 

Results will be useful for organizations that want to better understand how to use interactivity and 

which visualizations and interaction techniques can be used to build interactive data visualizations 

which convey the information in the most effective manner to different groups of individuals.  

Regarding the structure of this article in the first section, an introduction for the project will be done, 

explaining the background and the project goals.  

In the second section a theoretical background research will be done. In the third section, all the 

methodologies and datasets used to develop the prototype will be explained. In this section, it will 

also be explained the process of how the prototype was evaluated.  

In the fourth section, the discussion of the results will be made and finally, in the last section, the 

conclusions reached from this study will be explained, as well as the limitations of the project and 

the future work other researchers may do, applying the knowledge of this study. 

2. RELATED WORK 

This chapter provides with an overview of what has already been done regarding topics related to 

this project and is divided into four sections: discover of interactivity in different groups of subjects, 

suggested interactivity, tools to develop interactive visualizations and validation of interactive 

visualizations. In each section, it will be discussed the different approaches that have been used in 

past studies and the corresponding strengths and weaknesses of each method. 

2.1. Discovery of interactivity in different groups of subjects 

Previous studies have tried to discover how different groups of subjects discover interactivity. 

However, no differences between these groups have been found (Blascheck et al., 2019). Although 

it was not possible to find differences between each group of individuals, it was possible to identify 

different exploration strategies that users may apply when interacting with interactive visualizations. 

Using the different exploration strategies, it was possible to create six suggestions to improve the 

functionality of interactive visualizations in different groups of individuals (Blascheck et al., 2019): 

inviting interaction, combating oscillation, leveraging spatial organization, providing entry points, 

scaffolding complex interactions and supporting transitions. 

Other works have obtained different conclusions regarding the differences in how distinct groups of 

individuals interact with visualizations, such as the work conducted by Oghbaie, Pennock and Rouse 

(2016) who used two different types of individuals, experts, and non-experts. In the work conducted 

by Oghbaie et al. (2016), it was suggested that if the proper visualization methods are applied the 



Viana and Cabral /How to effectively use interactivity in different groups

 

 
20.ª Conferência da Associação Portuguesa de Sistemas de Informação (CAPSI’2020) 3 

 

gap between experts and non-experts could be closed (Table 1). In a similar work conducted by 

Rouse, Pennock, Oghbaie and Liu (2017), using the Rasmussen's abstraction-aggregation hierarchy 

methodology it was possible to reach similar conclusions. 

 

METRICS / AUTHOR OGHBAIE ET AL. (2016) ROUSE ET AL. (2017) 

Accuracy Experts only exceed non-

experts in the data with the 

most complex casual 

relationships 

Experts were more accurate 

than non-experts 

Speed Same speed for both groups of experts and non-experts 

Data 
Experts made full use of all the information displayed whereas 

non-experts demonstrated a lack of information seeking 

behavior  

Table 1 - Differences and similarities between the different groups of individuals 

2.2. Suggested Interactivity  

Understanding how to use interactivity in visualizations is crucial to develop techniques that increase 

the intuitiveness of online visualizations. Suggested Interactivity (SI) can be defined as: “a set of 

methods for indicating that a graphical area can be interacted with by subtly directing a user’s 

attention so as not to impede too heavily on this person’s focus or on the rest of the interface design” 

(Boy, Eveillard, Detienne, & Fekete, 2016). According to these authors there are three types of SI 

cues that can be applied in visualizations: 

• SI cues that are present in the object of interest, for example in the visualization itself;  

• SI cues that are present in external objects, for example in widgets; 

• SI cues that use a mix of the first two SI cues and are therefore present in the object of 

interest and in external objects. These SI cues can also provide feedforward. 

2.3. Tools to create interactive visualizations 

There are several tools that can be used to create interactive visualizations: ready-to-use tools and 

tools that require programming skills. One example of these ready-to-use tools is Power BI, which 

is a business analytics service provided by Microsoft (Microsoft Power BI, 2020). Power BI offers 

a set of tools to help the users with the manipulation, analysis and visualization of data, which in 

turn, makes it possible to create visualizations. Another ready-to-use tool is Tableau Desktop, which 

can also be utilized to create interactive visualizations since it is a data visualization tool that helps 

the discovery of valuable insights from the data available at a very high speed, and potentials the 
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creation of interactive dashboards. Bhardwaj and Baliyan (2019) mentioned that a few good reasons 

to use Tableau to create a visualization tool are:  

• It has a smaller learning curve than some programming languages like R or Python, and 

requires less technical expertise; 

• It is not as expensive as other tools such as OBE by Oracle or Business objects by SAP. 

Other tools require programming skills to create visualizations, such as Python, which is a general-

purpose programming language that can also be applied in data visualization. Python provides 

different libraries for data visualization (Fahad & Yahya, 2018).  

R is a programming language and software, which also has some of the same libraries as Python and 

also has the possibility to use the Shiny package to create interactive visualizations. Shiny is an R 

package that enables the creation of interactive visualizations that could be displayed online (Ellis 

& Merdian, 2015). The work conducted by López et al. (2018) tried to understand the best way to 

use this tool and developed several suggestions that should be applied when creating a Shiny 

application: 

• The application should be developed taking in mind its main goals in order to prioritize the 

most important information;  

• The application should be clear and intuitive and use different visualization and interaction 

methods; 

• The participants that use the application should have an active attitude when interacting with 

the visualization. 

2.4. Validation of interactive visualizations 

Regarding the validation of interactive visualizations, it can be interesting to analyse the framework 

created by Munzner (2015) to design visualizations. That framework consists of four nested levels: 

• Domain situation: in this top-level it is necessary to understand which target users and which 

requirements are necessary for the visualization; 

• Data/Task abstraction: in this level, the crucial goal is to discover which data will be used 

in the visualization; 

• Visual encoding/Interaction idiom: in this level, the objective is to realize what types of 

visual encodings or interactions will be used to display the data in the visualization; 

• Algorithm: finally, at the bottom level is necessary to realize if the computer and the code 

created are effective at displaying the visualization.  
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An efficient way to validate an interactive visualization can be through the use of quantitative 

measures, for example questionnaires or surveys and/or through the use of qualitative measures such 

as interviews (Lu et al., 2018). Both of these measures can be tools to use in the levels of framework 

created by Munzner (2015). 

This strategy was applied in the work conducted by Lu et al. (2018), where an experiment was 

performed to test an interactive visualization. In the experiment, the participants had time to first get 

acquainted with the interactive visualization and afterward they were asked to finish a set of tasks, 

to determine if the visualization was effective to gather the information needed.  

Additionally, there are other works that also discuss the use of quantitative and qualitative measures 

to measure the efficacy of a visual analytic tool in order to improve data comprehension. An example 

of this is the work conducted by Géryk (2015), that carried out an experiment, where the participants 

had to complete a set of tasks, with two datasets of different sizes and an interactive visualization.  

Through this work, it was possible to discover that when using these quantitative and qualitative 

measures the results of an experiment can be divided into three sections: accuracy, completion time 

and the subject’s preferences. 

3. DATA AND METHODS 

In this section, it will be discussed the data sources utilized, the technology used to build the 

prototype, the justification of the choices applied in the prototype and the validation process.  

3.1. Data 

The dataset used to create the prototype is public, and available at the Banco de Portugal website 

(Banco de Portugal, 2019). Even though the website of Banco de Portugal possessed data on several 

other different topics, considering that the inspiration for the prototype was to analyze the Portuguese 

economy and its external imbalances, the dataset used only had data regarding the balance of 

payments (Banco de Portugal, 2019). The dataset had data from 1996 to 2018 and the current and 

capital account statistics measure was used, reflecting, monthly, net lending/net borrowing of the 

Portuguese economy vis-à-vis the rest of the world.  

An additional dataset from Eurostat was used to create an international comparison of the Portuguese 

economy with all the countries in the European Union (Eurostat, 2018). This dataset contained the 

current account balance using the percentage of gross domestic product (a three-year average) for 

each country in the European Union from 2007 to 2018. 

3.2. Methods 

The prototype built in this study was developed using the R software and the Shiny package. 

Regarding the R software in general, one reason to use this type of software is the fact that R is a 
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software that exceeds other tools when it comes to flexibility (Jiang & Carter, 2018). Besides this, 

the fact that the software is free also proved to be a greater advantage, in comparison to other tools 

that are used to create interactive visualizations, such as Tableau, since even though this tool is not 

as expensive as other tools it still has a cost (Bhardwaj & Baliyan, 2019). Another interesting fact is 

that the R ecosystem offers a wide range of packages that can be used in data visualization. 

The fact that R offers the possibility to use the Shiny package was also one of the key reasons to use 

this type of software. One of the motivations to use this package was the possibility to easily integrate 

interactivity in the applications created. Besides that, the fact that it makes it possible to host these 

applications online was also a benefit since it would be feasible, if necessary, to test the prototype 

online (Ellis & Merdian, 2015). 

3.3. Types of visualizations 

The prototype consists of a foreword view and five different interactive visualizations all regarding 

the topic of Balance of Payments, in order to fulfill one of the suggestions when creating a Shiny 

application, which is to use different visualization methods/idioms (López et al., 2018). Five 

different types of visualizations were developed: 

• In the first visualization (By major items) it was chosen a stacked bar chart to encode the 

data, since that in the sample of the dataset used for this view, there is one quantitative 

attribute and two categorical key attributes. There is also a line chart encoded on top of the 

stacked bar chart; 

• In the second visualization (By geographical counterpart), considering that the dataset used 

had a geographical breakdown, it was possible to create a spatial analysis. In this case, it 

was used a choropleth map, since the data had one quantitative attribute; 

• In the third visualization (By monthly periodicity), it was chosen to apply a heatmap 

visualization, to compare the differences of the values of the item selected in the different 

months/years. It is possible to use this type of visualization since the data used had one 

quantitative attribute and two categorical attributes; 

• In the fourth visualization (By type of services), it was chosen to do a scatterplot chart since 

the dataset had two quantitative value attributes; 

• In the fifth and final visualization (By international comparison), the type of idiom used was 

a bar chart, considering that the data used had one quantitative value attribute. This bar chart 

was also ordered from the highest value of the attribute to the lowest value, and this order 

was applied in every year displayed in the visualization.  
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3.4. Interactive components 

López et al. (2018) mentioned that one of the suggestions to apply when creating a Shiny application 

is to use different interactive methods, and as mentioned previously, considering that this prototype 

was built using the Shiny package, different interactive methods were applied in each of the 

visualizations that compose the prototype.  

The users had three different widgets to choose from: 

• The slider widget was used to help users perform a time analysis on the visualizations and 

in almost all of them it provides the users with a play button, so it is possible to show an 

animation of the changes in the data throughout the years. The play button also serves the 

purpose to invite the users to interact with the visualization, since inviting interaction is one 

of the suggestions in the work done by Blascheck et al. (2019); 

• The select box widget was used to provide the users with more options for variables to 

display in the visualizations. For example, in the second visualization (By geographical 

counterpart), using the select box, the users can filter the data by choosing which variable 

they want to see displayed in the choropleth map; 

• The radio buttons widget was used to provide the users with different combinations of 

variables they may want to display in the visualizations. For example, in the fifth 

visualization (By international comparison), users can compare the Portuguese economy 

with different combinations of countries. 

The widgets used SI cues applied to an external object, in this case, the widget itself, since the users 

have to interact with the widget in order to see changes in the visualization but to use the widgets 

they don’t have to use the actual graphs (Boy et al., 2016). 

In the main panel, the interaction choice the users had were the tooltips, which display visualization 

values, by moving the mouse to different sections of the visualization itself. The tooltips used SI 

cues applied to the object of interest, in this case, the actual graphs, since to interact with the tooltips 

the users have to click on the graph itself (Boy et al., 2016).   

In addition, in the main panel of each visualization, there is always a small text to give a little 

introduction to the visualization in order to fulfill one of the suggestions in the work done by 

Blascheck et al. (2019) which is scaffolding complex interactions. There are also suggested actions 

for the user in the text, which can be seen as SI cues that use feedforward (Boy et al., 2016). 

3.5. Experiment procedure 

Succeeding the development of the prototype, the validation phase was then implemented. The 

experiment was in most cases an in-person experience and was conducted with a sample of 

individuals, from groups of experts and novices. The group of experts are individuals that have 
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knowledge about the topic in the interactive visualizations, in this case, the balance of payments. 

This type of individuals was recruited by contacting individuals that work in Banco de Portugal, 

professors and individuals that study or work in the economy field or other similar areas. The group 

of novices are individuals that have no prior knowledge about the topic of the balance of payments. 

This group was recruited by contacting students from universities and individuals that worked or 

studied in different areas, that could participate in the study. It was also ensured that both groups 

had individuals from different ages from 18 to over 55 and individuals from different genders.  

To start the experiment, the sample group, which consisted of a minimum of 30 participants, 15 for 

each group, had access to the prototype and was able to interact with each one of the interactive 

visualizations. After a small period for testing had passed, the participants had to follow a specific 

set of tasks and record their answers in a questionnaire (Géryk, 2015) to fully understand if they 

were able to use the prototype to the maximum of its potential.   

Most of the experiments were in-person, and therefore almost all the participants were observed 

while performing the experiment. This forced the participants to have an active attitude when 

interacting with the prototype, fulfilling one of the suggestions to apply when creating a Shiny 

application (López et al., 2018). 

In this part of the experiment, it was possible to collect the quantitative metrics (Lu et al., 2018), 

such as the accuracy (Zhu, 2007), by comparing the correct answers with the answers of each 

participant and the completion time (Zhu, 2007), by measuring the time it took each participant to 

finish the tasks given in each of the interactive visualizations and the total time it took to finish this 

part of the experiment. 

In the next stage of the experiment, the participants had to answer a 5-point Likert scale 

questionnaire, related to their opinion of the prototype and were able to suggest improvements. In 

this part of the experiment, each section of this questionnaire measured the qualitative metrics, 

therefore, the level of usefulness, efficacy, complexity (Zhu, 2007), and engagement (Lu et al., 2018) 

that the participants classified each one of the visualizations. The participants also classified the 

level of usefulness and complexity of the components of each visualization. In the final part of the 

questionnaire, the participants were also asked to rank each one the visualizations that compose the 

prototype. 

In the analysis of the results, the mean values of each one of the metrics (Géryk, 2015) obtained in 

both questionnaires were analysed to develop the conclusions of this study. An ANOVA single 

factor test was also conducted to test for statistically significant differences between both groups.  
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4. RESULTS AND DISCUSSION 

4.1. Prototype 

The first result of this study was the prototype, that allowed the implementation of the experiments 

of this project and the results that therefore followed. The visual representation of the prototype can 

be seen in the Figures 1 to 6.  

 

Figure 1 - Prototype "Foreword" tab 

 

 

Figure 2 - Prototype "By major items" tab 
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Figure 3 - Prototype "By geographical counterpart" tab 

 

 

Figure 4 - Prototype "By monthly periodicity" tab 
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Figure 5 - Prototype "By types of services" tab 

 

Figure 6 - Prototype "By international comparison” tab 

 

The source code repository for the original prototype can be accessed at the following link: 

https://github.com/m20180646/MasterWorkProject 

 

 

https://github.com/m20180646/MasterWorkProject
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4.2. Metrics analysed 

30 individuals participated in this experiment, 15 in the group of experts and 15 in the group of 

novices. The metrics obtained were quantitative (accuracy and the completion time) and qualitative 

(usefulness, efficacy, engagement and complexity) (Table 2). Regarding the accuracy, this metric 

was divided into four intervals, very low (0-25%), low (25%-50%), moderate (50-75%) and high 

(75%-100%). As for the qualitative metrics, they were measured using a 5-point Likert scale and 

they were also classified by dividing the results into four intervals, very low (1-1.99), low (2-2.99), 

moderate (3-3.99) and high (4-5) . 

To test for significant effects, an ANOVA single factor test was conducted regarding the quantitative 

metrics. Regarding the accuracy metric, no statistically significant differences were found (F(1,8) = 

0.122605, p = 0.735266). The same results were obtained regarding the completion time metric, 

(F(1,8) = 0.358601, p = 0.565851). This means that although there seemed to be differences between 

both groups, these differences are not statistically significant, regarding the quantitative metrics.  

Regarding the qualitative metrics an ANOVA single factor test was also conducted. For the 

usefulness metric the results did not have differences that were statistically significant (F(1,8) = 

2.119055, p = 0.183568). The same applied for the usefulness metric regarding the components 

(F(1,8) = 1.717874, p = 0.22634).  For the complexity metric the same results were also obtained, 

where no statistically significant differences were found, neither for the complexity in general 

(F(1,8) = 0.0975, p = 0.762835), or for the complexity of the components (F(1,8) = 0.001779, p = 

0.967388).  

Finally, regarding the efficacy metric, again no statistically significant differences (F(1,8) =  

0.333662, p = 0.579401) were found between both groups. However, as for the engagement metric, 

this was the only metric where statistically significant differences (F(1,8) = 10.58511, p = 0.01164)  

were found, considering the p value was under 0.05. Although it appeared that there were differences 

between groups on all qualitative metrics, the engagement was the only metric where these 

differences were statistically significant. This means that this is the only metric where results can be 

improved in order to close the gap between the group of experts and novices, and perhaps if only 

the best visualizations for each group were used, this gap could have been closed.  
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Table 2 – Results of the metrics analysed for the different groups 

4.3. Visualizations 

Regarding the best visualization for each group (Table 3), it is possible to conclude that for the 

novice’s group the best visualizations were the third (Figure 4), where the idiom was an heatmap, 

which was the visualization that ranked in first place, had the highest values of accuracy and also 

had one of the lowest completion times, and the fifth visualization (Figure 6), where the idiom was 

a bar chart, since it was the visualization with the lowest completion time, the highest average of 

usefulness, the highest average of efficacy and the lowest average of complexity either in general or 

regarding the components.  

As for the expert’s group, the best visualization was also the third visualization (Figure 4), for the 

same reason as the novice’s group and since it had the highest average of usefulness and the lowest 

completion time. The fifth visualization (Figure 6), can also be considered one of the best 

visualizations since it had the best averages in two qualitative metrics, the complexity in general and 

of the components, and it had some of the highest averages of accuracy and some of the lowest 

averages of completion times, meaning that there were no differences between the two groups in 

which were the best visualizations.  
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Table 3 – Best and worst visualizations for each metric for the different groups 

As for the worst visualizations for each group (Table 3), the conclusions were that for the novice’s 

group it was the second visualization (Figure 3), where the idiom was a choropleth map, considering 

that it was the visualization that ranked in last and had the lowest accuracy average, and the first 

visualization (Figure 2), where the idiom was an stacked bar chart, considering it had the highest 

completion time, the lowest averages of usefulness in general and of the components, efficacy and 

engagement and also had one of the highest averages of complexity in general and of the 

components.  

Regarding the experts group the worst visualization was also the second visualization (Figure 3), 

for the same reason as the novice’s, since it was also the visualization that ranked in last and since 

it was one of the visualizations that had one of the lowest average of usefulness, lowest average of 

efficacy and the highest completion time. It is also possible to consider that the first visualization 

(Figure 2) is also one of the worst for the expert’s group, considering it had the lowest averages of 
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engagement and the highest averages of complexity regarding the components, and also the lowest 

accuracy average. This means, that similar to the novice’s group the worst visualizations were also 

the second and the first visualizations, meaning that no differences were found between the two 

groups regarding this aspect and that both groups had difficulties with this type of idioms, stacked 

bar chart and choropleth map.  

4.4. Components 

Regarding the components (Table 4), it is possible to conclude that as for the interactive features, 

besides the actual visualizations, for the novice’s group, the radio box and the text can be one of the 

most complex components, whereas for the expert’s group is the select box, meaning that for the 

expert’s group the radio box may be a more suitable component and for the novice’s group it might 

be the select box. The text, depends on the use, considering it is for both groups sometimes one of 

the most complex components and one of the least complex. The slider and the tooltips are 

considered in both groups to be one of the least complex components, which means that both groups 

are comfortable interacting with these features, and they might be adequate for both groups. 

As for the most useful components, the most useful component for the novice’s group is the slider 

and for the expert’s group is the radio box, the slider and the tooltips. The least useful component, 

was in both groups and in all of the visualizations the text, meaning that the participants of both 

groups found that the visualizations and their components were more useful, likely due to the fact 

that they were interactive and the text was the only component that wasn’t, concluding that both 

groups prefer features that are interactive and associate interactivity with usefulness.  

 

 

Table 4 – Complexity and usefulness of the components for the different groups 

4.5. Additional findings 

Another additional finding that was found in this study was that it was proved that the Shiny package 

is a tool that is capable of creating interactive visualizations for different types of individuals, since 

both groups obtained high averages of accuracy in all of the visualizations and in general, and all of 
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the average values of usefulness, efficacy and engagement of all the visualizations were ranked as 

high. Moreover, the average values of complexity of the prototype in general ranked as very low, 

meaning the visualizations and the prototype in general were easy to analyse.  

4.6. Comparison of the results with the existing literature 

Comparing this results with the existing literature, using the example in the study conducted by 

Blascheck et al. (2019), it is possible to see a major difference between this study and the project in 

question, considering that, although this study also used different types of individuals in their 

experiences, it did not find any differences between those groups, which in turn, is not true for this 

project, since there were differences identified in the way both groups perceived the different 

components/interactive features and regarding the qualitative measure engagement.  

Besides it can also differ from the work conducted by Blascheck et al. (2019) since it provided 

different suggestions for companies and organizations to apply, where the work conducted by 

Blascheck et al. (2019) developed several exploration strategies and suggestions for the users to 

apply in the visualizations and this work provided which were the best and worst visualizations users 

can utilize and the best types of interactive components for each type of individuals.  

Finally, when comparing the results of this study, with the results of the study conducted by Oghbaie 

et al. (2016) and Rouse et al. (2017) it is possible to observe that there are some differences and 

similarities. Regarding the completion time, this work concluded that the speed was the same for 

both groups, as it was in the case of both studies being compared. Regarding the accuracy, the results 

were different than the results in the work conducted by Rouse et al. (2017), since the experts group 

did not have any statistically significant differences than the novice’s group regarding the accuracy 

measure, and they were also different than the results in the work conducted by Oghbaie et al. (2016), 

that concluded that the experts only exceed non-experts in the data with the most complex casual 

relationships. 

5. CONCLUSIONS 

Through the ANOVA single factor test, we found that the only metric that had statistically significant 

differences between both groups was the engagement metric. Regarding the visualizations, both 

groups agreed that the best visualizations were the heatmap and the bar chart and the worst 

visualizations were the choropleth map and the stacked bar chart. As for the components, the select 

box was a better option for the novice’s group, while the radio box was the best for the expert’s 

group, and the tooltips and the slider are adequate for both types of individuals. With this study, we 

conclude that, although there are some similarities in how the different types of individuals perceive 

the interactive visualizations, there are also differences between the two groups and so it is possible 

for companies and organizations to use these suggestions and adapt their visualizations for the 
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different types of individuals in order to create visualizations that are effective for different types of 

audience. We also found that the Shiny package is a powerful tool that makes possible the creation 

of effective interactive visualizations that are suitable for different types of individuals, which can 

be extremely useful and may provide them with a competitive advantage.  

Some limitations of this study include, for example, the fact the data could have been richer if it was 

used a sample of a bigger size, or for example if  more groups were created in this study. Also, the 

fact that the groups were only separated by novices and experts can be a limitation considering the 

knowledge they had on the topic of the visualization was the only distinguishable variable between 

both groups, and no other characteristics were taken into consideration, such as age or the knowledge 

they had on data visualization. Another  limitation could be the fact that the prototype only used five 

different types of idioms, but considering the time used for the experiences, it would not be feasible 

to have more visualizations to test.  

As for future work, it would be interesting to try this experience with other different groups, for 

example following the work conducted by Blascheck et al. (2019), using three different types of 

individuals taking in consideration whether or not they have knowledge on the subject of data 

visualization and not only on the topic of the visualization. It is also recommended to recreate the 

same prototype with different tools to discover which could be more efficient and compare them, as 

well as using different visualization idioms in the prototype. Another suggestion is to use a larger 

sample size to understand if the same results would be obtained or if they could change. Lastly, it 

would be useful to continue to understand why the engagement metric was the only metric with 

statistically significant differences between both groups and to try to discover methods to decrease 

this difference and completely close the gap between experts and novices.  
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