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Abstract. The generation of data has become one of the main drivers of modern 
healthcare. Like other industries, we see that the total amount of healthcare data 
is growing and in diversity. Thus, Artificial Intelligence (AI) is being used 
increasingly as a tool to turn this body of healthcare data into real value. But with 
AI and big data comes big risk, especially in terms of data privacy. Privacy-
preserving AI techniques are gaining in popularity to prevent patient privacy 
compromises while utilizing the potentials offered by AI. However, there is no 
clear understanding of the current research space of applying such privacy-
preserving techniques in healthcare. This paper aims to provide an understanding 
of these techniques and investigates the emerging research field of privacy-
preserving AI and its use in healthcare by reviewing the current multidisciplinary 
research to synthesize knowledge and derive future research directions in this 
regard.  

Keywords: Data Privacy, Privacy-Preserving AI, Private AI, Healthcare  

1 Introduction 

The 21st century is the century of big data affecting all aspects of human life, including 
healthcare. Historically, the healthcare industry always generated a large amount of 
data due to complex regulatory requirements such as continuous record keeping. In the 
last couple of years, we experienced the digitization of this traditionally generated data, 
for example, in the forms of Electronic Health Records (EHR) [1]. Additional to this 
development of digitizing already available data, various new data sources emerged; 
for example, the improvement of medical technology created various new data sources, 
such as genomics data or biometric sensor readings [2]. Further, with new emerging 
data sources, the body of healthcare data is getting significantly more heterogeneous. 
Nowadays, healthcare data types are ranging from unstructured data (e.g., clinical notes 
and pathology reports) to structured and semi-structured data (e.g., genomic data or 
medical images) [3, 4].  

Due to this increase in volume and variety of healthcare data, traditional data 
management tools are inadequate, while Artificial Intelligence (AI) is gaining 
popularity. For example, in order to realize ‘precision medicine’, the tailored treatment 
of each patient, a body of data sources ranging from Genomics, Biomarkers, EHRs, and 
wearables have to be analyzed [5–7]. Traditional tools, such as Online Analytical 



Processing (OLAP), are not designed for such tasks, especially when predictive 
analysis is needed [8, 9]. Here, AI models seem to be a great tool to take advantage of 
the ever-growing, diverse set of healthcare data [10, 11]. Especially, more sophisticated 
techniques, such as Deep Learning models, can leverage large healthcare datasets to 
deliver accurate and reliable results [12]. Recently published research studies point out 
the potential of AI models in healthcare, for example, in the form of medical image 
analysis [13] or the use of Natural Language Processing to extract information from 
clinical notes [14].  

While the opportunities for the use of AI in healthcare are promising, one cannot 
ignore arising dangers for implementing discussed techniques. No matter how useful 
for healthcare, AI can only be used if data privacy issues are addressed and resolved 
due to the high need for data [15, 16]. This applies particularly to sensitive individual 
health data since it represents personally identifiable information [14].  

To ensure privacy for sensitive health data while capitalizing on the potentials 
offered by AI, the field of privacy-preserving AI (PP-AI) is gaining in popularity. 
Hereby, the term PP-AI represents an umbrella term for different techniques [17]. The 
overall goal being, to ensure data privacy while still exploiting the potentials offered 
by AI. In comparison to traditional systems, PP-AI also addresses unique privacy needs 
of AI-based systems, such as training data privacy, model weight privacy or the 
possible memorization of data points in the training process [17, 18]. For instance, prior 
research has shown that so called model inversion attacks can be performed to 
reconstruct training data only from model parameters [18]. Despite these unique 
challenges, there is limited understanding of the current research space of PP-AI, 
especially in terms of using these techniques in healthcare since the field is still 
emerging and of multidisciplinary nature. Various disciplines contribute to the field, 
such as Computer Science, Mathematics and Encryption, Healthcare, and Information 
Systems (IS). Here, all fields have different approaches and therefore make different 
contributions. Nevertheless, moving from a multidisciplinary character to truly 
interdisciplinary work requires input from all involvement fields. This also applies to 
the IS community, which is still beginning to understand and discuss PP-AI in the IS 
context.  

Therefore, the objectives of this work are to introduce the field of PP-AI and structure 
and assess the current status quo of multidisciplinary research on PP-AI in healthcare 
to synthesize knowledge and derive future research directions in this regard. This paper 
aims to answer the following three research questions (RQ) to address these objectives: 
 
RQ1: Which PP-AI techniques exist, and how do they differ in suitability for the 
healthcare context? 

RQ2: What is the current research space, regarding the theories, methods, and 
domains, of PP-AI literature in healthcare? 

RQ3: What are future directions for IS scholars to advance PP-AI in healthcare? 

 
Our work follows a threefold procedural approach to answer these questions: First, we 
introduce the most common PP-AI techniques, provide a high-level explanation, and 



discuss their suitability in the healthcare context (RQ1). Second, we review and present 
a comprehensive overview of how PP-AI techniques are discussed in healthcare. Based 
on this review, we categorize the use of PP-AI techniques in healthcare for healthcare 
domains and data types & sources (RQ2). Finally, we discuss how IS scholars can use 
this understanding and categorization of PP-AI techniques in healthcare to enrich 
further the PP-AI literature from the IS perspective (RQ3). 

2 State of the Art: What is Privacy-Preserving AI?  

To answer RQ1, in this section we will explain and analyze the field of PP-AI. The 
term PP-AI is an umbrella term and is used for many different techniques and methods 
[17]. The overall goal is to ensure data privacy while still exploiting the potential 
offered by AI methods [17]. Here, it is important to note that PP-AI is not a clearly 
defined field yet. Some researchers incorporate and discuss a broad range of encryption 
schemes (e.g., Garbled Circuits) [19, 20], while others include secure hardware 
implementations [17]. Nevertheless, the techniques discussed and used in most studies 
and therefore represent the contemporary consensus are: 1) Federated Learning, 2) 
Differential Privacy, 3) Homomorphic encryption, and 4) Secure multi-party 
computation [10, 17, 19–21]. While Federated Learning can be seen as an AI technique 
itself, Differential Privacy, Homomorphic encryption, and Secure multi-party 
computation are privacy and encryption schemes. However, in the context of PP-AI, 
the privacy enhancing characteristics of these techniques can be embedded or combined 
with AI. Therefore, they are included in this classification as PP-AI and when discussed 
in the context of this work, we refer to these privacy and encryption schemes always as 
part or embedded in AI-systems. Hereafter, these most common PP-AI techniques will 
be explained in general and in the context of healthcare. 
 

Federated Learning. Federated Learning (FL) is a paradigm belonging to the class of 
distributed systems. Instead of transferring sensitive data from sites to sites or servers, 
FL consists of participating parties that train a model collaboratively without 
exchanging the underlying dataset [22]. In practice, copies of a Machine Learning 
algorithm are distributed to the sites and devices where the data is kept [17]. These 
remote devices are also called nodes, which perform the training iterations locally and 
only return the results of the computation (e.g., updated neural network weights) to the 
central repository. Therefore, the model benefits from the knowledge accumulated 
across all participating institutions without moving the data.  

In the context of healthcare, the distributed nature of FL opens the possibility for a 
wide range of applications [12, 21]. For example, FL can make it possible that several 
healthcare institutions (e.g., local hospitals) can collaboratively work on training an 
algorithm without sharing their patient data [22]. Hence, the data is not moved beyond 
the firewalls of the respective healthcare institution. 

Differential Privacy. Differential Privacy (DP) is the systematic randomized 
modification of a dataset or algorithm to reduce information about single individuals 



while retaining the capability of statistical reasoning about the dataset [25]. Thus, 
outside observers cannot infer whether a specific individual was used for the result of 
an analysis or not [17]. The robustness of DP lies in its rigorous mathematical proof. 
Therefore, it can resist various forms of adversary attacks with the maximum 
background knowledge of the attacker. The conducted modification makes it hard for 
an adversary to tell which behavioral aspects of the given model come from randomness 
and which from the actual training data. The modification can be simple random 
shuffling or more sophisticated forms, such as noise adding (e.g., Laplacian, or 
Gaussian noise). There are different forms of implementing or combining such 
modifications with AI. For example, differentially private stochastic gradient descent 
(DPSGD), which is used for the differentially private learning of Deep Learning and 
applies noise to the gradients of the model [26]   

DP is gaining in popularity for healthcare due to its mathematical rigor and 
possibility of being easily combined with other privacy methods [25]. With this, DP is 
explored since it can ensure privacy at the source of the data, which puts the data owner 
in control. This might be useful for mHealth settings, where noise can be added to the 
data of wearable healthcare devices before being sent to a central server. 

Homomorphic encryption. Homomorphic encryption (HE) is an encryption scheme 
that provides rigorous guarantees while enabling operations over encrypted data. 
Simply put, HE allows computation on encrypted data as if it was unencrypted. Hence, 
computations on the encrypted data would yield a result, and once decrypted, match the 
result of the non-encrypted computation [17]. When applied to Machine Learning 
classification tasks, it is possible to realize secure classification over encrypted data. 
HE offers the possibility to entrust a third party (e.g., an off-site cloud computing 
server) with the encrypted version of the dataset since the data owner has the 
mathematical certainty that the third party cannot decrypt the dataset itself nor the result 
of a given analysis. In the context of AI-systems, the encryption characteristics of HE 
can be used to, for example encrypt the gradients of a Deep Learning model, hence 
increasing the privacy [27]. 

These characteristics are also advantageous in healthcare. In comparison to DP, for 
example, there is no trade-off between privacy and utility. This is beneficial in 
healthcare, where sacrificing even some model performance can lead to major negative 
effects in terms of human lives [28]. Further, the openness for distributed systems offers 
advantages for healthcare institutions that want to collaborate with each other. In such 
cases, HE can enable the secure aggregation of encrypted algorithm updates between 
the institutions [29]. 
 
Secure multi-party computation. Secure multi-party computation (SMPC) is an 
encryption scheme that includes multiple parties, which form a governance model built 
on secret-sharing. SMPC ensures that a function can only be computed when all parties 
jointly provide their needed inputs while the content of the inputs stays private [17]. In 
practice, the data is being divided into data shares among the participating parties. 
Processing is then done based on the encrypted data shares. Hence, no single party can 
retrieve the total dataset on their own. Therefore, the computation results can be 



announced without any single party having seen the undivided data. Recovering the 
original data is only possible by the consensus of all participating parties. So, without 
the permission of all parties, the data shares stay encrypted and therefore unusable for 
adversaries, yielding a shared governance model. In combination with AI-systems, 
these characteristics can be used to facilitate training of AI models on data sets owned 
by different parties [30].  

These secret-sharing characteristics are also utilized in healthcare. SMPC is gaining 
popularity in healthcare, intending to enhance private collaboration among healthcare 
institutions [17]. For example, when multiple hospitals want to execute a collaborative 
analysis, where the goal is to join respective datasets and gain knowledge from more 
extensive and diverse data. Here, SMPC reduces the risk of inadvertent or malicious 
leaks and facilitates collaboration between hospitals. This solution is especially 
advantageous for the collaboration between healthcare institutions with no prior 
relationship or a low-trust environment [17]. 

3 Methodology 

To understand the current state of PP-AI use in healthcare and answer the research 
questions, we conducted a systematic literature review suggested by [31]. Hence, the 
procedure follows three phases: literature search, literature evaluation and selection, 
and literature analysis and synthesis. 

3.1 Literature Search 

Due to the stated multidisciplinary nature of the topic, databases that cover multiple 
academic fields are included. Hence, we searched the following databases: 
ProQuest/EBSCO Host/Science Direct (for Basket of Eight), AIS eLibrary, ACM 
Digital Library, IEEE Explore, and PubMed. The language of the articles is limited to 
English, and only peer-reviewed articles are included to validate the quality of research. 
The final search string was applied on ‘title’ and ‘abstract’. Besides journal articles, we 
include conference papers in recognition of the novelty of the topic. 

To reflect the multidisciplinary character of the topic, we split our keyword search 
into three parts. The first two represent the ‘privacy’ and ‘AI’ nature, while the last part 
represents the ‘healthcare’ domain. This resulted in the following search query: 
(privacy-preserving OR privacy OR private OR privacy-protection OR privacy-aware) 
AND (AI OR ‘artificial intelligence’ OR ‘machine learning’ OR ‘deep learning’) AND 
(healthcare OR health OR e-health OR medical OR medicine OR hospital). 

3.2 Literature Evaluation and Selection 

By following the steps described, our search resulted in an initial set of 1097 
contributions. To identify relevant articles, we followed the evaluation process depicted 
in Figure 1. First, the initial set was reduced by applying the search string only to the 
field’s ‘title’ and ‘abstract’. This reduced the set to 432 studies. Second, we scanned 



the titles and abstracts of the articles for a content fit. This phase reduced the set to 194 
articles. Third, we conducted a full-text analysis, where we checked the remaining 
articles based on the inclusion criteria defined.   
  

  
Figure 1. The conducted systematic literature procedure  

For the selection of the encountered articles, we established the following inclusion 
criteria, whereby all three must be fulfilled: 

1. Articles must discuss or apply a privacy-preserving technique.  
2. Articles must discuss or apply the technique specifically in healthcare. 
3. Articles must discuss or apply AI-based techniques.   

Those criteria reduced the number of articles to 34. Finally, a forward and backward 
search lead to four additional articles, which results in 38 relevant contributions in total. 

3.3 Literature Analysis and Synthesis 

To examine the current research space of PP-AI in healthcare, the 38 studies were 
classified with the help of the framework proposed by [32]. Applying the 
conceptualization, we distinguish the domains ‘Theory’ type, ‘Methods’ used and the 
‘Context’ of the analyzed studies. 

In order to analyze the theory, we adapt the ‘Taxonomy of Theory Types in 
Information Systems Research’ by [33]. The taxonomy classifies five theory types: I) 
Analysis, II) Explanation, III) Prediction, IV) Explanation and prediction (EP), and V) 
Design and action. Here, Analysis describes what is, Explanation what is, how, why, 
when, and where, Prediction what is and what will be, EP what is, how, why, when, 
where, and what will be, and Design and action how to do something.  

In terms of the Methods used, we analyze two levels. The first level is ‘Data 
generation,’ which describes the methods of data production and generation [32]. Here, 
we will analyze the healthcare data types & sources which are used by the 38 studies. 
For this goal, we utilized the classification by [34]. They analyzed data types & sources 
in healthcare and identified four groups for data types & sources: 1) Clinical data, 2) 
Patient behavior and sentiment data, 3) Administrative data and cost data, and 4) R&D 
data. The first group of ‘Clinical data’ includes data that derives from patients in clinics, 
such as EHRs or medical images. Next, the group ‘Patient behavior and sentiment data’ 



includes all data that is collected in a distributed manner, such as wearables and social 
sites. The data type group ‘Administrative data and cost data’ is data that describes 
costs, bills, reimbursement categories, and other patient characteristics. Last, the group 
‘R&D data’ includes data that derived from common R&D activities such as genomic 
data. It is important to note, that based on the framework of [32], in terms of ‘Data 
generation’ we only focus on the source of data. The second level is ‘Data analysis’ and 
describes the type of data analysis conducted. Here, our analysis will check which of 
the PP-AI techniques introduced in Chapter 2 are used by the respective study. 

For context, we decide to focus on the investigate context, meaning to understand 
where and from whom data is collected. In our analysis, we will look at the specific 
healthcare domain in which the respective PP-AI technique was used. For this, we 
adopted the classification proposed by [19]. They analyzed the general use of AI in 
healthcare and created three major domain groups. These are 1) Diagnosis & Prognosis, 
2) Treatment, and 3) Clinical workflow and management. Here, ‘Diagnosis & 
Prognosis’ describes the extraction of clinical features to diagnose diseases and 
abnormalities. Further, this domain group also describes the process of the expected 
development of a disease. Next, the domain ‘Treatment’ characterizes activities for the 
treatment of patients after the diagnosis of diseases. Hence, the generation of documents 
that are used in the treatment are included as well. Lastly, the domain ‘Clinical 
workflow and management’ concerns the clinic's administrative processes and 
operational tasks. 

4 Analysis of the Research Space 

To answer RQ2, this section discusses the results of the conducted literature analysis 
and synthesis, as depicted in Table 1. It gives an overview of the 38 analyzed studies in 
terms of theory, method, and context.  
  

Table 1. The synthesis of our analysis 
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Zhang et al. 2021 [35]     X X     X   X   
Jiang et al. 2019 [29]     X X      X  X   
Chen et al. 2019 [36]     X X     X   X   
Suriyakumar et al. 2021 [37]     X   X   X   X  X 
Can and Ersoy 2021 [38]     X  X   X    X   
Cheng et al. 2021 [39]     X X     X   X   



4.1 Theory 

As noted, to classify the theory type of the analyzed studies, we adopted the taxonomy 
by [33]. The results can be seen in Figure 2a. 

We note a clear trend for applying design and action theory since 31 out of the 
analyzed 38 studies can be classified as such. Hence, these 31 studies describe PP-AI 
techniques in healthcare and propose explicit frameworks on how to build an artifact. 
The second largest group can be classified as explanation and prediction. These six 
studies explain the application of PP-AI techniques in healthcare and give predictions 
based on their explanation and analysis [19, 22, 25, 48, 64, 65]. Only one study can be 
classified as the theory type explanation. This study explains applying FL in healthcare 
but does not aim to predict future developments [63]. None of the 38 reviewed studies 
can be categorized as analysis or prediction. 

4.2 Method 

To analyze the methods deployed, we investigated data generation and data analysis. 
In terms of data generation, we categorized the reviewed studies into four groups: 
Clinical data, Patient behavior and sentiment data, administrative data and cost data, 
and R&D data. To analyze the deployed data analysis technique, we classified the 
reviewed studies based on the PP-AI techniques presented in Chapter 2. 

Chen et al. 2020 [40]     X    X    X  X  
Yuan et al. 2019 [41]     X X     X   X   
Yasumura et al. 2019 [42]     X X      X  X   
Vignesh et al. 2019 [43]     X X       X X   
Hakak et al. 2020 [44]     X  X   X    X   
Sun et al. 2019 [45]     X X     X   X   
Müftüoglu et al. 2020 [46]     X X     X   X   
Kim et al. 2019 [47]     X X     X   X   
Guo et al. 2020 [48]    X  X    X X   X   
Leboe-McGowan et al. 2020 [49]     X    X    X X   
Ying et al. 2020 [50]     X X       X  X  
Jarin and Eshete et al. 2021 [51]     X   X   X  X   X 
Kumar et al. 2021 [52]     X X    X    X   
Liu et al. 2021 [24]     X X    X     X  
Ying et al. 2021 [53]     X X       X  X  
Zhang et al. 2020 [54]     X X      X  X   
Imtiaz et al. 2020 [23]      X  X   X X    X  
Ma et al. 2020 [55]     X X      X  X   
Rahman et al. 2020 [56]     X  X   X  X  X   
Thwal et al. 2021 [57]     X X    X    X   
Kwabena et al. 2019 [58]     X X      X  X   
Wu et al. 2020 [59]     X  X   X     X  
Zhang et al. 2021 [60]     X X    X    X   
Zhang et al. 2020 [61]      X X    X    X   
Zhao et al. 2020 [62]     X  X   X     X  
Li and Qin 2018 [4]     X X     X   X   
Pfitzner et al. 2021 [63]  X     X   X     X  
Brisimi et al. 2018 [64]    X  X    X    X   
Passerat-Palmbach et al. 2020 [22]    X    X  X      X 
Rieke al. 2020 [65]    X    X  X     X X 
Qayyum et al. 2021 [19]     X  X    X X X X X  X 
Hu et al. 2019 [25]    X       X   X   

Sum 0 1 0 6 31 25 7 4 2 17 14 7 7 28 9 5 



As depicted in Figure 2b, most of the reviewed studies used clinical data in their 
analysis. Among these 25 studies, six studies used disease attribute records for breast 
cancer [29, 36, 42, 47, 48, 51], four studies used diabetes patient records [45, 50, 53, 
58], three studies used Electronic Health Records [4, 36, 51], and one study utilized an 
ECG dataset [61]. In terms of medical images, studies used X-Rays [35, 39, 41, 43, 46, 
60], CT scans [52, 60], SPECT scans of the heart [29], and dermoscopic images [39, 
54]. The second most popular data type group is patient behavior and sentiment data. 
Here, three studies used smartphones & smartphone apps [23, 56, 59], two studies 
utilized smartwatches [38, 62], and one studies smart bands [38]. In our analysis, only 
four studies worked with administrative and cost data. Exemplary, these utilized ICU 
data [37], or critical care databases [51]. Lastly, only two studies worked with R&D 
data. Of those, one study used HIV sequence data [40] and the other used gene 
expression data [49].  

As shown in Figure 2c, the most popular PP-AI technique is FL, with 17 reviewed 
studies applying it. For the studies, which stated the specific details regarding the FL 
setup, the most popular algorithm was the Federated Averaging algorithm, used by [23, 
24, 38, 44, 56, 59]. The second most used PP-AI technique is DP. DP was used by 14 
of the reviewed studies. Here, the most popular mechanism for adding noise is the 
Gaussian mechanism, implemented by [23, 35, 39, 41, 45, 47, 48]. Compared to FL and 
DP, we find that HE and SMPC are much less used in the reviewed studies. In our 
analysis, HE was only applied by seven studies [19, 29, 42, 54–56, 58], while SMPC 
was applied by seven studies as well [19, 40, 43, 49–51, 53].  

4.3 Context 

Lastly, we classified the investigative context of the reviewed studies by classifying 
them based on the healthcare domain they discussed in their study. 

Looking at the distribution over the three defined healthcare domains in Figure 2d, 
it becomes evident that most studies focus on Diagnosis & Prognosis, followed by 
Treatment and Clinical Workflow & Management. In terms of Diagnosis & Prognosis, 
many studies discuss the detection and classification of diseases, e.g., breast cancer [29, 
36, 42, 47–49, 51]. Other studies discuss the diagnosis of respiratory diseases such as 
pneumonia [41, 46, 52, 57, 60], tuberculosis [57], bronchial asthma [57], and pleural 
effusions [39]. Besides the detection, studies also discuss the progression of diseases, 
e.g., the progression of diabetes [58]. Additional to detecting and predicting the 
progression of diseases, studies also look at detecting abnormalities. These include 
abnormalities such as cardiac arrhythmia [36, 55, 61] and skin tone [39]. In terms of 
the treatment of patients, nine relevant studies were detected. These discuss, for 
example the efficacy of antiviral drugs [40], depression treatment [24], optimal insulin 
dosage [53], or the forecast of dietary habits and health monitoring [23, 59, 62]. As 
noted, the least number of studies focus on applying PP-AI techniques in Clinical 
Workflow and Management. Among the five studies discussing the application for 
Clinical Workflow and Management, studies for example look at ICU mortality 
prediction [37], LOS prediction in hospitals [37, 51], or predicting the intervention 
onset for vasopressor administration [37]. 



 

 
Figure 2. Quantitative analysis of the reviewed literature 

5 Future Directions for IS Research 

Based on our understanding of the PP-AI techniques and the conducted research of 
current use in healthcare, to answer RQ3 we now identify three key findings which 
imply research gaps and future directions for IS research on PP-AI use in healthcare, 
depicted in Table 2. 

First, our findings reveal that most of the studies reviewed are published in Computer 
Science outlets and focus on creating artifacts; hence there is an uneven distribution of 
outlets and scholars working on PP-AI in healthcare and consequently the research 
methods applied. Here we note that there is particularly little research done by the IS 
community since only one of 38 studies was published in an IS affiliated outlet [4]. 
Hence, IS research should participate more actively in researching PP-AI techniques in 
general and their use in healthcare. On the one hand, IS researchers are challenged to 
conduct more research in this field, since the IS perspective can be crucial in further 
developing and establishing such techniques in healthcare. Primarily by analyzing the 
field more holistically and the interdependence between PP-AI techniques, healthcare 
stakeholders, and healthcare organizations. To achieve this goal, familiar research 
methods to IS researchers (e.g., Survey research) can be deployed to address questions 
such as the understanding and acceptance of patients of new PP-AI techniques or the 
implications for the increase in collaboration between healthcare organizations. On the 
other hand, IS outlets should be more receptive and encourage this research, for 
example by offering special issues which focus on privacy concerns of AI methods. 



This could sign the topics relevance to the IS community and reinforce IS researchers 
to engage with the topic. 

Second, we found that the overwhelming majority of studies discuss the use of PP-
AI techniques in healthcare in isolation. This is surprising when considering that prior 
PP-AI research already established that considered alone, all PP-AI techniques have 
major limitations, both technical and regarding applicability to real-life scenarios [17, 
19, 65]. Therefore, a combination of techniques is recommended to utilize the 
orthogonal privacy protections offered by the different techniques. For example, FL 
mainly resolves data governance and ownership [63], while HE conducts encryption of 
the data itself [29]. Here, future IS research could help to advance PP-AI techniques in 
terms of practical applications by, for example, conducting case study research to test 
PP-AI techniques in a more natural setting. Such studies would generate in-depth 
insights about the benefits and limitations of combining specific PP-AI techniques for 
more realistic healthcare applications. This understanding could bridge the gap between 
the academic discussion to actual application of PP-AI techniques in healthcare. 

Lastly, our findings show that most studies use clinical data, rely on FL or DP, and 
apply their artifact in Diagnosis & Prognosis, yielding a disproportionate distribution 
in terms of user data types & sources, applied PP-AI techniques, and healthcare domain. 
Future research should examine the potentials and limitations of applying PP-AI 
techniques in less studied healthcare fields. For this purpose, the IS community is 
especially well-suited due to its vast history in analyzing and discussing the use of 
Information Technology in various healthcare fields [66–70]. Through the healthcare 
industry's progress and ongoing digital transformation, we can expect more healthcare 
data to be generated and more healthcare processes getting digitized. Here, the IS 
community can leverage prior research in terms of digital transformation to analyze and 
understand privacy problems in newly digitized healthcare fields and how PP-AI 
techniques might pose solutions to those problems [1, 71, 72].  
 

Table 2. Findings, research gaps, and future directions for IS research 

Reference in 
our analysis Findings Research gaps Future directions for 

IS research 
Theory Most of the 

studies reviewed 
are from the 
Computer Science 
community and 
focus on creating 
artifacts. 

There is an uneven 
distribution of 
outlets and 
scholars, and 
consequently, 
research methods 
applied. 

IS research should 
participate more 
actively in researching 
PP-AI in general and its 
use in healthcare. 

Method  
(Data 
analysis) 

The 
overwhelming 
majority of studies 
discuss the 
respective PP-AI 
techniques in 
isolation. 

Considered alone, 
the discussed PP-
AI techniques still 
have some major 
limitations. 

Future IS studies 
should address the need 
to understand the 
effects of combining 
different PP-AI 
techniques in more 
realistic settings. 



6 Concluding Remarks 

This paper aimed to provide a comprehensive explanation of the most important PP-AI 
techniques, their suitability in healthcare, and analyze the current research space of 
studies on PP-AI use in healthcare. We showed that PP-AI techniques have enormous 
potential for application in healthcare but vary in suitability for different healthcare 
fields. Further, the current research space has been analyzed by looking into the theory 
types applied, data generation methods, data analysis techniques, and investigative 
context. Based on these findings, we have established that the IS community is just at 
the beginning in terms of PP-AI research. Hence, we derived future directions for IS 
scholars and showed which aspect they can add to the growing multidisciplinary 
research on PP-AI. Nevertheless, we must note two important limitations to our work. 
First, we have strongly focused on the potentials of PP-AI techniques, but not the 
technical limitations that exist. A complete picture of the applicability of PP-AI 
techniques would require a more in-depth analysis of the limitations. A more thorough 
understanding of the technical limitations would also pave the way for implementing 
PP-AI techniques in actual healthcare practice. Second, we looked at the future 
directions which can be derived for the IS community, while ignoring the learnings of 
this work for other domains. As stated, PP-AI is a multidisciplinary field, so the 
findings generated in this work opens a range of research avenues for multiple fields. 
To establish real advancement in the field of PP-AI, additional domains besides the IS 
community, should build on the findings generated in this work. These limitations 
should be considered and extended in future (multidisciplinary) work. 

In conclusion, we hope that this paper provides a comprehensive understanding of 
the current state of PP-AI research in healthcare which stimulates future research and 
motivates scholars to engage and collaborate in this emerging field to enable the private 
use of healthcare data for AI methods. 
 
 
 

Method  
(Data  
generation), 
Method  
(Data 
analysis),  
Investigative 
context 

Most studies use 
clinical data, rely 
on Federated 
Learning, or 
Differential 
Privacy, and apply 
their artifact in the 
context of 
Diagnosis & 
Prognosis. 

We note a 
disproportionate 
distribution in 
terms of used data 
types & sources, 
applied PP-AI 
techniques, and 
healthcare 
domains.  

Future IS research 
should examine PP-AI 
techniques in less-
studied healthcare 
fields by leveraging 
prior knowledge in 
digital healthcare. 
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