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Abstract: 

This study presents a conceptual replication of Adya and Lusk’s (2016) forecasting decision support system (FDSS) 
that identifies the complexity or simplicity of a time series. Prior studies in forecasting have argued convincingly that the 
design of FDSS should incorporate the complexity of the forecasting task. Yet, there existed no formal way of 
determining time series complexity until this FDSS, referred to as the Complexity Scoring Technique (CST). The CST 
uses characteristics of the time series to trigger 12 rules that score the complexity of a time series and classify it along 
the binary dimension of Simple or Complex. The CST was originally validated using statistical forecasts of a small set 
of 54 time series as well as judgmental forecasts from 14 representative participants to confirm that the FDSS 
successfully distinguished Simple series from Complex ones. In this study, we (a) replicate the CST on a much larger 
set of data from both statistical and judgmental forecasting methods, and (b) extend and validate the series classification 
categories from the binary Simple-Complex used in the original CST to Very Simple, Simple, Complex, and Very 
Complex thus adding an ordinal link between the two previous binary designations. Findings suggest that both the 
replication and extension of the CST further validate it, thereby greatly enhancing its use in the practice of forecasting. 
Implications for research and practice are discussed. 
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1. Introduction 

Decision making literature suggests that task complexity influences decision maker’s strategies (Payne et 
al, 1990), information seeking behaviors (Bystrom and Jarvelin, 1995), DSS use (Adya and Lusk, 2016), 
and performance (Campbell, 1988). In the forecasting literature, a small but consistent set of studies provide 
similar evidence that the complexity of a time series can challenge the forecasting process and detrimentally 
influence forecast accuracy (Goodwin and Wright, 1993). For instance, presence of complexity-causing 
features such as randomness and non-linear trends in time series lead to dysfunctional actions such as 
overcompensation or confusion (Andreassen and Kraus, 1990). Furthermore, overly difficult time series 
seem to cause forecasters to ignore cues or to classify important cues as random variations (O’Connor et 
al, 1993).  

The dysfunction created by complexity of forecasting tasks presents an opportunity to examine how 
Forecasting DSS (FDSS) could be designed to improve human decision processes by selectively focusing 
analytic activity where it may best conserve the forecaster’s time and cognitive resources. This notion 
emerges from task-technology studies in IS which suggest that the nature of technology support should 
align with demands of the decision task (Zigurs and Buckland, 1998) i.e. decisions characterized as fuzzy 
and complex will require support that is different from those characterized as simple. This also positions 
future work on FDSS within the context of adaptive systems where the complexity of a time series could be 
used to design systems that restrict or guide forecaster actions. This of course is critical as about 60% of 
forecasters, in some manner, adjust forecasts from their FDSS and, in the process, often end up 
compromising forecast accuracy (Sanders and Manrodt, 2003). Complex series might benefit from greater 
guidance or might require that some features of an FDSS be made “unavailable” to forecasters. Until 
recently, however, the opportunity to conduct empirical research in these domains was hindered by the lack 
of a structured and comprehensive mechanism for determining the complexity of a time series.  

To address this gap, Adya & Lusk (2016), hereon referred to as A&L, developed and validated an FDSS, 
the Complexity Scoring Technique (CST). The CST is a rule-based DSS designed to distinguish complex 
time series from simple ones. Specifically, it uses 12 rules to generate a customized score for individual 
time series based on its features. For instance, the CST scores a series with a changing slope (a feature) 
as having higher complexity than a series without this feature. The cumulative score of such features is 
subsequently used to classify time series along the binary dimension of Simple and Complex. In A&L, the 
CST was validated on a set of 54 time series across a range of benchmark forecasting methods, e.g. 
judgmental, Linear Regression, Holt’s exponential smoothing. Results confirmed that the CST robustly 
distinguished Simple from Complex series. From this study, the CST set the stage to tailor the selection of 
forecasting methods to complexity of a series and to design more nuanced FDSS. 

Although A&L made significant strides in addressing this gap in FDSS literature, two issues require further 
attention. First, the design and validation of the CST was based on a limited set of time series and a small 
number of data points. A&L had a total of 336 observations for judgmental forecasts and 54 for Regression 
and Holt’s exponential smoothing. It was important, therefore, to conduct “further validation and refinement 
at many levels” (A&L, p. 81) on a larger data set to establish generalizability of findings. Second, 
“considering the foundational nature of this work” (p. 76), A&L developed the CST to execute only a binary 
classification – Simple/Complex – of time series complexity. Whereas, binary classifications are intuitive 
and can lead to higher proportion of correct classifications, in reality, complexity is a continuum, not a point 
designation. Using this binary designation runs the risk of misalignment with “forecaster perceptions of the 
complexity of a time series” (A&L, p. 79). Furthermore, a binary classification limits the precision with which 
confidence intervals (in effect uncertainty) could be defined around forecasts. To this end, the development 
of a finer intra-category classification that provides an ordinal set of additional classifications between the 
two binary ones became a critical aspect of this replication. These extended categories not only enable the 
validation of the original A&L categories but also enhance the utility of the CST for forecasters when dealing 
with series that are more intermediate in nature. To extend this binary classification would not only address 
the above limitations but would be a crucial second level of validation of the mechanism underlying the CST. 
As such, this study presents a replication and extension of A&L. Specifically, we: 

a. replicate the findings of A&L on a larger set of time series and greatly expand the set of 

judgmental data used in this vetting, and 
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b. extend the CST by using four ordinal classifications of time series – Very Simple, Simple, 

Complex, and Very Complex – thus expanding the binary classification developed in A&L. In 

doing so, we further validate A&L’s findings. 

In the next section, we briefly summarize the CST and its underlying rule-base for time series classification. 
This section also rationalizes the need for an FDSS that incorporates complexity considerations. We then 
describe a new time series classification schema that is tested for internal consistency over the previous 
binary scoring partition of A&L. The empirical data sets used in the replication and extension are described 
next along with the proffered hypotheses. Results of the replication and extension are presented thereafter. 
The paper concludes with a focused discussion of implications for FDSS design. 

1. Background 

1.1 The Origins of CST: A History of Replications and Extensions 

The CST benefits from a strong history of replications and extensions. Its origins lie in the design of Rule-
Based Forecasting (RBF) FDSS designed by Collopy and Armstrong (1992). These authors (hereon 
referred to as C&A), developed an FDSS that combined forecasts from four statistical forecasting methods 
based on 18 features of time series. This RBF FDSS, an expert system consisting of 99 “IF…THEN…” rules, 
used forecasting best practices identified by experts to combine forecasts. Eighteen features of time series 
were used to weight forecasts from these methods, yielding combined forecasts that were customized 
according to characteristics of the series. The rule below from C&A is representative of how the RBF rules 
function: 

RULE 45: Unstable Recent Trend. IF there is an unstable recent trend, THEN add 20% to 
the weight on Random Walk and subtract it from Brown’s and Holt’s.1 

In essence, C&A offered, the largest set of features that could be used to characterize time series. However, 
only about half of these features were programmable and could be identified automatically by embedded 
modules within RBF. The remaining features had to be determined visually by forecasters, essentially by 
relying on their experience and information processing capabilities.  

This issue was addressed by Adya et al, (2001) who extended RBF by developing various automated 
routines to detect most time series features that were manually identified in C&As RBF. The design of this 
Automated RBF (ARBF) set the stage for further replication and validation of RBF on a much larger data 
set of 3003 time series in Adya et al, (2000) as well as an extension that involved a simpler set of forecasting 
rules (Adya & Lusk, 2013a). The subject of our study, the CST developed by A&L, has benefited from this 
history of replications and extensions and presents the next enhancement to ARBF i.e., it systematically 
builds on the features developed and validated as part of the RBF and ARBF studies. Furthermore, it relies 
on rules that were built in the original RBF study and validated over the last two decades. 

1.2 Overview of A&L’s Complexity Scoring Technique (CST) 

Whereas typically there should be little need for describing the original study in the conduct of a replication 
but, because the design, development, and validation of the CST was complex, we begin with a brief 
overview and background of the CST to inform the context of our study. The CST is a rule-based system 
that generates a customized score for individual time series based on its features. A&L relied on 14 features2 
of time series to develop and validate 12 rules for identifying complexity of a time series. These rules are 
presented in Table A in the Appendix. Each series begins with a complexity score of 0. As a feature of a 
time series is identified, its complexity score is adjusted. For instance, if a series was flagged as having an 
anomaly between its long-term and short-term trends, its score was reduced by 15 using the following rule.  

                                                      
1 Rule-numbers are presented as originally designated in C&A. Phrases in italics represent time series features or traits as defined 
and used in C&A. Here the Random Walk was one of the Models used in Makridakis et al, (1982); the Random Walk is the projection 
of the last observed value as the forecast value for all the relevant forecasting horizons under examination. 
2 Features include (a) instability causing features such as suspicious patterns in historical data, unstable recent trend, and changing 
basic trend, (b) uncertainty causing features such as discord between the direction of basic and recent trends, and (c) other features 
such as domain knowledge, significance of trend, presence of cycles, and number of observations.  
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Complexity Rule 2: IF the Direction of Basic and Recent Trends differ OR they agree but differ from Causal 
Forces, THEN add -15 to the Complexity score. 

In essence, any complexity causing features lower the complexity score of the time series whereas an 
alleviating feature would increase it. As CST scoring rules most often reduce the score relative to the 
baseline score, most series had a negative complexity score. Series with the lowest negative score were, 
then judged to be the most complex. Scores for time series in the data set ranged 45 units from -40 to +5. 
Using a variety of measures, A&L defined series with a complexity score of lower than -10 as Complex while 

-10 or higher were defined as Simple.  

1.2.1 Validation of the CST 

The CST evolved over two phases and was developed and validated using 126 times series – 74 of these 
series were used for development and refinement of the rule base while 54 were used for validation. Two 
sets of validations were conducted: 

Model Forecasts: 

a. Forecasts were generated for all series, Simple and Complex, using benchmark methods that are 

well-accepted in forecasting research – Random Walk, Linear Regression, Holt’s exponential 

smoothing/ARIMA(0,2,2), the RBF DSS. 

1.  

b. Forecast errors were calculated using two well-established measures recommended in Armstrong 

and Collopy (1992) – Relative Absolute Errors (RAEs) and Absolute Percentage Errors (APEs). 

For purposes of validation, the RAEs were given greater emphasis for reasons elaborated in A&L.  

c. It was hypothesized logically, referencing the standard forecasting literature, that errors on the 

RAE would be higher for series determined by the CST to be Complex as opposed to those 

determined to be Simple. These hypotheses were tested and strongly confirmed.  

Judgmental Forecasting: 

a. As part of controlled experiments, participants who were well-trained in forecasting in an 

academic setting were asked to generate forecasts for series classified as Simple and Complex 

by the CST. 

 

b. The same error measures, RAEs and APEs, were used to measure forecasting accuracy. 

 

c. The same hypothesis was applied for the model forecasts and validations confirmed that errors for 

forecasts generated judgmentally by participants for Complex series were higher than those for 

Simple ones. 

Example of a research question and hypothesis format (“Research Qs and Hypotheses” in the ribbon). 

1.2.2 Contributions of the CST 

Although conceptually intuitive and logically defensible, the CST brings much needed value to the FDSS 
literature. First, it positions future work on FDSS within the context of adaptive systems where features that 
increase the complexity of a series could be used to design FDSS that restrict or guide forecaster actions. 
We cannot make recommendations with certainty as the CST has only been recently developed and, to 
date, no empirical extensions have been reported on it in the literature. Second, the CST makes possible 
the examination of forecaster behaviors related to FDSS use, particularly regarding how forecasters cope 
with complexity. While there is some evidence in the forecasting literature that certain features of time series 
lead to improved use or misuse of FDSS, this literature is preliminary and requires a common framework 
upon which this body of research might be developed. The CST provides one such approach to managing 
the dysfunction of complexity but requires further validation.  
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2. Methodology and Data 

Our study is a necessary extension, replication, and validation of the CST offered by A&L. First, we extended 
the CST to classify time series along four gradations – Very Simple, Simple, Complex, and Very Complex. 
This elaborated classification was deemed necessary not merely to assess the generalizability of the CST 
but also to allow FDSS researchers to nuance its integration with other FDSS. The inclusion of additional 
categories of complexity is critical as it addresses the questions begged by binary only designations: What 
is the effect of moving off one of the designation points? In other words, how might we deal with intermediate 
series that are not quite Complex and not quite Simple. While the binary categorizations of A&L are certainly 
useful for the forecaster as an initial threshold, it is important to consider the intra-category series to offer a 
rich and articulated decision aid. Second, using these four categories, we replicated the CST on a 
significantly larger sample of time series as well as judgmental forecasts. These procedures and related 
data sources are described next.  

2.1 Intra-category Classifications – The Elaborated CST 

Recall that the CST was designed to classify series with scores between the ranges of +5 and -10 as Simple 
and those lower than or equal to -15 as Complex. For the extension, we selected relative mid-points along 
the scoring ranges to give reasonable inferential power over all the four classification categories. This 
assumes that the scoring line is Cartesian. This mid-range classification would also provide relative balance 
in the number of sample points and so enhancing the power of the Wilcoxon test and related Multiple 
Comparison Tests [MCT] (see JMP, 2006). The following intra-category classifications were a priori or 
initially formed and remained unchanged after the preliminary testing: 

 

 Very Complex Series (VC) = Complexity Scores [<= 45 to 20] 

 Less Complex Series (LC) = Complexity Scores [ 15] 

 Less Simple Series (LS) = Complexity Scores [10 & 5] 

 Very Simple Series (VS) = Complexity Score [=> 0] 

The sample sizes for these groupings are reported in Table 1 below.  

2.2 Intra-category Classifications – The Elaborated CST 

Validations of these expanded classifications were conducted in congruence with the protocols used by A&L 
–i.e., validations were conducted on (a) forecasts from judgmental forecasts generated by participants and 
(b) forecasts from well-accepted statistical benchmarks. Results from these validations are discussed next. 

2.2.1 Judgmental Forecasts – Participant Profile and Treatment 

The extended CST was validated with 180 participants who were asked to generate forecasts for time series 
that were randomly assigned to them. Experiments were conducted at Otto-von-Guericke [OVG] Universität 
Magdeburg, Germany as well as in Armenia, China, and Leuphana Universität of Lüneburg, Germany where 
one of the authors was involved in teaching forecasting courses. To maintain consistency with A&L 
protocols, we selected 66 time series from the same data set as used in their study – i.e., from the M-
competition data (Makridakis et al, 1982). All of these 66 series were selected randomly by the authors. 
Participants were not aware of the complexity of the series that they were assigned in the experimental 
design. Incidentally, the author executing the experiments was also unaware of the classification of these 
series. These 66 series and their URL are noted in Table B in the Appendix.  

These judgmental validations were conducted over a period of ten years. During this time, we kept track of 
all the series used in the delivery of these courses. A posteriori, we classified these target of opportunity 
series as to their complexity using the CST complexity scoring protocol. Therefore, this was a truly unbiased 
assignment as, for more than 85% of the series, there was no complexity information available at the time 
of the assignment.  

About 80% of the judgmental forecasts were generated by participants enrolled in a graduate course on 
Business Forecasting at the OVG. The general profile of the participants was constant as most of them were 
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enrolled in the Master’s Program in Economics3 at OVG. All participants were from equivalent Master’s 
programs with the exception of one group at the Lüneburg Universität where the students were 
undergraduates in a Decision-Making Analytics program in the School of Management. The profile of the 
students in these courses is presented in Table 1 below: 

TABLE 1: Participant Profiles for Judgmental Validation of the CST 

Participant Age Median: 
Range 

Experience+ Performance* 

OVG 23:[19-37] Internships: 34% 
Prior Work Experience: 6% 
 

Pass: 93% 
Low Pass: 6% 
Fail: 1% 

Summers 22:[18-24] Internships: 12% 
Prior Work Experience:4% 

Pass: 99% 
Low Pass: 1% 

*Due to confidentiality considerations, we were not permitted to collect overall GPA for the OVG students. However, 
we were permitted to report in the aggregate the grades achieved in the forecasting courses. In the regard, we scaled 
the various diverse grading systems to the USA note metric [A through C]: Pass[P], D Low Pass[LP] and Failure [F], 
all failures, there were 3 over the accrual set, were excluded from the dataset]. 

We tested to determine if there were differences between OVG and the summer groups and over the two 
grade groups. Their respective p-values were 0.45 and 0.63 respectively suggesting that the Null of no 
difference was the likely case. Participants were asked to produce 1- to 6-period ahead forecasts for each 
of the four assigned series, yielding 4,320 forecasts, (180 students, each of whom on average was given 

four series and generated 6 forecasts: 18046).  

2.2.2 Statistical Methods – Data and Validations 

In addition to judgmental forecasts for Very Simple to Very Complex series, forecasts were also generated 
for well-accepted benchmark methods, similar to those used by A&L. Specifically, forecasts were generated 
using (a) OLS two-parameter Linear Regression, and (b) Holt/ARIMA (0,2,2) two-parameter linear 
exponential smoothing. For statistical methods, there were [390 x 2 or 780 forecasts for 65 series; series 
number 36 was eliminated as it exhibited Holt Inversion issues. Specifically:  

1. OLS: Regression of the form [𝑌𝑡  = 𝛼 +  𝛽 × 𝑡;  𝑡: [1, 𝑛]], noted as [R], and  

2. Holt/ARIMA (0,2,2): Exponential smoothing method also known as the Holt Model [H] 

In total, between all methods, 5,100 forecasts were used – 4,320 for judgmental forecasts and the balance 
780 [5,100 – 4,320] from formal statistical methods: Regression and Holt. 

2.2.3 Forecast Accuracy Measures and Hypotheses for Empirical Validation of the 
Elaborated CST 

Relative Absolute Error (RAE), a well-accepted measure of forecast accuracy, was used to evaluate the 
forecasts and thereby, the complexity classifications. This same measure was used in A&L. For consistency, 
the RAEs were winsorized4, as was done in A&L and also by C&A. We used the same hypotheses as in 
A&L with the underlying assumption – that a full validation of the CST will require that the forecasts for 
Simple series will be more accurate on the RAE measure than for the Complex ones.  

The hypotheses for this study are developed along two dimensions (a) replication of the original A&L 
classification, and (b) a validation of the extended classification schema to Very Simple-Very Complex, as 
described earlier. The hypotheses are tri-conditional, considering the three independent forecast generating 
methods. 

2.3 Replication of the CST 

When facing complex tasks, forecasters become conditioned to relying on compensatory decision 
processes such as frugality in use of cognitive resources and simplifying tasks by eliminating alternatives 
and processing limited information (Payne, 1976). A&L examined this by asking forecasters to produce 

                                                      
3 An English language program in the Faculty of Economics & International Studies. 
4 Winsorizing is a common practice in forecasting where if, for a forecast, the RAE < 0.01 then it takes the value RAE = 
0.01 and if RAE >10 then it takes the value RAE = 10. 



Transactions on Replication Research 7 

  

Volume 4  Paper 5 

 

structured judgmental forecasts for series classified as Simple or Complex by the CST. Their tests confirmed 
that complexity detrimentally impacted the accuracy of judgmental forecasts. Considering that the conditions 
of our replication were not different from those in A&L, the following hypothesis is proposed: 

Hypothesis 1: Median RAEs for Judgmental forecasts will be higher for Complex series when 
compared to those for Simple series. 

For the statistical methods, A&L provided consistent evidence across multiple benchmark methods that, for 
both 1-ahead and 6-ahead forecasts, Complex series are more challenging to forecast than Simple ones. 
In particular, they found that the forecast accuracy for both OLS Linear Regression and Holt’s Exponential 
Smoothing were higher for Simple time series as opposed to Complex ones. In keeping with those findings, 
we propose the following: 

Hypothesis 2: Median RAEs for OLS Regression forecasts will be higher for Complex series when 
compared to those for Simple series. 

Hypothesis 3: Median RAEs for Holt/ARIMA forecasts will be higher for Complex series when 
compared to those for Simple series. 

2.4 Extension to Inter-Category Classifications 

We extrapolate the hypotheses from A&L to the expanded complexity classifications and posit that forecast 
accuracy will progressively get worse from series classified as Very Simple to those classified as Very 
Complex. This aspect of the study is most crucial to CST because if we find no order in the forecast accuracy 
across the four categories, it would call to question the fundamental validity of the CST. In contrast, if this 
order were to be confirmed, this second level CST validation would reaffirm the potential impact of CST on 
FDSS research. Accordingly, the following set of hypotheses were developed, essentially building from H1-
H3: 

Hypothesis 4: Median RAEs for Judgmental Forecasts will follow the pattern: VC > LC > LS > VS. 

Hypothesis 5: Median RAEs for OLS Regression will follow the pattern VC > LC > LS > VS. 

Hypothesis 6: Median RAEs for Holt/ARIMA forecasts will follow the pattern VC > LC > LS > VS. 

3. Results 

The results for all six hypotheses are presented in Table 2 below. For robustness, to test H1-H3, we used 
three inferential measures:  Wilcoxon/Kruskal-Wallis Rank Sums, the Median Test (points above the 
median), and the van de Waerden test (normal quantiles) platforms in SAS/JMP, v13. This allows us to 
report the highest, i.e. most conservative, p-value relative to rejecting the usual inferential null. For H1-H3, 
for the series classified using the original CST, the highest p-value of the three sets of forecasts was such 
that one can justify rejecting the nulls with high assurance. For all three test trials, the Complex series has 
a RAE profile significantly higher than that of the Simple series and in two cases, as well as overall, the 
Median for the Complex series arm is >1.0. This represents strong evidence that the original CST 
classification in A&L is reliably homomorphic and robust along the binary scoring partition over the three 
generating processes - Judgment, Regression, and Holt/ARIMA. Table 3 juxtaposes original results from 
A&L with those from this replication. These comparisons confirm that with the larger judgmental and 
statistical sample, spanning multiple data collection phases, CST robustly distinguishes between simple and 
complex time series.  

To test H4-H6, we used the non-parametric ANOVA Wilcoxon Rank Sum Test, n >2 and subsequently used 
the non-parametric multiple comparison test based upon the Wilcoxon Test as found in SAS/JMP, v13. 
While there is no clear inferential test that flows naturally from this dataset as the elements are not likely 
independent realizations, what seems reasonable is to test the percentage of multiple comparison p-values 
that are less than the directional hypothesized p-values of 0.05. In this case, we computed the directional 
95% confidence interval (CI) for this percentage. Our rejection of the null of no effect will be if the lower limit 
of the 95% CI excludes 50%. This is a strong test because if the null is the reality, then number of low p-
values will also be low - on the order of 5%. Conversely, if the lower limit of the above test excludes 50%, 
admittedly an optimistically high or conservative value, there can be suggestive evidence that the multiple 
comparison test separation is indicative of structural differences. 
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Table 2: Results Showing Median RAE for Hypotheses H1-H6 

Test Groups 

Hypotheses H1 – H3 Hypotheses H4-H6 

Complex: 
Median, n  

Simple: 
Median, n 

Directional 
p-values* 

Very 
Complex: 
Median, n  

Less 
Complex: 
Median, n 

Less 
Simple: 
Median, n 

Very Simple: 
Median; n 

Judgmental 
Forecasts 
(JF) 

1.20 
n = 1902 

0.72 
n = 2,418 

<0.0001 1.26 
n= 1440 

1.0 
n= 462 

0.77 
n= 1,716 

0.61 
n= 702 

Regression 
(R) 

1.14 
n = 156 

0.75 
n = 234 

<0.02 0.87 
n= 102 

1.41 
n= 54 

0.80 
n= 144 

0.72 
n= 90 

ARIMA/Holt 
(H) 

0.80 
n = 156 

0.55 
n = 234 

<0.0001 0.85 
n= 102 

0.78 
n= 54 

0.60 
n= 144 

0.36 
n= 90 

Overall: JF, 
R, H 

1.16 
n = 2,214 

0.71 
n = 2,886 

<0.0001 N/A N/A N/A N/A 

*Overall: n = 5,100 or 850 trials each of which produced six (6) forecasts. The p-value reported are for the highest, most conservative respecting 

the Null, of the three robustness tests. 

 

Table 3: Comparative Median RAEs from Original A&L Study 

Test Groups 
Original Study This Replication 

Complex: 
Median, n 

Simple: 
Median, n 

Complex: 
Median, n 

Simple: 
Median, n 

Judgmental 
Forecasts 

1.22 
n=168 

0.61 
n=168 

1.20 
n=1902 

0.72 
n=2418 

Regression 1.25 
n=22 

0.53 
n=32 

1.14 
n=156 

0.75 
n=234 

ARIMA/Holt 0.78 
n=22 

0.36 
n=32 

0.80 
n=156 

0.55 
n=234 

The p-values of the RAE in profile are presented in Table 4: 

Table 4: P-values for the Multiple-Comparison Test 

 Overall 

Mean 0.045 

Median <0.0001 

Mode <0.0001 

Range [<0.0001 to 0.86] 

The number of directional p-values for the multiple comparison tests, derived from Table 2, are in total 18 - 
three independent methods (Judgment, Regression, Holt/ARIMA) and 6 inter-method contrasts. For these 
18 comparisons, 16 were less than the cut-off point p-value of 0.05. The lower limit of the 95% CI is 76.7% 
[for 88.9% or 16/18] which is significantly above the 50% cut-off, suggesting that there is intra-group 
separation and internal consistency of the cut-off points. These results are a strong rejection of the null of 
no directional association for the Median RAE, implying that for the expanded CST one can confidently 
reject the null of no effect on an inter-group binary comparison. Simply, the integrity of the CST is vetted 
and it can likely be relied on to provide nuanced classifications of time series classifications that can be 
useful for FDSS design as well as informing judgmental forecasting best practices.  

4. Summary and Implications 

We set out to confirm and extend the validity and, as such, the practical utility of the FDSS developed by 
A&L. This study, then, contributes in two important ways: 

(a) The CST complexity categories were expanded and results confirmed that the classifications 

retained our original inference as presented in A&L - i.e., to distinguish Complex series from 

Simple ones, potentially spawning a new stream of research. This opens the CST from a 

simplistic binary partition to four ordered categories from Very Complex to Very Simple.  

 

(b) A more robust replication of CST is presented, tested, and found to be consistent. The CST was 

replicated and validated across three independent and inherently different datasets of a much 
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larger magnitude than used in A&L. This robustness is critical as it expands the domain of activity 

from that of only judgmental methods such as RBF to a wider set of models that are the common 

fare in forecasting: the Linear Regression and ARIMA models.  

The elaborated CST is likely to be a critically valuable system for identifying the nature of time series used 
for decision-making and fine-tuning the use of forecasting methodologies around these gradations. Most 
directly, when the decision-maker is engaged in a forecasting task the input of which is a time series, the 
first question we recommend addressing is:  

What is the nature of the complexity with which the decision maker is dealing? 

Two critical and poignant observations can be made here regarding the inferences rationalized by the above 
results: 

a. If the informational time stream falls into the Very Complex category, then the historical data of 

the time series will likely provide little information that will be useful for a reasonable forecast. 

Thus, the forecaster may conserve valuable time by not trying to outperform the Random Walk 

method that extrapolates the last historical period to the future.  

 

b. However, where the elaborated CST classification suggests that the time series falls in the class 

of Very Simple, the decision maker can expect to outperform Random Walk projections of the 

recent past by using standard statistical models that do not require judgmental inputs and, once 

again, conserve valuable decision-making time. 

 

c. Given the intermediate ranges offered by the new categories, forecasters can use their 

experience and analytical protocols to improve the acuity of FDSS. This opens opportunities for 

further design and testing of FDSS that are fine-tuned to identify models and that may be used to 

create FDSS to improve forecasting accuracy while conserving the resources employed in the 

forecasting endeavor.  

4.1 Implications for FDSS Design 

Through this extension and replication of the A&L CST, we have significantly expanded the operational 
utility of the work of A&L by extending the empirical validation. Over time one would suppose that this would 
create a competitive advantage while conserving resources as the above points suggest. These are indeed, 
significant breakthroughs in the FDSS domain as this opens vast new opportunities for DSS development 
(see Adya & Lusk, 2013b). The current CST system relies on the decision-maker to identify features of the 
time series – i.e., it assumes that features of the time series have been characterized. In the current world 
of streaming and big data, for a decision-maker to code time series features is manifestly impractical. This 
begs the next step - that is to integrate the elaborated CST system presented above into an expanded FDSS 
that captures the time series at its source/initial engagement and uses automate feature identification 
routines, such as those found in Adya et al, (2001). These time series characterizations can then feed into 
a forecasting system, such as C&As RBF that can select forecasting methods based on complexity as well 
as features of the time series. An exciting application of such an integrated FDSS might be to examine 
application of restriction and guidance (Silver, 1990) in light of the range of Very Simple to Very Complex 
time series tasks. The elaborated CST has opened the door to this new stream of necessary DSS 
development. 

In summary, in managerial domains, the dysfunction created by complexity is often manifested in the form 
of poor decision-making and /or the dissipation of scarce resources. In the case of forecasting, it implies 
inaccuracies that can have significant implications for firms in terms of lost revenue through excessive 
inventory or gross miss-estimations of demand. A&Ls work in realty underlies the functionality of most DSS 
and has a direct role in FDSS design, particularly with regard to task-technology fit (Goodhue and 
Thompson, 1995). We learn from Table 3 that Very Simple and Very Complex series beg the question of 
the time commitment needed to form Judgmental forecasts; as simple push-button models of Regression 
and Holt/ARIMA seem appropriate to the task in the former case and, in the latter case, the Random Walk 
(Naïve Method) is the model of choice. In summary, we offer that Tables 2 and 3 can form a viable screening 
protocol for making the behavioral coping decision as to how to deal with time series complexity.  
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Appendix A: CST Rules and Series 

Table A: CST Rules (Adya & Lusk, 2016) 

Traits Related Complexity Scoring Rules  

Complexity of Underlying 
Signal 

Levels of complexity may vary from stationary through linear trend, non-linear trend to 
no trend. 
CRule 1: IF Causal Forces are Unknown, THEN add -5 to the Complexity score. 
CRule 5: IF Basic Trend is not significant (Regression T-Stat <2.0), THEN add -5 to the 
Complexity score. 
CRule 9: IF the Functional Form of a series is additive, THEN add -5 to the Complexity 

score. 
CRule 12: IF a Number of Observations in a series < 13, THEN add -5 to the Complexity 
score. 

Level of Noise around the 
underlying signal 

CRule 2: IF Direction of Basic and Recent Trends differ OR they agree but differ from 
Causal Forces, THEN add -15 to the Complexity score. 
CRule 4: IF Series is Suspicious, THEN add -10 to the Complexity score. 
CRule 8: IF the Basic Trend of a series is changing, THEN add -15 to the Complexity 
Score. 
CRule 11: IF the Coefficient of Variation about the Trend > 0.9, THEN add +5 to the 
Complexity score. 

Stability around underlying 
signal 

CRule 3: IF Recent Trend is unstable, THEN add -20 to the Complexity score. 
CRule 6: IF there is a Level Discontinuity, THEN add -5 to the Complexity Score. 
CRule 7: IF a series is Near a Previous Extreme AND Cycles are present, THEN add 
+10 to the Complexity score. 
CRule 10: IF the Recent Run is Not Long THEN add -5 to the Complexity score.  

 

Table B: Series Used in the creating the forecasts for the Three Forecasting Groups* 

4 5 7 8 14 15 17 18 24 27 28 

34 35 36 37 38 44 45 47 48 53 54 

55 57 58 64 67 68 74 76 77 78 84 

87 88 94 96 97 98 104 105 107 108 114 

117 118 124 127 128 134 136 137 138 144 147 

148 154 157 158 164 167 168 174 175 177 178 

*These series [including holdbacks] can be downloaded at: www.forecasters.org. There are 181 time series at www.forecasters.org. 
A&L used 72 for the AL-CST in the development phase and 54 in the holdback testing phase. In the empirical validation we will use 
66 series. For purposes of continued testing the set of series not used in one of the three testing protocols follow the modular repeating 
set: 1: then {9, 10, 11};- - -; {179, 180 , 181} or there are 1 + 3×18 =55 series that could be used to extend the validation testing. The 
bolded series were the series most used in comparison to the Median number of series forecasts generated which was 36. There were 
25 of these often-used series. 

http://www.forecasters.org/
http://www.forecasters.org/
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