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Smart-Contract Enabled Consortium Blockchains for the 
Control of Supply Chain Information Distortion  

Corban Allenbrand 

University of Kansas, School of Business 

callenbrand@ku.du 

ABSTRACT 

Conflicts between supply chain members emerge because individually strategic actions may not be jointly optimal. Efforts to 

forecast consumer demand represents a source of conflict. Coordination of forecasts requires a powerful incentive alignment 

approach. This work proposes a smart-contract equipped consortium blockchain system that creates an incentive structure 

which makes coordination with respect to forecasts economically appealing. Distortions of demand information due to 

uncoordinated forecasting is captured by a bullwhip measure which factors both forecast error and variance. Cooperation under 

the system is shown to help minimize this bullwhip measure thus generating new outcomes to the participants that allow for a 

higher reward. Under a fixed payout structure, the system achieves credibility of continued cooperation thus promoting an 

optimal coordinated equilibrium between retailer and supplier. Blockchain technology represents a novel information system 

and consensus formation mechanism which can intermediate the behavior of a supply chain network. 

Keywords  
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INTRODUCTION AND BACKGROUND 

A supply chain has been defined as a set of entities directly involved in the upstream and downstream flows and processing of 

products, services, finance, and/or information (Mentzer et al., 2001). If the supply chain is to achieve some sense of optimality, 

actions must be coordinated and knowable (Flynn et al., 2010). Conflict plays a prominent role in supply network optimization. 

Mitigation of the conflict, however, is non-trivial even if the entire network can be regarded as sharing some clear global 

objective. At both an abstract and practical level, the supply chain coordination problem is a multi-participant joint group 

decision problem in which participants base their decisions on different information, different assessments of random 

quantities, different decision possibilities, but motivated by the common goal. Numerous actions are embedded within this 

group decision problem - what product to sell, how to replenish inventory, what transportation routes are to be taken, etc. - but 

this paper focuses on one, the forecasting of future demand. Demand forecasting is firmly established for the simple fact that a 

business can be easily out competed by a competitor who acquires knowledge, albeit imperfect, of the future through the efforts 

of forecasting (Aviv, 2002). Forecasting future demand is also known to engender problems in the supply chain - demand 

variance amplification and information distortion (Lee, 1997). This distortion of demand information, referred to as the 

bullwhip effect, has been characterized and examined with several arguments for its cause (Chen et al., 2000; Bray and 

Mendelson, 2012). A question remains is if there is an arrangement that would permit demand forecasting without 

compromising attempts at coordination. This arrangement must accomplish the alignment of individual motivations with the 

system’s objective, improvement in how information is obtained and shared, offer tools to verify actions conducted by 

participants so trust can be enhanced, and the rules of the arrangement must be managed. Existence of some information system 

would alleviate the coordination burden. One such system that can introduce coordination during demand forecasting is a 

blockchain. 

Blockchain technology garners attention in the public because of its many unique technological characteristics. It is, by design, 

a multi-user system capable of continuous, non-centrally governed interactions. Core to its capabilities is its support for the 

creation and management of autonomous, collaborative, and interoperable services by every user of the system (Risius and 

Spohrer, 2017). Blockchain systems are decomposed into several layers. One such layer provides a platform to deploy 

autonomous control programs that automatically execute actions. These programs are known as smart contracts and run on top 

of the blockchain architecture (Glaser, 2017). Blockchain networks may be public, private, or consortium. Public blockchains 

are permissionless in that any user can transact on the network. Many cryptocurrencies rely upon this architecture (Kroll et al., 

2013). Private and consortium blockchains introduce permissions where particular users are granted capabilities over network 

operations (Casino et al., 2019). Consortium blockchains impart a greater degree of trust and stability which can allow improved 

transaction speeds and integrity (Polge et al., 2020). Additional attractive features are that all users are identifiable, trusted, and 
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ownership of the data is joint. The consortium would need to reach consensus on rules such as the details on future demand 

forecasting, how participation is compensated, and how non-participation is penalized. Although agreeing to participate in the 

consortium, each member cannot be assumed to be devoid of any self-interested motivations. It is the fundamental purpose of 

the blockchain system to induce the self-interested actors to behave as a coordinated group. Game theoretical modeling provides 

analysis tools, in the form of established game patterns and theory, that can discover predictable patterns that participants in a 

blockchain supply network may display 

This paper formulates a smart-contract enabled blockchain system which targets the resolution of demand information 

distortion induced by demand signal processing by a retailer and supplier. At the heart of the problem is the conflict experienced 

between the supplier and retailer regarding their short-term objectives and the need to present incentives to both parties to 

cooperate as would a team with a single objective. Non-cooperative dynamic game theory was employed to analytically show 

how a blockchain system can constrain supplier and retailer to commit to the group-level objective. This paper is the first, to 

the knowledge of the author, to propose a blockchain system for dealing with the problem of demand signal processing induced 

order variance. The rest of the paper is organized as follows: a review of past literature pertaining to the streams of research 

called on in this paper is conducted, a description of the supply chain model and demand process is given, an overview of the 

blockchain architecture is provided, a formulation of the multi-level game executed by the retailer and supplier during 

blockchain running is presented, and a final conclusion is delivered. 

LITERATURE REVIEW 

Evidence of the impact of inventory decisions by retailers on order variance at suppliers has been well-documented in many 

industries including in the commercial operations of HP, Proctor & Gamble, and clothing suppliers (Lee et al., 1997). Lee et 

al. were the first to analytically define and characterize five major forces that contribute to the distortion of order variance 

moving up a supply chain including the forecasting of future demand. Part of the challenge of quantifying this impact is in the 

choice of the process generating demand and the equation-based tools to predict its future behavior. Several authors have looked 

into this problem: Chen et al. (2000) investigate the effect of exponential smoothing and moving average forecasting on the 

bullwhip when demand follows an autoregressive process , Xu et al. (2001) conducted similar analysis but with a combined 

exponential smoothing moving average forecast method , the effect of lead time and various forecasting methods on the 

bullwhip in a simple inventory system was explored by Zhang (2004), Disney et al. (2006) used a control systems approach to 

quantify the bullwhip under an order-up-to inventory policy and independently and identically distributed autoregressive and 

moving average demand processes. This paper shows that a blockchain based system of verification and control can ameliorate 

the repercussions of demand forecasting when demand is assumed to follow a first-order autoregressive AR(1) process. 

Supply chain coordination is achievable with several mechanisms including with contracts. Cachon (2003) reviewed many of 

the contractual methods such as buy-back, revenue sharing, and quantity in the setting of a newsvendor model. This author 

views the coordination problem as one of a group decision problem under interpersonal conflict. Conflict here is just the 

presence of certain aspects of the retailer and supplier’s preferences which constrain the joint optimization over the retailer-

supplier group system. What is considered acceptable for the group then must accommodate the differences in concern for 

different dimensions of the problem. The empirical influence of conflict on the quality of the group’s decision making ability 

was investigated by Bower (1965) where it was shown that conflict plays a dual role in the decision making process, it can 

stimulate the search and analysis of alternatives but hampers obtaining agreement. Before a coordinative amalgamation of the 

retailer and supplier’s decision problems can be done, conflict must be properly handled. Bower (1973) argued that a more 

accurate analysis of group decision making under conflict is accomplished if the behavior of group members is analyzed in 

terms of the compensation they receive from participating in it. Three properties of a reward-scheme were deemed important: 

compensation for a member must not be affected by non-optimal behavior of another, optimally and non-optimally performing 

members must be distinguishable, no single decision maker must be expected to have complete information of the others. This 

paper uses a unique feature of blockchain technology, automated intermediation through smart contracts, to formulate an 

incentive structure between retailer and supplier that does not ignore the tension between the members. 

A central concern when devising blockchain systems is the attractiveness and robustness of the proposed system. For this paper, 

this comes down to the question of if the system can attract participation of the retailer and supplier and it will remain intact 

once the two parties interact. Game theory supplies a rich mathematical toolkit useful to tackle these questions. Applications 

of game theory to public blockchains, with an intense focus on cryptocurrencies, has been conducted by previous authors. 

Security issues such as denial-of-service attacks and risk management issues such double-spending have been investigated with 

game-theoretical models where rich game dynamics, equilibrium strategies, and incentives were discovered (Feng et al., 2018; 

Johnson et al., 2014). Resource management and cheating issues including optimal-pricing, transaction fees, and network 

infiltration were found to be amenable to game-theoretical modeling (Xiong et al., 2018; Asgaonkkar and Krishnamachari, 

2019; Eyal, 2015). Cooperation enforcement and prevention of exploitation attempts were found with game-theoretical 
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modeling and the use of zero-determinant strategies (Miao and Li, 2017; Zhen et al., 2017). Market stability, participation 

continuity, and other economic considerations of Bitcoin were modeled with game theory (Easley et al., 2019). This work 

proposes three levels of game theory analysis to elucidate the advantage a blockchain system provides to the costly problem of 

order variance disturbance due to demand signal processing. 

CONTRIBUTIONS OF THE WORK 

A first contribution of this work is to the area of blockchain and its applications. Although recognized by their many fascinating 

properties, the value and usefulness of blockchains to applied settings is poorly constrained (Casino et al., 2019). This paper is 

the first to characterize how such an information and technological system can be used to address a fundamental problem in all 

supply chain networks, distortion of information due to uncoordinated efforts at forecasting customer demand. It does so by 

establishing a customizable template for a multi-function smart-contract enabled blockchain that is designed to introduce 

incentives that encourage coordination of forecasting efforts. A second contribution, related to the first, is to the fields of 

management science and information systems. Information that is poorly managed or employed yields poor outcomes for 

decision makers (Bower, 1965). From the properties of blockchain systems, this paper is the first to demonstrate with analytical 

modeling how the structure of a smart-contract enabled blockchain can install the conditions necessary for better use of demand 

information coming from forecasting activities. To accomplish this, outcomes from the interactions of a retailer and supplier 

before and after a blockchain system is implemented are compared and it is shown how the new system can introduce more 

favorable outcomes to both actors. Although attention is dedicated to the supply chain setting, results can be extended to other 

interaction environments with reasonable modifications. 

A MODEL OF THE SUPPLY CHAIN AND DEMAND PROCESS 

The purpose of this section is to introduce a representations of the decision elements used by supply network agents. Decisions 

reached by each party are dependent on individually forecasted customer demand. Like many forecasts, these are assumed to 

be made with non-zero error. It is further supposed that the errors occur with variability so that the errors themselves can be 

regarded as stochastic. Taken together, forecast errors and their corresponding variances are shown to contribute to the bullwhip 

measure which quantifies the extent to which the demand information originating from the customer is distorted as it travels 

from retailer to supplier. Results and expressions from this section are then carried over into the subsequent sections. 

Supply Chain Model 

In this work, the supply chain is structured as a two-stage system with one retailer and one supplier. This choice is general and 

was made in order to provide a more tractable view of supply network dynamics. It is assumed that the retailer follows an 

order-up-to (OUT) level replenishment policy with a fixed order lead time (L). Timing of events is as follows: retailer receives 

order ordered made L periods in past, demand (dt) is realized for the current period, inventory is reviewed, and then an order 

quantity (qt) is placed with the supplier. According to the replenishment policy, the OUT level at time t, St is given by  

𝑆𝑡 = 𝑆𝑡−1 − 𝑑𝑡 + 𝑞𝑡 (1) 

Which can be rearranged to give the order quantity requested to the supplier 

𝑞𝑡 = 𝑆𝑡 − 𝑆𝑡−1 + 𝑑𝑡 (2) 

A retailer’s task is to determine the optimal St. In this paper, it is assumed the retailer determines St by a linear combination of 

its prediction of future demand realization over L periods and dispersion of the demand forecast error as, 

𝑆𝑡 = 𝐷̂𝑡
𝐿 + 𝑧𝜎𝑡

𝐿 (3) 

where 𝐷̂𝑡
𝐿  is the prediction of demand accrued over L periods 𝐷𝑡

𝐿 = ∑ 𝑑𝑡+𝑖
𝐿
𝑖=0 , z denotes the normal z-score determined based 

on the retailer’s desired service level, and 𝜎𝑡
𝐿 is the sample standard deviation of the demand forecast error 𝐷𝑡

𝐿 − 𝐷̂𝑡
𝐿 . Thus, 

ordering is influenced by the prediction of the actual demand process, its errors, and the spread of the error. If we combine (2) 

and (3) the order quantity retailer transmits to the supplier at end of period t is, 

𝑞𝑡 = 𝐷̂𝑡
𝐿 − 𝐷̂𝑡

𝐿−1 + 𝑧(𝜎̂𝑡
𝐿 − 𝜎̂𝑡

𝐿−1) + 𝑑𝑡 (4) 

Observe that if the variance of demand forecast error did not depend on the time index, the third term of (4) becomes zero. We 

are assuming process is stationary and so factors causing prediction error would not depend explicitly on time, just the length 

of time between time of prediction and time of realization. Thus, for fixed L, 𝜎̂𝑡
𝐿 − 𝜎̂𝑡

𝐿−1  is set to zero. 
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The supplier’s decision is simplified down to a one-dimensional problem, that of selecting production capacity. This 

simplification is made in order to focus on the mechanism through which a blockchain can modify the cost structure. A 

capacity cost function is introduced to guide the supplier’s decision, 

 

𝑐(𝑥) = 𝑐0 + 𝑐𝑘𝑥 (5) 

where x denotes the quantity to be manufactured in a period, 𝑐0 is fixed costs associated with capacity investment, and 𝑐𝑘 is 

the marginal cost for additional capacity investment. It is assumed in this work that the supplier does not hold a finished goods 

inventory. This is consistent with just-in-time production which aims at improving system response time. The supplier in this 

model actively attempts to predict future demand for the retailer to level out its production. The supplier may implement two 

types of strategies: a flexible strategy which invests in excess capacity so all fluctuations in the retailer’s orders are processed 

or an inflexible strategy that delays production of excess fluctuations of orders until the next period. The first strategy is 

beneficial for the retailer who gets its orders fulfilled but introduces costs to the supplier when production is idle or capacity 

investment is high. The second strategy introduces shortages on the retailer thus harming customer service level. Avoidance of 

running out of capacity is the retailer’s preference whereas avoidance of excess or deficient capacity is the supplier’s preference. 

It is assumed that bringing additional capacity online is exorbitantly costly and is avoided. Both retailer and supplier would 

prefer a supplier’s capacity investment to perfectly correlate with the order quantity of the retailer, this way, risks to both parties 

are controlled. If a retailer’s orders fluctuate wildly, however, it is not practical to expect the supplier to accurately predict this 

behavior. Instead, what is desired is a smooth order pattern submitted by the retailer which improves the predictability of 

optimal capacity. 

Demand Process Model 

If a retailer assumes external demand is independently generated and stationary, linear processes can be used for reasons of 

simplicity. Assume the retailer chooses an autoregression process, AR(1), model for the demand process. Autoregressive 

demand means current demand depends on past demand in a linear way, a common assumption. This choice is made by a 

retailer that is constrained insofar as it cannot invest sufficient resources in using a more complex model. If demand does not 

follow an AR(1) model then the retailer experiences a misspecifcation error. Part of the appeal of the blockchain system is that 

the risk of misspecification could be alleviated by exploiting distributed calculations. Actual demand at time t is then 

𝑑𝑡 = 𝜇𝑑 + 𝜑𝑑𝑡−1 + 𝜖𝑡 (6) 

where 𝜇𝑑 is the mean demand for the process, 𝜑 is the AR(1) parameter, and 𝜖𝑡 ~ IID(0, 𝜎2) are random disturbances which 

are uncorrelated with any future demand. The assumption of stationarity requires | 𝜑 | < 1. Up to time t, the sequence of 

historically realized and observed demands p periods in the past is the history of demand {ℎ𝑡−1} = {𝑑𝑡−𝑝, ⋯ , 𝑑𝑡−1}. It can be 

shown that, unconditionally, 

𝐸[𝑑𝑡] =
𝜇𝑑

1 − 𝜑
 (7) 

 

𝑉𝑎𝑟(𝑑𝑡) =
𝜎2

1 − 𝜑
 (8) 

and conditionally on the history of demand, 

𝐸[𝑑𝑡  | {ℎ𝑡−1] = 𝜇𝑑 + 𝜑𝑑𝑡−1 (9) 

 

𝑉𝑎𝑟(𝑑𝑡  | {ℎ𝑡−1}) = 𝜎2. (10) 

Specific techniques are used to determine 𝑑̂𝑡 with a generic method of forecasting denoted by 𝑓({ℎ𝑡−1}, 𝛩) which returns a 

prediction of 𝑑𝑡 from history and a fixed set of parameters Θ. In reality, the parameters are likely adaptively learned with time 

but it is assumed that the retailers are limited by technical abilities and only update parameters when major business operations 

are changed. For an AR(1) process, the one-step ahead prediction is, 

𝑑̂𝑡 = 𝜇𝑑 + 𝜑̂𝑑𝑡−1 (11) 

and the L-step ahead prediction can be derived using the recursive definition of AR(1) as, 
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𝑑̂𝑡+𝐿 = 𝜑̂𝐿𝜇𝑑 + 𝜑̂𝐿𝑑𝑡−1. (12) 

Forecast error for (12) is then 

𝑒̂ = 𝜖𝑡+𝐿 + 𝜑̂𝜖𝑡+𝐿−1 + ⋯ + 𝜑̂𝐿−1𝜖𝑡+1 (13) 

with variance, 

𝑉𝑎𝑟(𝑒̂) = 𝜎3
1 − 𝜑̂2𝐿

1 − 𝜑̂2
 (14) 

It was shown in (4) how the order quantity submitted by retailer at time t depends on the difference between two L-step ahead 

predictions of accrued demand. The forecast error of this the true accrued demand difference 𝐷𝑡
𝐿 − 𝐷̂𝑡

𝐿−1  is simply, 

𝑒̂𝐿 = (𝐷𝑡
𝐿 − 𝐷̂𝑡

𝐿) + ( 𝐷𝑡
𝐿−1 − 𝐷̂𝑡

𝐿−1) (15) 

by the triangle inequality, 

|𝑒̂𝐿| ≤ |𝐷𝑡
𝐿 − 𝐷̂𝑡

𝐿| + |𝐷𝑡
𝐿−1 − 𝐷̂𝑡

𝐿−1| (16) 

and thus the error in prediction is going to be bounded above by the departures of predicted accrued demand for the two L-step 

ahead predictions. Assume an optimal order quantity 𝑞𝑡
∗, where optimality is defined in the sense that the coordinate supply 

chain maximizes its objective at this order quantity, so that the magnitude of |𝑒̂𝐿| represents the distance qt is expected to be 

from 𝑞𝑡
∗ . Moreover, the variance of |𝑒̂𝐿| is also a representation of the variance of the distance qt is expected to be from 𝑞𝑡

∗. 

Even when the retailer commits a non-zero prediction error,|𝑒̂𝐿| ≠ 0, variance of the error would be small for stable errors. It 

is primarily the size of the variance of the error which is regarded as injurious to the supply chain in this work.  

Bullwhip Measure 

This paper introduces a modified version of a standard measure of the bullwhip 𝐵(∙), the ratio of the variance of submitted 

orders to variance of demand of the process, given by a ratio that factors in forecast errors |𝑒̂𝐿| or forecast error variance 

𝑉𝑎𝑟(|𝑒̂𝐿|) 

𝐵(𝑞𝑡 , 𝑑𝑡) =
𝑉𝑎𝑟(|𝑒̂𝐿|)

𝑉𝑎𝑟(𝑑𝑡)
=

(1−𝜑)|𝑒̂𝐿|

𝜎2 . (17) 

In practice, the AR coefficient 𝜑 would need to be estimated with 𝜑̂ using knowledge of {ℎ𝑡−1}. Although separate sources of 

bias are not explicitly enumerated, (17) suggests how a bad estimator or 𝜑 would contribute positively to 𝐵. Any decisions 

made or not made by the retailer or supplier that result in increases in |𝑒̂𝐿|. The next section presents a consortium blockchain 

architecture whose automated intermediation is designed to decrease |𝑒̂𝐿| and 𝑉𝑎𝑟(|𝑒̂𝐿|) which consequently decreases 𝐵. 

CONSORTIUM BLOCKCHAIN MODEL 

One useful functionality of blockchain systems is the smart contract. Smart contracts execute independently and automatically 

on every node in the blockchain. These executables can manage data-driven interactions between the retailer and supplier. In 

a way, a smart contract behaves as an autonomous actor whose behavior is entirely deterministic and predictable. Further, the 

retailer and supplier get to inspect the code of the contracts to know of its outcome before engaging with it. Tamper-proof 

qualities of smart contracts mean more confidence on the execution of the contract exists and all interactions are verifiable 

through the use of digital signatures. 

Consider a simple smart contract that will serve as an automatic intermediary between the retailer and supplier. Authorship of 

the smart contract is assumed to reside with the supplier but joint development between retailer and supplier is also possible. 

Full code inspection is permitted and so a retailer’s participation in the network indicates its acceptance of the routines. A 

supplier is not required to submit a prediction of the retailer’s order quantity for contract execution but is required to submit its 

chosen capacity. The following is an abstract description of the smart contract’s functionality: 

• Function 1: Retailer deposits order quantity, forecasted demand, and data used to reach the forecast 

• Function 2: Supplier deposits forecasted demand, data used to reach forecast, and chosen capacity 

• Function 3: Dynamic estimation of the model for demand process, given all demand history stored over the blockchain 

• Function 4: Forecast future demand through a combination of forecast techniques or the use of more sophisticated technique 
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• Function 5: Check retailer submitted order and supplier submitted order to that forecasted by blockchain 

• Function 6: Construct distribution of prediction error for retailer and supplier 

• Function 7: Compensate retailer and supplier inversely proportional to prediction error and prediction error variance 

Functions 1 and 2 are input operations and are regarded as trigger events for the smart contract, once received the sequence of 

operations from Function 3 onward is initiated. Function 3 is designed to improve model specification of the demand process 

for the retailer. Function 4 is designed to compensate for simplifications made by both the retailer and supplier when computing 

forecasts. This compensation derives from the assumption that the retailer and supplier are not experts in forecasting. Since the 

computations are off-loaded to the chain, no party is burdened with the computational effort. Function 5 performs validation 

of consensus with respect to the blockchain system’s operations. Function 6 builds a representation of the retailer’s forecast 

error variance. This is done so that the retailer can be compensated for good faith attempts at controlling order variance. 

Function 7 is an output operation that incentivizes the retailer to commit to reducing B and the supplier to commit to capacity 

𝑐𝑡 that follows demand process more closely. Although the automated execution environment would seem to achieve the 

necessary incentivization of the retailer and supplier, analytical proof of this is required. Expanded benefits may attend 

participation in the blockchain, but both retailer and supplier may not find the existing arrangement satisfactory after factoring 

in the switching costs.  

BLOCKCHAIN GAME FORMULATION AND ANALYSIS 

An analytical representation of the interactions between the retailer and supplier would be an essential element to persuade 

either party to initially commit to the blockchain system. Recall, the attractiveness of a blockchain system is crucial for the first 

step of persuading participants to join. Without a characterization of strategic interactions, it is surmised that neither retailer 

nor supplier will experience an adequate persuasion effect to adopt the technology. Game theory provides just the tools to 

perform a principled analysis of strategic interactions. The idea of a game is just a formal structure of the decisions available 

to a set of participants and the outcomes from those decisions. Repeated interactions between retailer and supplier invite the 

use of a dynamic repeated game of complete but imperfect information. Complete information means that knowledge of the 

retailer and supplier payoff functions is shared between both parties. Completeness is more realistically obtained under the 

blockchain system since transparency of transactions is one of its design principles. Information is imperfect because at each 

decision, the retailer and supplier simultaneously decide and do not have the ability to know what either party decided.  

Consider a single stage of what would be a repeated game between the retailer and supplier without the blockchain system. In 

order to focus the analysis on the interaction dynamics between the two agents, payouts are kept in symbolic form. Four distinct 

payouts are presented: 

• T: temptation payout obtained by the retailer or supplier when the other agent commits to blockchain requirements, but it 

does not. It may be beneficial to have the other party conform to requirements without making the initial investment to initiate 

participation in the system. It is assumed that a technological investment or other expenditure would be required to first join 

the system. 

• R: reward payout obtained when cooperation within the blockchain system is adopted by both agents. This reward payout 

would originate from improvements to the supply chain efficiency due to reductions in |𝑒̂𝐿|, 𝑉𝑎𝑟(|𝑒̂𝐿|), and 𝐵. 

• P: penalty payout obtained when both retailer and supplier both decide not to participate in the blockchain and act according 

to self-directed motivations. This would correspond to the payout achieved where either retailer or supplier uses individualized 

forecasting efforts to make order decisions. A penalty here should be understood to represent a payout inferior to the superior 

alternative of participation in the blockchain. 

• S: sucker payout obtained by either retailer or supplier when it commits to blockchain requirements, but the other agent does 

not. 

Payouts are exogenously ordered according to  𝑇 > 𝑅 > 𝑃 > 𝑆 and the order would be established by the design features of 

the system. Four outcomes, sub-optimal coordination (𝑃, 𝑃), optimal coordination (𝑅, 𝑅), and dominated non-coordination 

(𝑇, 𝑆) or (𝑆, 𝑇), occur in a single-stage of the larger repeated game. 
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Supplier 

𝑞 𝑞′ 

Retailer 
𝑞 (𝑃, 𝑃) (𝑇, 𝑆) 

𝑞′ (𝑆, 𝑇) (𝑅, 𝑅) 

Table 1. Game matrix for the single-stage demand forecasting game between retailer and supplier. 

The goal for the system is to minimize the bullwhip measure B given by (17) and occurs when 𝑉𝑎𝑟(|𝑒̂𝐿|) and |𝑒̂𝐿| are 

minimized. Let 𝑞∗ denote an optimal quantity for the stage. Optimality is defined here to be the quantity which introduces the 

smallest |𝑒̂𝐿| and 𝑉𝑎𝑟(|𝑒̂𝐿|). The blockchain system would provide a superior forecasting method so that both error and its 

variance would be smaller when using it. Action spaces of the retailer and supplier are both 𝑞 and 𝑞′ where 𝑞 is an order quantity 

that disregards 𝑞∗ with high forecast error whereas 𝑞′ approximates the demand process better, that is, it minimizes 𝑉𝑎𝑟(|𝑒̂𝐿|) 

and |𝑒̂𝐿|. When choosing 𝑞 instead of 𝑞′, the retailer has based its selection on a forecast that was in error and would increase 

the magnitude of |𝑒̂𝐿| and hence B. The choice of 𝑞 is equivalent to the choice of capacity 𝑐 for the supplier since the supplier 

rationally selects 𝑐 based on its own forecast of 𝑞. So, when the supplier chooses 𝑞 instead of 𝑞′, it has decided on a capacity 

𝑐 that is based on a forecast that was in error and would similarly increase the magnitude of |𝑒̂𝐿| and hence B. Furthermore, in 

the absence the blockchain control, decisions regarding 𝑞 or 𝑞′ are not regulated for variability and must be allowed to 

contribute to increased 𝑉𝑎𝑟(|𝑒̂𝐿|) and hence in B. This single stage game has one unique Nash equilibrium, sub-optimal 

coordination. With no intervention, the sub-optimal coordination would persist. 

Proposition The single stage game has a unique Nash equilibrium, so for any finite number of times played, the repeated game 

has a unique subgame-perfect outcome which is the Nash equilibrium played in every stage. 

Proof of this proposition follows from the definition of subgame-perfection and the uniqueness of (𝑃, 𝑃) as an equilibrium 

action. 

The blockchain system, with its smart contract, provides credibility to future cooperation since the contract confers non-

repudiation, that is, the inability to renege on the agreement. A notion of a future reward that develops from current cooperation 

entails that agents factor the value of this cooperation in their present decisions. A natural mechanism to factor the influence 

of future reward on current behavior is through discounting. It enables the incorporation of the possible future rewards into 

blockchain participation decisions but realistically imposes a reduction of the value of payouts for every time increment into 

the future. To illustrate this formalization, let 𝛿 denote the discount a retailer or supplier applies to the present value of a payoff 

𝜋 to be received in the next stage of a repeated game. Given 𝛿 and some infinite sequence of payoffs {𝜋1, 𝜋2, … } then the 

present value of this infinite sequence is, 

𝜋1 + 𝛿𝜋2 + 𝛿2𝜋3 + ⋯ = ∑ 𝛿𝑡−1𝜋𝑡

∞

𝑡=1

 (18) 

The discount factor 𝛿 reflects two aspects of the situations. First, it captures the time-value of a payoff as would be seen in a 

time-value of money calculation where a payoff later is no more valuable than a payoff now. Second, it reflects the probability 

that the retailer and supplier relationship could fall apart. To see this, let us specify 𝛿  as inversely proportional to some interest 

rate 𝑟 a retailer or supplier would require in order for persistence in the blockchain-based supply chain relationship to be 

economically attractive. Now, suppose both the retailer and supplier think the relationship would fail with probability 𝑝, ending 

the arrangement, and succeed with probability 1 − p, prompting a move onto the next round of the repeated game. This way, at 

the current period t, the payoff to be received in the next immediate period would be, 

(1 − 𝑝)
𝜋𝑡+1

1 + 𝑟
 (19) 

and in subsequent period, 

(1 − 𝑝)2
𝜋𝑡+1

(1 + 𝑟)2
 (20) 

If we set 𝛿 = (1 − 𝑝)/(1 + 𝑟) then the infinitely repeated game is a model of repeated interactions between retailer and supplier 

where there exists some possibility of the interactions permanently terminating. Provided this interpretation of an infinitely 

repeated game, let us assume the supplier has committed to the blockchain but will not remain in it if the retailer defects. This 

commitment is tantamount to a statement by the supplier that they will choose 𝑞′ , consequently 𝑐′, at every stage as long as 
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the retailer does the same but will forever shift to 𝑞 once the retailer does. Credibility of this promise is a concern to the retailer. 

Reversal of roles, retailer committing and then the supplier playing, yields symmetrical arguments at this level of analysis but 

we adopt the first interpretation hereinafter. At the first stage, supplier plays 𝑞′ and the retailer can choose either  𝑞′ or 𝑞. If he 

chooses 𝑞, he attains reward 𝑇 but then the supplier adopts 𝑞 thereafter and so the infinite payoff for retailer would be, 

𝑇 + 𝛿𝑃 + 𝛿2𝑃 + ⋯ = 𝑇 +
𝛿𝑃

1 − 𝛿
 (21) 

If the retailer had chosen 𝑞′  instead, then the game would move to the next period, and the retailer would face the same choice. 

Let us denote 𝑉 to the value of making the optimal choice at every decision point with, 

𝑉 = {
𝑅 + 𝛿𝑉, 𝑞′ 𝑐ℎ𝑜𝑠𝑒𝑛

𝑇 +
𝛿𝑃

1−𝛿
, 𝑞 𝑐ℎ𝑜𝑠𝑒𝑛

 
 

And thus playing 𝑞′ is optimal for the retailer if and only if, 

𝑅

1 − 𝛿
≥ 𝑇 +

𝛿𝑃

1 − 𝛿
 (22) 

or 

𝛿 ≤
𝑅 − 𝑇

𝑃 − 𝑇
 (23) 

Which indicates that both the retailer and supplier have a Nash equilibrium where (23) holds. 

Proposition The trigger strategy of the retailer’s participation in the blockchain is subgame perfect in the infinitely repeated 

retailer-supplier interaction game. 

Proof of this relies on the fact that, by definition, every subgame of an infinitely repeated game is identical to the game as a 

whole. It must be shown that following the trigger strategy yields Nash equilibrium at every stage. We can classify all subgames 

into two classes, (i) those for which all outcomes on previous stages have been (R,R) and (ii) those for which at least one 

previous outcome differs from (R,R). In (i), if condition (23) is met, it was shown that it is a Nash equilibrium for the retailer 

to remain in the blockchain at the current stage. As for (ii), we know from the single stage game that (P, P) is the Nash 

equilibrium to be played once (R,R) is not played. Thus, the strategy of participation in the blockchain with its coordination 

equilibrium is subgame-perfect. 

This result depends crucially on condition (23), using the fact that 𝛿 = (1 − 𝑝)/(1 + 𝑟) the result can be equivalently written 

as, 

(1 − 𝑝) ≤ (1 + 𝑟)
𝑅 − 𝑇

𝑃 − 𝑇
 

(24) 

From (24), it can be seen that for fixed 𝑟, 𝑅, 𝑇, 𝑃 stable participation in the blockchain requires the probability of passing to the 

next stage to be sufficiently high. If instead 𝑟, 𝑝 were fixed, then stable participation occurs only for (𝑅 − 𝑇)/(𝑃 −
𝑇) sufficiently large. It was assumed in this system that 𝑇 > 𝑅 > 𝑃 > 𝑆 and so for distance |R − T| to be sufficiently larger than 

|P − T|, compensation for participation in the blockchain for both retailer and supplier must be greater than the discounted 

difference between the sub-optimal coordination payout. In other words, the retailer and supplier must receive a payout under 

participation in the blockchain that would be larger than what they could hope to achieve by not participating in it and simply 

following the demand forecasting and ordering policy that is assumed to generate error.  

INTERPRETATION OF RESULTS  

Unconstrained, there is no way to ensure a retailer and supplier would have an incentive to make forecasts of future demand 

that deliberately minimize forecast error or variance of forecast error if neither are directly related to their bottom-line. Both 

the magnitude of the forecast error and its variability contribute to the bullwhip measure that signifies how distorted information 

from the customer becomes when propagating from the retailer to the supplier. A retailer or supplier is subject to limitations 

regarding its forecasting capabilities needed to reduce the bullwhip measure. To overcome this, both retailer and supplier could 

participate in a smart-contract enabled blockchain system that would manage demand forecasting in a way that would be 

technologically more sophisticated, generating less forecast error, variance in error, and information distortion. With logic 

governed by autonomously executed functions, the system would reward participants when their decisions aligned with its. 

With payouts properly designed so that the perceived probability of the blockchain system’s failure and the extent to which a 
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participant discounts any future reward from participation are taken into account, the smart-contract enabled blockchain system 

introduces a new situation where both retailer and supplier are better off by participating in it instead of relying on their 

individual forecasting activities. Thus, it successfully intermediates the conflict that exists between the two parties that results 

in poor usage and management of demand information. 

This work was a first examination of the application of a blockchain system to a well-established and enduring operational 

problem, the bullwhip, using information system ideas. It provided an illustration of the applicability and general provability 

of the benefit of a blockchain system to this problem. However, deeper analysis is required that can show how incorporation 

of specific real-world payouts into the game structure preserves any optimality. The smart contract design feature was presented 

as a more abstract template and would need to be instantiated with more detail before experimental work could be explored 

with it. Further work into the architectural design and implementation of this system would need to be performed before testable 

implications are empirically examined. For instance, what is the form of the compensation rewarded for participation in the 

system or the initial investment cost to join the system. No exact forecasting algorithm was assigned to the retailer or supplier, 

but it was assumed its output was less accurate and more variable than that sourced from the blockchain system. An assignment 

of an exact algorithm could provide forecast error and variance expressions that are more specific and less general. These 

specific expressions would then be substituted into the bullwhip so that construction of payouts and utilities for retailer and 

supplier employing the blockchain system. Throughout the paper, several assumptions were made but these would need to be 

relaxed if implementation of a system was attempted. 

CONCLUSION 

Exposure of a supply chain to conflict between a retailer and supplier can create conditions conducive to non-coordinated and 

inefficient behavior of both parties. Inefficiency in this paper focused on the excess error and error variance in a retailer’s 

orders. Non-coordination is a natural state of the interactions without external controls due to the retailer’s desire to chase 

consumer demand and the supplier’s desire for orders to be as smooth as possible. Coordination fails because a retailer cannot 

trust the supplier to consistently decide in its favor and likewise for the supplier. This work introduced a novel mechanism 

designed to inject a degree of credibility and trust between the two parties to facilitate coordination. Under a simple inventory 

management and demand process model, it was shown that the retailer and supplier will commit a non-zero forecast error when 

predicting future accrued demand. This forecast error directly translates into order quantities different from an optimal order 

quantity. When using a simple forecasting technique, the variance of forecast error is expected to be larger than what is optimal 

thus contributing to the bullwhip effect, that is, distortion of the demand information. A consortium blockchain with smart 

contracts was introduced as a novel system to address this problem. Central to this idea was the smart contract which comprised 

several automated routines that intermediate ordering between retailer and supplier. The design objective was to compensate 

the retailer for submitting orders consistent with the more accurate and less variable system recommendations and compensate 

the supplier for choosing a capacity that also came from guidance from the system. A dynamic game of complete and imperfect 

information was shown to offer to the retailer and supplier a strategy which was a provable Nash equilibrium and sub-game 

perfect.  
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